[go: up one dir, main page]

JPH05271852A - Rare earth magnet alloy manufacturing method - Google Patents

Rare earth magnet alloy manufacturing method

Info

Publication number
JPH05271852A
JPH05271852A JP4074651A JP7465192A JPH05271852A JP H05271852 A JPH05271852 A JP H05271852A JP 4074651 A JP4074651 A JP 4074651A JP 7465192 A JP7465192 A JP 7465192A JP H05271852 A JPH05271852 A JP H05271852A
Authority
JP
Japan
Prior art keywords
nitriding
magnet alloy
rare earth
magnet
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4074651A
Other languages
Japanese (ja)
Inventor
Kazumasu Kuriyama
和益 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4074651A priority Critical patent/JPH05271852A/en
Publication of JPH05271852A publication Critical patent/JPH05271852A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

(57)【要約】 【目的】窒化系磁石の原料粉末の効果的窒化処理法を提
供する。 【構成】希土類酸化物の還元拡散法によって得られたケ
ーキ状反応生成物を直接窒化処理し、次いで目的磁石合
金材料を水洗により回収する。
(57) [Summary] [Objective] To provide an effective nitriding method for raw material powders of nitriding magnets. [Structure] A cake-like reaction product obtained by a reduction diffusion method of a rare earth oxide is directly subjected to a nitriding treatment, and then a target magnet alloy material is recovered by washing with water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、還元拡散法による希土
類系磁石合金材料の製造方法に関し、特に還元拡散反応
によって得られた反応生成物混合物を窒化処理すること
で得られる希土類系磁石合金材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth magnet alloy material by a reduction diffusion method, and in particular, a rare earth magnet alloy material obtained by nitriding a reaction product mixture obtained by a reduction diffusion reaction. Manufacturing method.

【0002】[0002]

【従来の技術】現在、いわゆるサマリウムコバルト磁
石、ネオジボロン磁石などが代表例である希土類系磁石
は高い飽和磁束密度、高い保磁力などその優れた磁気特
性を評価されて家電製品、エレクトロニクス、自動車部
品など幅広い分野にわたって使用され、その需要も急激
に増加している。これは希土類系磁石の高い飽和磁束密
度と保磁力が磁石部品の軽薄短小化に寄与するためであ
る。
2. Description of the Related Art Rare earth magnets such as so-called samarium-cobalt magnets and neodiboron magnets are currently evaluated for their excellent magnetic characteristics such as high saturation magnetic flux density and high coercive force, and they are used in home appliances, electronics, automobile parts, etc. It is used in a wide range of fields and its demand is increasing rapidly. This is because the high saturation magnetic flux density and coercive force of rare earth magnets contribute to making the magnet parts lighter, thinner and smaller.

【0003】さて近年、希土類−鉄系の合金を窒化する
と従来の希土類系磁石合金よりも磁気特性に優れた磁石
合金が得られる可能性が指摘され、それに関する技術も
公開されつつある。例えば、窒素含有量やその窒化系磁
石合金に添加する元素の種類、量に関するものとして特
開平3−16102 号公報など、またその窒化系磁石の製造
方法に関し特開平2−57663 号公報などに開示されてい
るものがある。
In recent years, it has been pointed out that nitriding a rare earth-iron-based alloy may yield a magnet alloy having magnetic properties superior to those of conventional rare earth-based magnet alloys, and the technology related thereto is being disclosed. For example, Japanese Patent Application Laid-Open No. 3-16102 discloses the nitrogen content and the type and amount of elements added to the nitride-based magnet alloy, and Japanese Patent Application Laid-Open No. 2-57663 discloses a method for manufacturing the nitride-based magnet. There are things that have been done.

【0004】例えば、特開平2−57663 号公報によれ
ば、これまで提案されている希土類の窒化系磁石合金の
製法は、希土類金属と鉄を原料とし、アーク溶解や高周
波溶解などでこれら原料を溶解して希土類金属と鉄を基
本組成とした母合金のインゴットを作製し、一旦これを
冷却した後、この母合金を窒化するために平均粒径0.5m
m程度に粗破砕し、この粉末をアンモニアを含む還元性
のガスと400 ℃前後で接触させて窒素、水素などを侵入
せしめ、さらにこれを20ミクロン程度に微粉砕して希土
類−鉄−窒素を主体とした窒化系磁石合金粉末を得るも
のであった。一方、これは窒化系磁石粉末の製造方法で
はないが、上述のような溶解法以外に、希土類系磁石粉
末の製造方法として還元拡散法が知られている。例えば
特開昭60−106930号公報参照。
For example, according to Japanese Patent Application Laid-Open No. 2-57663, the method of producing a rare earth nitriding magnet alloy proposed so far uses a rare earth metal and iron as raw materials, and these raw materials are subjected to arc melting or high frequency melting. An ingot of a master alloy having a rare earth metal and iron as a basic composition was prepared by melting, and once cooled, an average particle size of 0.5 m was used for nitriding the master alloy.
Coarsely crush it to about m, contact this powder with a reducing gas containing ammonia at around 400 ℃ to let in nitrogen, hydrogen, etc., and further pulverize it to about 20 microns to remove rare earth-iron-nitrogen. It was intended to obtain the nitriding magnet alloy powder which was the main component. On the other hand, although this is not a method for producing a nitriding magnet powder, a reduction diffusion method is known as a method for producing a rare earth magnet powder in addition to the above-mentioned melting method. See, for example, JP-A-60-106930.

【0005】この方法は、前記の溶解法で必要とされる
原料の希土類金属が高価であるため、安価な希土類酸化
物を出発原料として用いる方法であって、希土類酸化物
とカルシウム、マグネシウムなどの還元剤を鉄、コバル
トなどの金属と混合し、これを1000℃程度のアルゴンな
どの中性雰囲気あるいは水素などの還元性雰囲気中に置
くことで希土類酸化物を還元するとともに、成分元素同
志の拡散による合金化、いわる還元拡散反応を行わせる
方法である。反応終了後、この還元拡散反応でできたケ
ーキ状の反応生成物混合物を水洗して、反応生成物混合
物に含まれる磁石合金以外の物質、たとえばカルシウム
やマグネシウムの酸化物あるいは未反応の還元剤と磁石
合金とを分離し、回収した磁石合金を乾燥の後、さらに
数μm 程度にまで粉砕して最終的に磁石用合金粉末を得
る。
This method is a method of using an inexpensive rare earth oxide as a starting material because the raw material rare earth metal required for the above-mentioned melting method is expensive, and rare earth oxides such as calcium and magnesium are used. Mixing a reducing agent with metals such as iron and cobalt, and placing this in a neutral atmosphere such as argon or a reducing atmosphere such as hydrogen at about 1000 ° C reduces the rare earth oxides and diffuses the constituent elements. This is a method of alloying by means of the so-called reduction and diffusion reaction. After completion of the reaction, the cake-like reaction product mixture formed by this reduction diffusion reaction is washed with water to remove substances other than the magnet alloy contained in the reaction product mixture, for example, oxides of calcium or magnesium or unreacted reducing agent. The magnet alloy is separated, and the recovered magnet alloy is dried and then pulverized to a size of several μm to finally obtain an alloy powder for magnet.

【0006】この方法では還元拡散反応後に、磁石合金
と金属カルシウム、酸化カルシウムなどが混合したケー
キ状の反応生成物混合物が得られ、これは水分に接触さ
せるだけで自ら崩壊するので、溶解法では必要な粗粉砕
の工程が省略できるなどの利点を持っており、還元拡散
法は安価な磁石合金を得る方法として知られている。
According to this method, after the reduction-diffusion reaction, a cake-like reaction product mixture in which the magnet alloy is mixed with metallic calcium, calcium oxide, etc. is obtained, and it decomposes by contacting with water. The reduction diffusion method is known as a method for obtaining an inexpensive magnet alloy because it has an advantage that the necessary coarse pulverization step can be omitted.

【0007】[0007]

【発明が解決しようとする課題】前述のように、溶解法
で作製される希土類の窒化系磁石合金は一般的に磁気特
性が優れるものの、前記のような高価な希土類金属を原
料として必要とし、かつ還元拡散法では不要となる粗粉
砕の工程を必要とするため、得られる磁石粉末が高価と
なる問題がある。
As described above, although the rare earth nitriding magnet alloy produced by the melting method generally has excellent magnetic properties, it requires the above-mentioned expensive rare earth metal as a raw material, In addition, the reduction and diffusion method requires a step of coarse pulverization that is not necessary, so that the obtained magnet powder is expensive.

【0008】この粗粉砕の工程は、元来、窒化の速度が
非常に遅いため母合金の反応表面積を直径0.5mm 程度に
粉砕することによってできるだけ大きくして、工業上あ
まり問題のない時間内に窒化反応を完了させるために必
要なプロセスである。特に溶解法においては、母合金が
大きなインゴットの形で得られるから、粗粉砕なしで窒
化を試みてもインゴットの表面しか窒化されないため、
この粉砕工程は必要不可欠で省略することはできない。
Since the nitriding rate is very slow in the course of this coarse pulverization process, the reaction surface area of the master alloy is pulverized to a diameter of about 0.5 mm so as to be as large as possible, and the nitriding process is carried out within a time period which does not cause much problems in industry. This is a process required to complete the nitriding reaction. Especially in the melting method, since the mother alloy is obtained in the form of a large ingot, even if an attempt is made to nitride without coarse pulverization, only the surface of the ingot is nitrided,
This crushing step is indispensable and cannot be omitted.

【0009】このように窒化反応を早く終えるために
は、母合金をなるべく細かく粉砕する方がよいが、細か
くしすぎると窒化中に金属粉末同志が焼結し、粒子が大
きくなってしまい、細かく粉砕した意味がなくなってし
まうばかりでなく、窒化前に粒子が酸化してしまい窒化
しにくくなる上、酸化すると磁石合金の磁気特性が低下
する。従って、窒化処理に際して、母合金をただ粗粉砕
すればよいということではなく、母合金を大き過ぎず、
かつ小さ過ぎないような粒径に揃える必要があり、製造
上の難しさがあった。
In order to end the nitriding reaction as described above, it is better to pulverize the mother alloy as finely as possible, but if it is made too fine, the metal powders will sinter during nitriding and the particles will become large, resulting in fine particles. Not only does the meaning of crushing disappear, but the particles are oxidized before nitriding to make it difficult to nitrify, and the oxidation deteriorates the magnetic properties of the magnet alloy. Therefore, in the nitriding treatment, it does not mean that the mother alloy should be just roughly crushed, and the mother alloy is not too large,
In addition, it is necessary to make the particle size uniform so that it is not too small, which is a manufacturing difficulty.

【0010】本発明の目的はこのような溶解法による従
来の窒化系磁石合金の製造上の欠点を解決する方法を提
供することである。具体的には、本発明の目的は、希土
類系磁石製造用の優れた磁気特性を有する安価な窒化系
磁石合金粉末の製造方法を提供することである。
An object of the present invention is to provide a method for solving the drawbacks in manufacturing the conventional nitriding magnet alloy by the melting method. Specifically, an object of the present invention is to provide a method for producing an inexpensive nitriding magnet alloy powder having excellent magnetic properties for producing a rare earth magnet.

【0011】[0011]

【課題を解決するための手段】本発明者は、かかる目的
を達成すべく、種々検討を重ね、次のような知見を得
た。 前述の還元拡散法で得られる磁石合金は、前記のよう
に水分と接触させる工程を含むため、ある程度の酸化が
避けられず、溶解法で作製した磁石合金に比較し、磁気
特性に劣る欠点があった。しかし、還元拡散法の反応生
成物混合物はそれ自体崩壊しやすい構造をしており、、
溶解法の大きな欠点の一つである上述の粗粉砕工程を必
要としない。 上記反応生成混合物は、ケーキ状であってポーラスな
構造を有することから、表面積は非常に大きくなってお
り、特に反応完了の段階では表面が活性化されており、
酸化反応はもちろん窒化反応も容易に起こりうる状態に
ある。
Means for Solving the Problems The present inventor has conducted various studies in order to achieve such an object, and has obtained the following findings. Since the magnet alloy obtained by the above-mentioned reduction diffusion method includes the step of contacting with water as described above, some degree of oxidation is unavoidable, and there is a drawback that magnetic properties are inferior as compared with the magnet alloy produced by the melting method. there were. However, the reaction product mixture of the reduction diffusion method itself has a structure that easily collapses,
It does not require the above-mentioned coarse grinding step, which is one of the major drawbacks of the dissolution method. Since the reaction product mixture has a cake-like and porous structure, the surface area is very large, and the surface is activated particularly at the stage of completion of the reaction,
Not only the oxidation reaction but also the nitriding reaction can easily occur.

【0012】そこで、かかる反応生成物混合物を水洗以
前に予め窒化することで、還元拡散法の欠点である水洗
時の粒子の酸化を防止でき、むしろ粗粉砕の工程省略と
いう利点を利用できるとの着想を得、実際に還元拡散法
による反応生成物混合物の窒化処理を行ったところ、そ
のように予め窒化しても何ら磁気特性は劣化しないばか
りか、むしろ水洗工程における酸化が防止できるという
ことから,予想外にもその改善が図られることを知り、
本発明を完成した。
Therefore, by nitriding such a reaction product mixture in advance before washing with water, it is possible to prevent the oxidation of particles during washing with water, which is a drawback of the reduction and diffusion method, and to utilize the advantage of omitting the step of coarse pulverization. With the idea in mind, when the reaction product mixture was actually subjected to nitriding treatment by the reduction diffusion method, not only did the magnetic properties not deteriorate even if such nitriding was performed in advance, but rather, oxidation in the washing process could be prevented. , Unknown that the improvement can be planned unexpectedly,
The present invention has been completed.

【0013】ここに、本発明は、希土類酸化物、還元剤
および金属を出発原料とした還元拡散法によって得られ
たケーキ状反応生成混合物に、窒素を含むガスを接触さ
せ窒化することを特徴とする希土類系磁石合金材料の製
造方法である。
Here, the present invention is characterized in that a nitrogen-containing gas is brought into contact with a cake-like reaction product mixture obtained by a reduction diffusion method using a rare earth oxide, a reducing agent and a metal as a starting material for nitriding. Is a method for producing a rare earth magnet alloy material.

【0014】また、本発明は、上述のようにして得られ
たケーキ状反応生成混合物を窒化後、回収した磁石合金
材料を微粉砕することを特徴とする希土類系磁石合金粉
末の製造方法である。なお、本発明において、還元拡散
法は慣用のものを利用すればよく、その具体的条件にお
いて本発明は何ら制限されず、希土類金属と適宜金属成
分との拡散によって磁石合金粉末を含む反応生成混合物
が生成すればよい。
Further, the present invention is a method for producing a rare earth magnet alloy powder, which comprises nitriding the cake-like reaction product mixture obtained as described above and pulverizing the recovered magnet alloy material. .. In the present invention, the reduction diffusion method may use a conventional method, and the present invention is not limited to the specific conditions thereof, and a reaction product mixture containing a magnet alloy powder by diffusion of a rare earth metal and an appropriate metal component. Should be generated.

【0015】[0015]

【作用】本発明は、磁石合金製造方法のひとつである還
元拡散法において、その還元拡散反応で得られる還元剤
と還元剤の酸化物と磁石合金とからなるケーキ状の反応
生成混合物を、その磁石合金を分離するために例えば水
洗処理を行う場合にはその水洗処理をする以前の段階に
て、窒素を含むガスと接触させ、反応生成物である磁石
合金を窒化することを特徴とする希土類系磁石合金の製
造方法である。
The present invention provides a cake-like reaction product mixture comprising a reducing agent, an oxide of the reducing agent, and a magnet alloy obtained by the reduction diffusion reaction in a reduction diffusion method which is one of the methods for producing a magnet alloy. For example, when performing a water washing treatment to separate the magnet alloy, it is brought into contact with a gas containing nitrogen at a stage before the water washing treatment, and the magnet alloy that is a reaction product is nitrided. It is a manufacturing method of a system magnet alloy.

【0016】以下、本発明をその具体的工程順に詳しく
説明する。図1は本発明にかかる還元拡散反応工程、窒
化処理工程、水洗工程、微粉砕そして成型する工程にお
ける各処理条件を示す工程図である。
The present invention will be described in detail below in the order of its concrete steps. FIG. 1 is a process diagram showing each processing condition in the reduction diffusion reaction process, the nitriding process, the water washing process, the fine pulverization and the molding process according to the present invention.

【0017】還元拡散反応工程:還元拡散法にてケーキ
状の反応生成混合物を得るまでの工程であるが、ここま
では従来の還元拡散法と同様であって、サリウムやネオ
ジウムなどの希土類酸化物と鉄、コバルトなどの主要元
素のほか、必要に応じボロン、ガリウム、クロム、チタ
ン、銅、また、バナジウムやタングステンなどの遷移金
属を磁気特性向上のための添加元素として加える。この
場合、各元素は単体で使用されたり、フェロボロンなど
合金の形で使用される。
Reduction / diffusion reaction step: This is the step until a reaction product mixture in the form of a cake is obtained by the reduction / diffusion method. The steps up to this point are the same as those in the conventional reduction / diffusion method, and rare earth oxides such as salium and neodymium. In addition to iron, cobalt, and other main elements, boron, gallium, chromium, titanium, copper, and transition metals such as vanadium and tungsten are added as additional elements to improve magnetic properties, if necessary. In this case, each element is used alone or in the form of an alloy such as ferroboron.

【0018】これらの磁石合金原料の還元剤であるカル
シウム、マグネシウム、あるいはそれらの水素化物、塩
化物などと混合する。本発明においてこれらの配合元素
に特に制限はない。必要に応じ適宜変更することも可能
である。これらの出発原料を炉に入れて、例えば4℃/
分の加熱速度で加熱し、真空中あるいは還元雰囲気中あ
るいはアルゴンなどの中性雰囲気中1000℃前後に保持
し、希土類酸化物を還元するとともに、還元された希土
類金属と他の元素との拡散によって磁石合金をつくる。
この還元拡散反応は、通常、数時間、例えば4時間を要
する。
These magnet alloy raw materials are mixed with reducing agents such as calcium and magnesium, or their hydrides and chlorides. In the present invention, these compounding elements are not particularly limited. It is also possible to change it as needed. Put these starting materials in a furnace and
It is heated at a heating rate of 1 minute and kept at about 1000 ° C in vacuum or in a reducing atmosphere or in a neutral atmosphere such as argon to reduce the rare earth oxides and to diffuse the reduced rare earth metal and other elements. Make a magnet alloy.
This reduction-diffusion reaction usually requires several hours, for example, 4 hours.

【0019】窒化処理工程 還元拡散終了後、通常、室温付近までアルゴンなどの中
性雰囲気か、水素などの還元性雰囲気にて、酸化を避け
ながら例えば4℃/分で冷却されるが、本発明の場合に
はある程度まで冷却してから、例えば450 ℃という高温
のまま窒化処理される。もちろん、場合によっては、適
切に酸化が防止される限り、一旦室温にまで冷却してか
ら再加熱して次の窒化処理を行ってもよい。このときの
窒化条件は特に制限されないが、窒化雰囲気としては、
例えばH2 0.1気圧、N2 0.9気圧の雰囲気が好ましい。
Nitriding Step After completion of the reduction diffusion, it is usually cooled to around room temperature in a neutral atmosphere such as argon or a reducing atmosphere such as hydrogen at a rate of 4 ° C./minute while avoiding oxidation. In this case, after cooling to a certain extent, the nitriding treatment is performed at a high temperature of 450 ° C., for example. Of course, depending on the case, as long as oxidation is appropriately prevented, the material may be once cooled to room temperature and then reheated to perform the next nitriding treatment. The nitriding conditions at this time are not particularly limited, but as the nitriding atmosphere,
For example, an atmosphere of H 2 0.1 atm and N 2 0.9 atm is preferable.

【0020】すでに述べたように、還元処理炉から取り
出した反応生成混合物は磁石合金と、還元剤の酸化物す
なわち酸化カルシウムなどと、未反応のまま残った還元
剤などが網目状に入り交じったケーキ状を呈する。この
ケーキのミクロ組織がポーラスであり、極めてガスを通
しやすい構造をしている。
As described above, in the reaction product mixture taken out from the reduction treatment furnace, the magnet alloy, the oxide of the reducing agent, that is, calcium oxide, and the reducing agent left unreacted are intermingled. It has a cake shape. The microstructure of this cake is porous and has a structure that allows gas to pass through very easily.

【0021】例えば、カルシウムを還元剤として用いた
場合、顕微鏡で詳細にミクロ組織を観察すると、不定形
な磁石合金の粒子が酸化カルシウムによって隔てられて
おり、かつこの酸化カルシウムの部分が非常にポーラス
である。このようにポーラスな形状が形成されるのは、
還元拡散反応によって生成されるカルシウムの酸化物は
融点が2500℃程度の高温で、還元拡散反応の温度より遙
かに高く、酸化カルシウムが固体で生成するためと推測
される。
For example, when calcium is used as a reducing agent, when the microstructure is observed in detail with a microscope, the particles of the amorphous magnet alloy are separated by calcium oxide, and the calcium oxide portion is very porous. Is. Such a porous shape is formed
The melting point of calcium oxide produced by the reduction-diffusion reaction is as high as 2500 ° C., which is much higher than the temperature of the reduction-diffusion reaction, and it is speculated that calcium oxide is produced as a solid.

【0022】本発明にあってはこのケーキのポーラスな
構造を利用することで、従来の溶解法におけるようにわ
ざわざ破砕することなくケーキを容易に窒化できること
を利用するものである。好ましくは、すでに述べたよう
に、このケーキを窒化する時期は、還元拡散法における
冷却工程の途中である450 ℃前後で行うのがよい。一
旦、室温まで冷却したケーキをまた加熱して窒化するこ
ともできるが、磁石合金の酸化を最小限にとどめるため
と、加熱エネルギーの節減のためにも、好ましくは還元
拡散したケーキの冷却中に窒化するのがよい。
In the present invention, by utilizing the porous structure of the cake, it is possible to easily nitride the cake without crushing it as in the conventional melting method. Preferably, as described above, the time for nitriding this cake is preferably around 450 ° C., which is in the middle of the cooling step in the reduction diffusion method. Although the cake once cooled to room temperature can be heated and nitrided again, preferably in order to minimize the oxidation of the magnet alloy and to save the heating energy, preferably during the reduction-diffusion cake cooling. It is better to nitride.

【0023】つまり、一旦室温まで冷却し、それをまた
窒化温度まで加熱すると、工程全体の時間が伸びるか
ら、それだけ磁石合金が酸化する量も増える。窒化をケ
ーキの冷却中に行えば、工程に要する時間全体が短くな
るうえ、還元剤によって脱酸素された雰囲気で引続き窒
化できるので、酸化を最小限にとどめることができるの
である。
That is, once the material is cooled to room temperature and then heated to the nitriding temperature, the time of the whole process is extended, and the amount of oxidation of the magnet alloy is increased accordingly. If the nitriding is performed during the cooling of the cake, the total time required for the process is shortened, and further, the nitriding can be continued in the atmosphere deoxidized by the reducing agent, so that the oxidation can be minimized.

【0024】窒化するためのガスは窒素成分を含んだガ
スであればよく、窒素、アンモニアガスなど、あるいは
これらと水素や不活性ガスの混合ガスでもよい。ガスの
圧力は1気圧程度で充分である。例えば前述のようにH2
0.1気圧、N2 0.9気圧の雰囲気が挙げられる。
The gas for nitriding may be any gas containing a nitrogen component, and may be nitrogen, ammonia gas or the like, or a mixed gas of these with hydrogen or an inert gas. A gas pressure of about 1 atm is sufficient. For example, as mentioned above, H 2
An atmosphere of 0.1 atm and N 2 at 0.9 atm can be mentioned.

【0025】窒化温度は厳密に一定に保つ必要はない
が、温度によって窒化のスピードが異なるので温度をほ
ぼ一定に制御すれば窒化工程に割り当てる時間を過不足
なく見積もれるので工業上都合がよい。窒化が終了した
ら、酸化しないように還元性雰囲気あるいは中性雰囲気
で室温まで冷却するのが好ましい。高温雰囲気では容易
に酸化等が進むからである。
The nitriding temperature does not have to be kept strictly constant, but since the speed of nitriding varies depending on the temperature, the time allotted to the nitriding step can be accurately estimated if the temperature is controlled to be substantially constant, which is industrially convenient. After nitriding is completed, it is preferable to cool to room temperature in a reducing atmosphere or a neutral atmosphere so as not to oxidize. This is because oxidation and the like easily proceed in a high temperature atmosphere.

【0026】水洗工程:窒化処理終了後、取り出した反
応生成混合物を必要により水洗し、磁石合金以外の不要
物を洗い落とし、磁石合金粉末を回収する。従来の還元
拡散法で製造した磁石合金はこの水洗過程で酸化し、磁
石特性を悪化させる原因となっていたのであるが、本発
明のように水洗前に合金を窒化しておくと、合金表面が
著しく酸化しにくくなる。
Washing step with water: After the nitriding treatment is completed, the reaction product mixture taken out is washed with water if necessary to wash away unnecessary substances other than the magnet alloy to recover magnet alloy powder. The magnet alloy produced by the conventional reduction diffusion method was oxidized in this washing process, which was a cause of deteriorating the magnet characteristics.However, if the alloy is nitrided before washing as in the present invention, the alloy surface Becomes extremely difficult to oxidize.

【0027】従来から鉄系材料を窒化すると耐酸化性が
増すことはよく知られていた現象であるが、本発明のよ
うに還元拡散法において窒化する時期を適切に特定する
ことによって、従来問題となっていた磁石合金の水洗時
の酸化が著しく低減される。つまり、窒化するだけな
ら、水洗後の合金でもよいのであるが、本発明のように
窒化を水洗前に行うことではじめて水洗中の酸化が防止
され、結果的に良好な磁気特性をもった磁石粉末が得ら
れるのである。なお、この水洗工程は磁力選鉱によって
磁石合金を選別する場合には省略することもできる。
It has been well known that nitriding an iron-based material increases the oxidation resistance, but by appropriately specifying the nitriding time in the reduction diffusion method as in the present invention, the conventional problem is solved. Oxidation of the magnet alloy, which has been described above, during washing with water is significantly reduced. That is, if it is just nitriding, it may be an alloy after washing with water, but by performing nitriding before washing with water as in the present invention, oxidation during washing with water is prevented, and as a result, a magnet with good magnetic properties is obtained. A powder is obtained. It should be noted that this water washing step can be omitted when the magnetic alloy is selected by magnetic separation.

【0028】微粉砕工程:最後に、水洗した磁石合金を
乾燥し、必要なら微粉砕して磁石合金粉末とする。この
微粉砕処理は、通常ジェットミルによって行い、ほぼ数
μm とする。この場合にも酸化を防止するために窒素雰
囲気で微粉砕を行うのが好ましい。このようにして得ら
れた磁石合金粉末は、その後、慣用手段によって適宜成
型されて、磁石として使用される。以下、実施例により
本発明を詳細に説明する。
Milling step: Finally, the washed magnet alloy is dried and, if necessary, milled to obtain magnet alloy powder. This fine pulverization process is usually carried out by a jet mill, and the size is set to about several μm. Also in this case, it is preferable to carry out fine pulverization in a nitrogen atmosphere in order to prevent oxidation. The magnet alloy powder thus obtained is then appropriately shaped by a conventional means and used as a magnet. Hereinafter, the present invention will be described in detail with reference to examples.

【0029】[0029]

【実施例】本例では図1に示す処理パターンにしたがっ
て本発明を実施した。平均粒径10μm のSm2O3 粉末 302
g、平均粒径50μm の純鉄粉 398gを平均粒径15mm以下
の粒状カルシウム 100gとともに混合したのち、図1に
示すような雰囲気と温度パターンで還元拡散反応させ
た。ここでできたケーキ状の反応生成混合物を図1のよ
うに、水洗工程以前の、冷却途中の 450±10℃の温度に
保ち、0.9 気圧の窒素ガスを導入し、25分保持した後、
室温まで冷却して炉から取り出した。これを水中に投じ
て繰り返し洗浄し、真空乾燥して磁石合金を回収した。
EXAMPLE In the present example, the present invention was carried out according to the processing pattern shown in FIG. Sm 2 O 3 powder with an average particle size of 10 μm 302
After mixing 398 g of pure iron powder having an average particle size of 50 μm with 100 g of granular calcium having an average particle size of 15 mm or less, a reduction diffusion reaction was performed in an atmosphere and a temperature pattern as shown in FIG. As shown in Fig. 1, the cake-like reaction product mixture prepared here was maintained at a temperature of 450 ± 10 ° C during the cooling process before the water washing process, nitrogen gas of 0.9 atm was introduced, and it was held for 25 minutes.
It was cooled to room temperature and removed from the furnace. This was poured into water, repeatedly washed, and vacuum dried to recover the magnet alloy.

【0030】次いで、この磁石合金をジェットミルで3.
7 μm まで微粉砕し、バインダーとして亜鉛を加えて15
kOeの磁界中、2t/cm2 の成型圧でプレス成型した。そ
してこの成型体の磁気特性を振動試料型磁力計で測定し
た。比較例として還元拡散後、一旦室温にまで冷却して
から水洗後乾燥した磁石合金をまた加熱して、実施例と
同様の温度・雰囲気で窒化した磁石合金を実施例と同様
な条件で成型し、その磁気特性を測定した。
Next, this magnet alloy was jet milled for 3.
Finely pulverize to 7 μm, add zinc as a binder, and
It was press molded in a magnetic field of kOe with a molding pressure of 2 t / cm 2 . Then, the magnetic characteristics of this molded body were measured by a vibrating sample magnetometer. As a comparative example, after reductive diffusion, the magnet alloy once cooled to room temperature, washed with water and dried was heated again, and a magnet alloy nitrided at the same temperature and atmosphere as the example was molded under the same conditions as the example. , Its magnetic properties were measured.

【0031】表1に実施例と比較例で得られた磁石合金
の磁気特性とプレス成型直前における磁石合金の酸素濃
度を示す。なお、従来の溶解法による例も参考までに示
す。表1に示す結果からも分かるように、本発明によっ
て残留磁束密度Brが9kG程度から11kG程度に、また、保
磁力は8〜9kOe から11kOe へ向上した。これは表1に
示されるように、磁石に成型する前の磁石合金の酸化程
度が0.9 wt%程度から0.1 wt%程度に著しく減少したた
めである。これは本発明では水洗前に窒化するため合金
粉末が酸化しにくくなり、水洗や微粉砕の工程で酸化さ
れる量が減少したためと考えられる。また従来の溶解法
では、合金中の酸素濃度は低く、保磁力に優れるがアル
ファ鉄が未反応で残りやすいので、残留磁束密度は余り
高くない。
Table 1 shows the magnetic properties of the magnet alloys obtained in Examples and Comparative Examples and the oxygen concentration of the magnet alloys immediately before press molding. An example of the conventional dissolution method is also shown for reference. As can be seen from the results shown in Table 1, the present invention improved the residual magnetic flux density Br from about 9 kG to about 11 kG and the coercive force from 8 to 9 kOe to 11 kOe. This is because, as shown in Table 1, the degree of oxidation of the magnet alloy before being molded into a magnet was remarkably reduced from about 0.9 wt% to about 0.1 wt%. It is considered that this is because in the present invention, the alloy powder is less likely to be oxidized because it is nitrided before being washed with water, and the amount of oxidation is reduced in the steps of washing with water and fine pulverization. Further, in the conventional melting method, the oxygen concentration in the alloy is low and the coercive force is excellent, but since the alpha iron tends to remain unreacted, the residual magnetic flux density is not so high.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【発明の効果】このように、希土類系の窒化磁石合金を
得るにあたって、インゴットや合金粉末でなく還元拡散
法で得られるケーキを用いることによって粉砕なしで窒
化処理を施すことができる上、水洗以前に窒化すること
によって、磁石合金の耐酸化性が向上し、水洗しても従
来のように合金が酸化されて磁気特性が低下することが
なくなり、極めて良質の磁石粉末を複雑な工程なしで製
造することができる。
As described above, in obtaining a rare earth-based nitrided magnet alloy, it is possible to perform nitriding treatment without crushing by using a cake obtained by a reduction diffusion method instead of an ingot or alloy powder, and before washing with water. By nitriding the magnet alloy, the oxidation resistance of the magnet alloy is improved, and even if it is washed with water, the alloy will not be oxidized and the magnetic properties will not deteriorate, and extremely high quality magnet powder can be manufactured without complicated steps. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による還元拡散法によって磁石粉末を製
造するときの工程図である。
FIG. 1 is a process diagram for manufacturing a magnet powder by a reduction diffusion method according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 希土類酸化物、還元剤および金属を出発
原料とした還元拡散法によって得られたケーキ状反応生
成混合物に、窒素を含むガスを接触させ窒化することを
特徴とする希土類系磁石合金材料の製造方法。
1. A rare earth magnet alloy characterized in that a nitrogen-containing gas is brought into contact with a cake-like reaction product mixture obtained by a reduction diffusion method using a rare earth oxide, a reducing agent and a metal as starting materials for nitriding. Material manufacturing method.
【請求項2】 請求項1で得られたケーキ状反応生成混
合物を窒化後、回収された磁石合金材料を微粉砕するこ
とを特徴とする希土類系磁石合金粉末の製造方法。
2. A method for producing a rare earth magnet alloy powder, which comprises nitriding the cake-like reaction product mixture obtained in claim 1 and pulverizing the recovered magnet alloy material.
JP4074651A 1992-03-30 1992-03-30 Rare earth magnet alloy manufacturing method Withdrawn JPH05271852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4074651A JPH05271852A (en) 1992-03-30 1992-03-30 Rare earth magnet alloy manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4074651A JPH05271852A (en) 1992-03-30 1992-03-30 Rare earth magnet alloy manufacturing method

Publications (1)

Publication Number Publication Date
JPH05271852A true JPH05271852A (en) 1993-10-19

Family

ID=13553347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4074651A Withdrawn JPH05271852A (en) 1992-03-30 1992-03-30 Rare earth magnet alloy manufacturing method

Country Status (1)

Country Link
JP (1) JPH05271852A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19649407A1 (en) * 1995-11-28 1997-06-05 Sumitomo Metal Mining Co Magnetic alloy containing rare earth, iron and nitrogen
JP2009088121A (en) * 2007-09-28 2009-04-23 Sumitomo Metal Mining Co Ltd Rare earth-iron-manganese-nitrogen magnet powder
JP4936593B2 (en) * 1998-03-27 2012-05-23 株式会社東芝 Method for producing magnet powder
CN103695902A (en) * 2013-12-02 2014-04-02 常州大学 Preparation method of rare earth modified spinel coating
CN105632748A (en) * 2015-12-25 2016-06-01 宁波韵升股份有限公司 Method for improving magnetic properties of sintered neodymium-iron-boron thin-sheet magnet
CN106601464A (en) * 2016-12-14 2017-04-26 安徽大地熊新材料股份有限公司 Preparation method for permanent magnet material with low content of heavy rare earth and high coercivity
CN108515171A (en) * 2018-04-03 2018-09-11 张庆 A kind of rare earth powder metallurgy material and preparation method thereof
CN108620578A (en) * 2018-05-11 2018-10-09 西安交通大学 A method of improving RE oxide powder and CuW Alloy Wettings

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19649407A1 (en) * 1995-11-28 1997-06-05 Sumitomo Metal Mining Co Magnetic alloy containing rare earth, iron and nitrogen
DE19649407C2 (en) * 1995-11-28 2002-06-27 Sumitomo Metal Mining Co Rare earth iron nitrogen magnetic alloy
JP4936593B2 (en) * 1998-03-27 2012-05-23 株式会社東芝 Method for producing magnet powder
JP2009088121A (en) * 2007-09-28 2009-04-23 Sumitomo Metal Mining Co Ltd Rare earth-iron-manganese-nitrogen magnet powder
CN103695902A (en) * 2013-12-02 2014-04-02 常州大学 Preparation method of rare earth modified spinel coating
CN105632748A (en) * 2015-12-25 2016-06-01 宁波韵升股份有限公司 Method for improving magnetic properties of sintered neodymium-iron-boron thin-sheet magnet
CN105632748B (en) * 2015-12-25 2019-01-11 宁波韵升股份有限公司 A method of improving sintered NdFeB thin slice magnet magnetic property
CN106601464A (en) * 2016-12-14 2017-04-26 安徽大地熊新材料股份有限公司 Preparation method for permanent magnet material with low content of heavy rare earth and high coercivity
CN106601464B (en) * 2016-12-14 2017-12-26 安徽大地熊新材料股份有限公司 A kind of low heavy rare earth, high-coercive force permanent-magnet material preparation method
CN108515171A (en) * 2018-04-03 2018-09-11 张庆 A kind of rare earth powder metallurgy material and preparation method thereof
CN108620578A (en) * 2018-05-11 2018-10-09 西安交通大学 A method of improving RE oxide powder and CuW Alloy Wettings

Similar Documents

Publication Publication Date Title
KR900006193B1 (en) Manufacturing method of neodymium-iron-boron permanent magnet
JPH09143636A (en) Rare earth-iron-nitrogen magnetic alloy
JP2005223263A (en) Method for manufacturing rare earth permanent magnet and resulting rare earth permanent magnet
JPH11329811A (en) Raw material powder for r-fe-b magnet and manufacture of r-fe-b based magnet
WO2003066922A1 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
JPH05271852A (en) Rare earth magnet alloy manufacturing method
JP3777793B2 (en) Method for producing rare earth metal-iron-nitrogen based magnetic material
US5733384A (en) Process for producing hard-magnetic parts
JP3304729B2 (en) Rare earth-iron magnet alloys
EP3686906B1 (en) Magnetic powder and method for producing magnetic powder
JPS6348805A (en) Manufacture of rare-earth magnet
JP3151959B2 (en) Method for producing raw material powder for R-TM-B permanent magnet
US5520748A (en) Process for manufacturing Alnico system permanent magnet
JP2001181713A (en) Pare earth metal-transition metal alloy powder and producing method therefor
JP3336028B2 (en) Method for producing rare earth-transition metal-nitrogen alloy powder
JPH05299216A (en) Manufacturing method of rare earth alloy magnet material
JP2002217052A (en) Rare earth magnet regeneration method
JP2994685B2 (en) Production method of raw material for rare earth permanent magnet
JP2000160211A (en) METHOD FOR REGENERATING Sm-Fe-N BASE ALLOY POWDER
JP7589402B2 (en) Manufacturing method for samarium-iron-nitrogen magnets
JP3222919B2 (en) Method for producing nitride-based magnetic material
JP3120546B2 (en) Manufacturing method of permanent magnet material
JPH0582319A (en) Permanent magnet
JPS60116734A (en) Manufacture of permanent magnet alloy
JPH06200307A (en) Production of raw material alloy for rare earth magnet

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608