[go: up one dir, main page]

JP2005223263A - Method for manufacturing rare earth permanent magnet and resulting rare earth permanent magnet - Google Patents

Method for manufacturing rare earth permanent magnet and resulting rare earth permanent magnet Download PDF

Info

Publication number
JP2005223263A
JP2005223263A JP2004032128A JP2004032128A JP2005223263A JP 2005223263 A JP2005223263 A JP 2005223263A JP 2004032128 A JP2004032128 A JP 2004032128A JP 2004032128 A JP2004032128 A JP 2004032128A JP 2005223263 A JP2005223263 A JP 2005223263A
Authority
JP
Japan
Prior art keywords
rare earth
magnet
powder
magnet powder
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004032128A
Other languages
Japanese (ja)
Inventor
Takashi Ishikawa
尚 石川
Shigeru Ito
滋 伊藤
Masayoshi Kikuchi
真由 菊地
Takashi Fujii
孝 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004032128A priority Critical patent/JP2005223263A/en
Publication of JP2005223263A publication Critical patent/JP2005223263A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method in which a rare earth permanent magnet can be produced industrially easily by preliminarily compressing rare earth-iron-nitrogen magnet powder and then compacting the preform. <P>SOLUTION: After an oxide film previously containing 0.2 to 1.6 wt.% oxygen for the total amount is formed on the surface of the rare earth-iron-nitrogen magnet powder, the magnet powder having the oxide film is preliminarily compressed in a specified shape in a non-oxidizing atmosphere to form a preform of ≥40% in relative density, and then a magnet compact of ≥85% in relative density is obtained by compacting the preform at a temperature of 350 to 500°C in a non-oxidizing atmosphere. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、希土類永久磁石の製造方法及び得られた希土類永久磁石に関し、さらに詳しくは、希土類−鉄−窒素系磁石粉末を予備圧縮成形した後、この予備成形体を圧密化することにより、工業的に容易に生産可能とした希土類永久磁石の製造方法、及びこれにより得られ磁気特性に優れた希土類永久磁石に関する。   The present invention relates to a method for producing a rare earth permanent magnet and the obtained rare earth permanent magnet. More specifically, after the rare earth-iron-nitrogen-based magnet powder is pre-compressed and molded, the preform is compacted to obtain an industrial product. The present invention relates to a method for producing a rare earth permanent magnet that can be easily produced, and a rare earth permanent magnet obtained thereby and having excellent magnetic properties.

永久磁石は、モーターをはじめとする種々の用途に用いられている。永久磁石の材料としては、R−Co系(Rは希土類元素)、R−Fe−B系、R−Fe−N系などの希土類磁石、フェライト磁石、アルニコ磁石などに分類される。また、磁石は、その製造方法によって焼結磁石、ボンド磁石、鋳造磁石などに分類される。   Permanent magnets are used in various applications including motors. The material of the permanent magnet is classified into R—Co (R is a rare earth element), R—Fe—B, R—Fe—N, and other rare earth magnets, ferrite magnets, alnico magnets, and the like. Magnets are classified into sintered magnets, bonded magnets, cast magnets and the like according to the manufacturing method.

磁石の最大エネルギー積(BH)maxを高めるためには、磁石体の見かけ密度をその磁石材料の真密度まで圧密化することが必要である。磁石体の見かけ密度をその磁石材料の真密度近くまで高める磁石の製造法としては、前述の焼結磁石の製造に適用される焼結法が一般的である。   In order to increase the maximum energy product (BH) max of a magnet, it is necessary to consolidate the apparent density of the magnet body to the true density of the magnet material. As a method for manufacturing a magnet that increases the apparent density of a magnet body to near the true density of the magnet material, a sintering method applied to the manufacture of the above-described sintered magnet is generally used.

しかし、Sm−Fe−N系磁石に代表される希土類−鉄−窒素系磁石粉では、およそ600℃以上に加熱すると化合物が分解するため焼結法が適用できず、そのため母合金を焼結後に窒化する方法(特許文献1参照)や、プラズマ焼結法(特許文献2参照)、熱間静水圧プレス法(特許文献3参照)、衝撃圧縮法(特許文献4、5参照)、通電粉末圧延法(特許文献6参照)が検討されている。   However, with rare earth-iron-nitrogen based magnet powders represented by Sm-Fe-N magnets, the sintering method cannot be applied because the compound decomposes when heated to about 600 ° C. or higher. Nitriding method (see patent document 1), plasma sintering method (see patent document 2), hot isostatic pressing method (see patent document 3), impact compression method (see patent documents 4 and 5), energizing powder rolling The law (see Patent Document 6) has been studied.

ところが、特許文献1に開示されているような母合金の焼結後に窒化する方法によれば、飽和磁化が高く、高いキュリー温度を有するバルク状の永久磁石が得られるものと期待されるが、条件によっては窒化による希土類鉄系合金化合物の体積膨張により、焼結体が割れてしまうことがある。   However, according to the method of nitriding after sintering of the master alloy as disclosed in Patent Document 1, it is expected that a bulk permanent magnet having a high saturation magnetization and a high Curie temperature will be obtained. Depending on the conditions, the sintered body may break due to the volume expansion of the rare earth iron-based alloy compound due to nitriding.

また、特許文献2では、希土類−鉄−窒素系磁石粉を高圧窒素ガス中で焼結させるか、真空雰囲気中でプラズマ焼結させることにより、焼結の際に起こる高温での熱分解が抑えられるとしているが、開示されている条件だけでは高い保磁力を有する磁石が安定して得られにくいという問題がある。   Further, in Patent Document 2, rare earth-iron-nitrogen based magnet powder is sintered in high-pressure nitrogen gas or plasma-sintered in a vacuum atmosphere to suppress thermal decomposition at high temperature that occurs during sintering. However, there is a problem that it is difficult to stably obtain a magnet having a high coercive force only under the disclosed conditions.

また、特許文献3では、磁界中プレスした希土類−鉄−窒素系磁石粉成形体をアルミナ製容器に入れ、窒素ガスを圧力媒体として1100℃で熱間静水圧プレス(HIP)している。この方法は、予め磁石粉を窒化して酸化膜や酸化物層を除去し、これにより成形性が良好になった粉末を熱間静水圧プレスするものである。しかしながら、本発明者らが検討したところ、磁石粉に1000℃を超える高い温度をかけると、窒素ガス圧力を高めても希土類−鉄−窒素系磁石粉は分解してしまうことが分かった。しかも、アルミナ製容器を用いているので、オープンポアを有する成形体に圧力がかからず磁石粉を圧密化できないという問題を有している。   In Patent Document 3, a rare earth-iron-nitrogen based magnet powder compact pressed in a magnetic field is placed in an alumina container, and hot isostatic pressing (HIP) is performed at 1100 ° C. using nitrogen gas as a pressure medium. In this method, magnet powder is previously nitrided to remove an oxide film and an oxide layer, and thus the powder having improved moldability is hot isostatically pressed. However, as a result of investigations by the present inventors, it has been found that when a high temperature exceeding 1000 ° C. is applied to the magnet powder, the rare earth-iron-nitrogen based magnet powder is decomposed even if the nitrogen gas pressure is increased. In addition, since an alumina container is used, there is a problem that pressure is not applied to the molded body having open pores and the magnetic powder cannot be consolidated.

また、特許文献4、5などの衝撃圧縮法では、分解や脱窒素を防ぐことができ相対密度が85%を超える高い磁気特性の圧密磁石が得られるとしているが、衝撃波の発生には爆薬を用いるため工業的な生産手段としては安全上の制約がある。   In addition, in the shock compression methods of Patent Documents 4 and 5 and the like, decomposition and denitrification can be prevented, and a compact magnet having a high magnetic property with a relative density exceeding 85% can be obtained. Since it is used, there are safety restrictions as industrial production means.

さらに、特許文献6には、通電粉末圧延法により得られる高い相対密度の圧密磁石が開示されているが、実施例に記載された磁石の保磁力は、いずれも0.42MA/m以下と低いものである。しかも、この方法では磁石粉の磁化容易軸をそろえた異方性磁石を製造できないという問題があった。   Further, Patent Document 6 discloses a high relative density compacted magnet obtained by an electric powder rolling method, but the coercive force of the magnets described in the examples is as low as 0.42 MA / m or less. Is. In addition, this method has a problem that it is impossible to manufacture an anisotropic magnet having the easy axis of magnet powder.

このような状況下、工業的に容易かつ安全に、高い保磁力、最大エネルギー積を有する優れた磁気特性の永久磁石を製造できる方法が切望されていた。
特開平5−121223号公報 特開平5−135978号公報 特開平5−217728号公報 特開平6−077027号公報 特開2002−319503号公報 特開2000−294415号公報
Under such circumstances, there has been a strong demand for a method that can easily and safely industrially produce a permanent magnet having a high coercive force and a maximum energy product and having excellent magnetic properties.
JP-A-5-121223 JP-A-5-135978 JP-A-5-217728 Japanese Patent Laid-Open No. 6-077027 JP 2002-319503 A JP 2000-294415 A

したがって、本発明の目的は、上記の従来技術の問題点に鑑み、希土類−鉄−窒素系磁石粉末を予備圧縮成形した後、この予備成形体を圧密化することにより、工業的に容易に生産可能とした希土類永久磁石の製造方法、及びこれにより得られ磁気特性に優れた希土類永久磁石を提供することにある。   Therefore, in view of the above-mentioned problems of the prior art, the object of the present invention is to easily produce industrially by pre-compacting rare earth-iron-nitrogen-based magnet powder and then compacting the preform. An object of the present invention is to provide a method for producing a rare earth permanent magnet, and a rare earth permanent magnet obtained thereby and having excellent magnetic properties.

本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、希土類−鉄−窒素系磁石粉の酸素量などの組成を最適化するとともに、熱間静水圧プレス法(HIP)で圧密化を行う前に、特定の相対密度となるように原料磁石粉を予備圧縮成形しておくことにより、高い残留磁束密度と高い保磁力を有する圧密化された希土類永久磁石が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have optimized the composition of the rare earth-iron-nitrogen-based magnet powder, such as the amount of oxygen, and have performed hot isostatic pressing (HIP). Before compacting, by pre-compressing the raw material magnet powder to a specific relative density, a compacted rare earth permanent magnet having a high residual magnetic flux density and a high coercive force can be obtained. The headline and the present invention were completed.

すなわち、本発明の第1の発明によれば、希土類−鉄−窒素系磁石粉の表面上に予め全量に対して0.2〜1.6重量%の酸素を含有する酸化被膜を形成させた後、該酸化被膜を有する磁石粉を非酸化性雰囲気中で所定の形状に予備圧縮成形して相対密度が40%以上の予備成形体とし、次いで該予備成形体を非酸化性雰囲気中、350〜500℃の温度で圧密化して相対密度が85%以上の磁石成形体を得ることを特徴とする希土類永久磁石の製造方法が提供される。   That is, according to the first aspect of the present invention, an oxide film containing 0.2 to 1.6% by weight of oxygen is formed in advance on the surface of the rare earth-iron-nitrogen based magnet powder. Thereafter, the magnet powder having the oxide film is pre-compressed into a predetermined shape in a non-oxidizing atmosphere to obtain a preform having a relative density of 40% or more, and the preform is then placed in a non-oxidizing atmosphere in a 350 There is provided a method for producing a rare earth permanent magnet, which is compacted at a temperature of ˜500 ° C. to obtain a magnet compact having a relative density of 85% or more.

また、本発明の第2の発明によれば、第1の発明において、希土類−鉄−窒素系磁石粉が、ThZn17型結晶構造を持つ磁石粉であることを特徴とする請求項1に記載の希土類永久磁石の製造方法が提供される。 According to a second aspect of the present invention, in the first aspect, the rare earth-iron-nitrogen based magnet powder is a magnet powder having a Th 2 Zn 17 type crystal structure. A method for producing the rare earth permanent magnet described in 1) is provided.

また、本発明の第3の発明によれば、第1の発明において、希土類−鉄−窒素系磁石粉が、23.5〜25重量%のR(希土類元素)、2.8〜5.1重量%のN(窒素)及び残部がT(Feを必須とする遷移金属元素および不可避的不純物)であることを特徴とする希土類永久磁石の製造方法が提供される。   According to the third aspect of the present invention, in the first aspect, the rare earth-iron-nitrogen based magnet powder is 23.5-25 wt% R (rare earth element), 2.8-5.1. There is provided a method for producing a rare earth permanent magnet characterized in that N (nitrogen) in weight percent and the balance is T (transition metal element and inevitable impurities essential for Fe).

また、本発明の第4の発明によれば、第3の発明において、希土類−鉄−窒素系磁石粉が、R(希土類元素)としてSmを50重量%以上含み、遷移金属元素として、さらにMnを7重量%以下含むことを特徴とする希土類永久磁石の製造方法が提供される。   According to the fourth invention of the present invention, in the third invention, the rare earth-iron-nitrogen based magnet powder contains 50% by weight or more of Sm as R (rare earth element), and further contains Mn as a transition metal element. 7% by weight or less is provided, and a method for producing a rare earth permanent magnet is provided.

また、本発明の第5の発明によれば、第1の発明において、予備圧縮成形する前に、酸化被膜を有する磁石粉に対して10重量%以下のZn粉末を添加することを特徴とする希土類永久磁石の製造方法が提供される。   According to a fifth aspect of the present invention, in the first aspect, before the pre-compression molding, 10% by weight or less of Zn powder is added to the magnet powder having an oxide film. A method of manufacturing a rare earth permanent magnet is provided.

また、本発明の第6の発明によれば、第1の発明において、予備圧縮成形する際に、異方性の磁石粉に対して400kA/m以上の磁界をかけながら成形することを特徴とする希土類永久磁石の製造方法が提供される。   According to a sixth invention of the present invention, in the first invention, when pre-compression molding, the anisotropic magnet powder is molded while applying a magnetic field of 400 kA / m or more. A method of manufacturing a rare earth permanent magnet is provided.

さらに、本発明の第7の発明によれば、第1の発明において、予備成形体を、熱間静水圧プレス(HIP)により圧密化することを特徴とする希土類永久磁石の製造方法が提供される。   Furthermore, according to the seventh aspect of the present invention, there is provided a method for producing a rare earth permanent magnet according to the first aspect, wherein the preform is consolidated by hot isostatic pressing (HIP). The

一方、本発明の第8の発明によれば、第1〜7のいずれかの発明の製造方法で得られ、最大エネルギー積(BH)maxが30kJ/m以上であることを特徴とする希土類永久磁石が提供される。 On the other hand, according to an eighth invention of the present invention, a rare earth characterized by being obtained by the production method of any one of the first to seventh inventions and having a maximum energy product (BH) max of 30 kJ / m 3 or more. A permanent magnet is provided.

本発明によれば、磁石粉表面に酸化被膜を形成した希土類−鉄−窒素系磁石粉を、特定条件で予備圧縮成形した後、非酸化性雰囲気中で圧密化するので、相対密度が85%以上で、磁気特性に優れた希土類−鉄−窒素系圧密磁石を工業的に容易かつ安定的に製造することができる。   According to the present invention, since the rare earth-iron-nitrogen based magnet powder having an oxide film formed on the surface of the magnet powder is pre-compressed under specific conditions and then consolidated in a non-oxidizing atmosphere, the relative density is 85%. As described above, a rare earth-iron-nitrogen compacted magnet having excellent magnetic properties can be manufactured industrially easily and stably.

以下、本発明の希土類永久磁石の製造方法、それにより得られる希土類永久磁石について詳細に説明する。   Hereinafter, the method for producing a rare earth permanent magnet of the present invention and the rare earth permanent magnet obtained thereby will be described in detail.

本発明の希土類永久磁石の製造方法は、下記の磁石粉を特定条件で予備圧縮成形した後、所望の相対密度となるように圧密化する方法である。   The method for producing a rare earth permanent magnet of the present invention is a method in which the following magnet powder is pre-compressed under specific conditions and then compacted to a desired relative density.

1.磁石粉
本発明に用いられる磁石粉は、希土類−鉄−窒素系磁石粉であれば、特に制限はなく、公知のThZn17型(たとえば特許2703281号公報や特開平08−055712号公報)、または、TbCu型(たとえば特許3332405号公報)結晶構造を持つR−Fe−N系や、ThMn12型(たとえば特許3073807号公報)結晶構造を持つR−Fe−M−N系(Rは希土類元素、MはMn、V、Ti、Cr、Moなど)磁石粉が挙げられる。異方性磁石粉だけでなく、等方性磁石金粉も対象となるが、異方性磁場(HA)が、4.0MA/m以上の磁石粉が好ましい。
1. Magnet powder The magnet powder used in the present invention is not particularly limited as long as it is a rare earth-iron-nitrogen based magnet powder, and is a known Th 2 Zn 17 type (for example, Japanese Patent No. 2703281 and Japanese Patent Application Laid-Open No. 08-055712). Or an R—Fe—N system having a TbCu 7 type (for example, Japanese Patent No. 3332405) crystal structure and an R—Fe—MN system having a ThMn 12 type (for example, Japanese Patent No. 3073807) crystal structure (R is Rare earth elements, M is Mn, V, Ti, Cr, Mo, etc.) magnet powder. Although not only anisotropic magnet powder but also isotropic magnet gold powder is targeted, magnet powder having an anisotropic magnetic field (HA) of 4.0 MA / m or more is preferable.

上記の磁石粉の中でもThZn17型結晶構造を持ち、23.5〜25重量%のR(希土類元素であり、Smをその50重量%以上含む)、2.8〜5.1重量%のN(窒素)及び残部がT(Feを必須とする遷移金属元素および不可避的不純物)であるR−Fe−N系の合金粉末は、高い飽和磁化と磁気異方性を有するので好適である。 Among the above-mentioned magnet powders, it has a Th 2 Zn 17 type crystal structure, 23.5 to 25% by weight of R (rare earth element, including 50% by weight or more of Sm), 2.8 to 5.1% by weight. R-Fe-N alloy powders in which N (nitrogen) and the balance are T (transition metal elements and inevitable impurities essential for Fe) are preferable because they have high saturation magnetization and magnetic anisotropy. .

ここで、希土類元素Rが23.5重量%未満では磁石の保磁力が低下し、25重量%を超えると残留磁束密度が低下するため最大エネルギー積が低下する。また、窒素Nが2.8重量%未満では磁石の保磁力が低下し、5.1重量%を超えると残留磁束密度が低下するため最大エネルギー積が低下する。また、Smの含有量が希土類元素Rの50重量%未満であると磁石の保磁力が低下する。   Here, when the rare earth element R is less than 23.5% by weight, the coercive force of the magnet is lowered, and when it exceeds 25% by weight, the residual magnetic flux density is lowered, so that the maximum energy product is lowered. Further, when the nitrogen N is less than 2.8% by weight, the coercive force of the magnet is lowered, and when it exceeds 5.1% by weight, the residual magnetic flux density is lowered, so that the maximum energy product is lowered. Further, if the Sm content is less than 50% by weight of the rare earth element R, the coercive force of the magnet is lowered.

また、TとしてFeに加えてMn、Cr、Vなどを7重量%以下含有させると、磁石粉の保磁力発生機構がピンニング型になり、この場合、保磁力は良好な耐熱性を有するため良好な希土類永久磁石が得られる。   In addition, if M is contained in an amount of 7% by weight or less in addition to Fe as T, the coercive force generation mechanism of the magnet powder becomes a pinning type, and in this case, the coercive force is good because it has good heat resistance. Rare earth permanent magnets can be obtained.

これら保磁力を発現させるための元素は、7重量%を超えると磁石粉末の磁化が低下する。Mnなどの好ましい量は2〜6重量%、より好ましい量は3〜5重量%である。   When the element for expressing the coercive force exceeds 7% by weight, the magnetization of the magnet powder decreases. A preferable amount of Mn or the like is 2 to 6% by weight, and a more preferable amount is 3 to 5% by weight.

希土類−鉄−窒素系磁石用母合金の製造方法は特に限定されず、原料となる金属を溶解して合金鋳塊を製造する溶解鋳造法や、原料の金属酸化物に還元剤を混合して鉄に希土類元素を還元拡散させて母合金を製造する還元拡散法などを採用することができる。本発明において、好ましい方法は還元拡散法である。   There are no particular limitations on the method for producing the mother alloy for the rare earth-iron-nitrogen magnet, and a melting casting method for producing an alloy ingot by melting the raw material, or mixing a reducing agent with the raw metal oxide. A reduction diffusion method in which a mother alloy is produced by reducing and diffusing rare earth elements in iron can be employed. In the present invention, the preferred method is the reduction diffusion method.

この還元拡散法は、例えば特開昭61−295308号公報に記載されているように、希土類酸化物粉末と、他の金属の粉末(本発明においては鉄、必要に応じてコバルト、マンガンなどを指す)と、Caなどの還元剤との混合物を、不活性ガス雰囲気中などで加熱した後、反応生成混合物を湿式処理して、副生したCaOおよび残留Caなどの還元剤成分(残留不純物)を除去することによって、直接合金粉末を得る方法である。   For example, as described in JP-A-61-295308, this reduction diffusion method uses rare earth oxide powder and other metal powder (in the present invention, iron, cobalt, manganese, etc. as required). And a reducing agent component (residual impurities) such as CaO and residual Ca produced as a by-product after the reaction product mixture is wet-treated after heating a mixture of the reducing agent such as Ca in an inert gas atmosphere or the like. This is a method of directly obtaining an alloy powder by removing.

この方法で希土類−鉄系母合金粉末を製造するには、(1)希土類元素を含む酸化物、鉄粉末の原料粉末に還元剤を混合し、(2)この混合物を特定の温度に加熱し、希土類元素を鉄系合金に還元拡散させて、(3)得られた反応生成物を水素処理して崩壊させ、(4)崩壊した粉末を湿式処理して製造する。   In order to produce rare earth-iron-based master alloy powder by this method, (1) a reducing agent is mixed with the raw material powder of oxide and iron powder containing rare earth elements, and (2) the mixture is heated to a specific temperature. Then, the rare earth element is reduced and diffused into the iron-based alloy, (3) the obtained reaction product is disintegrated by hydrogen treatment, and (4) the disintegrated powder is produced by wet treatment.

(1)原料粉末の調製
上記のように、原料粉末として、希土類元素を含む酸化物粉末と鉄粉末を混合して用いる。本発明に用いられる希土類元素を含む酸化物としては、特に制限されないが、Sm、Gd、Tb、およびCeから選ばれる少なくとも1種の元素、あるいは、さらにPr、Nd、Dy、Ho、Er、Tm、およびYbから選ばれる少なくとも1種の元素が含まれる酸化物が好ましい。中でもSmが含まれる酸化物は、本発明の効果を顕著に発揮させることが可能となるので特に好ましい。Smが含まれる酸化物の場合、高い保磁力を得るためにはSmを希土類全体の50重量%以上、好ましくは90重量%以上にすることが必要である。
(1) Preparation of raw material powder As described above, an oxide powder containing a rare earth element and an iron powder are mixed and used as the raw material powder. The oxide containing a rare earth element used in the present invention is not particularly limited, but is at least one element selected from Sm, Gd, Tb, and Ce, or Pr, Nd, Dy, Ho, Er, Tm. And an oxide containing at least one element selected from Yb. Among these, oxides containing Sm are particularly preferable because the effects of the present invention can be remarkably exhibited. In the case of an oxide containing Sm, in order to obtain a high coercive force, Sm needs to be 50% by weight or more, preferably 90% by weight or more of the whole rare earth.

また、上記原料粉末には、保磁力の向上、生産性の向上、さらに低コスト化のため、Mn、Cr、Nb、Mo、Sb、Ge、Zr、V、Si、Al、Ta、Cu等の一種以上を添加しても良いが、その添加量は、総計で7重量%以下とすることが望ましい。また、不可避的不純物として、C、B等が5重量%以下含有されていても良い。   In addition, the above raw material powder includes Mn, Cr, Nb, Mo, Sb, Ge, Zr, V, Si, Al, Ta, Cu, etc., in order to improve coercive force, improve productivity, and reduce costs. One or more may be added, but the amount added is preferably 7% by weight or less in total. Moreover, as an unavoidable impurity, C, B, etc. may contain 5 weight% or less.

(2)還元拡散
次に、上記原料粉末と還元剤とを反応容器に投入し、特定条件で加熱処理することによって、希土類酸化物と他の酸化物原料とを還元するとともに鉄粉末に拡散させて、希土類−鉄系母合金を生成させる。
(2) Reduction diffusion Next, the raw material powder and the reducing agent are put into a reaction vessel and heat-treated under specific conditions to reduce the rare earth oxide and other oxide raw materials and diffuse them into the iron powder. Thus, a rare earth-iron master alloy is produced.

還元剤としては、アルカリ金属、アルカリ土類金属およびこれらの水素化物から選ばれるが、取り扱いの安全性とコストの点で、金属カルシウムが好ましい。還元剤は、上記原料粉末と混合するか、カルシウム蒸気が原料粉末と接触しうるよう分離しておくこともできる。分離すると均一窒化を促進し、得られた磁石粉末の角形性を向上させることができる。   The reducing agent is selected from alkali metals, alkaline earth metals, and hydrides thereof, and metallic calcium is preferable in terms of handling safety and cost. The reducing agent can be mixed with the raw material powder or separated so that calcium vapor can come into contact with the raw material powder. When separated, uniform nitriding is promoted, and the squareness of the obtained magnet powder can be improved.

原料粉末とともに、後の湿式処理工程において反応生成物の崩壊を促進させる添加剤を混合することも効果的である。崩壊促進剤としては、塩化カルシウムなどのアルカリ土類金属塩や酸化カルシウムなどを用いることができ、原料粉末と同時に均一に混合する。   It is also effective to mix with the raw material powder an additive that promotes the decay of the reaction product in the subsequent wet processing step. As the disintegration accelerator, alkaline earth metal salts such as calcium chloride, calcium oxide and the like can be used, and they are uniformly mixed simultaneously with the raw material powder.

各原料粉末は、それぞれの粉体特性差によって分離しないように均一に混合することが重要である。混合方法としては、たとえばリボンブレンダー、タンブラー、S字ブレンダー、V字ブレンダー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー、ハイスピードミキサー、ボールミル、振動ミル、アトライター、ジェットミルなどが使用できる。   It is important that the raw material powders are mixed uniformly so as not to separate due to differences in powder characteristics. As a mixing method, for example, a ribbon blender, a tumbler, an S-shaped blender, a V-shaped blender, a Nauter mixer, a Henschel mixer, a super mixer, a high speed mixer, a ball mill, a vibration mill, an attritor, a jet mill and the like can be used.

還元温度は、1090〜1250℃、特に1100〜1230℃の範囲とするのが望ましい。1090℃未満では鉄粉末に対して、希土類元素などの拡散が不均一となり、これを用いて製造される希土類−鉄−窒素系磁石粉末の保磁力や角形性が低下する。1250℃を超えると、生成した希土類−鉄母合金が粒成長を起こすとともに互いに焼結するため、均一窒化が困難になり磁石粉末の角形性が低下する。   The reduction temperature is desirably in the range of 1090 to 1250 ° C, particularly 1100 to 1230 ° C. When the temperature is lower than 1090 ° C., the diffusion of rare earth elements and the like is not uniform with respect to the iron powder, and the coercive force and squareness of the rare earth-iron-nitrogen based magnet powder produced using the iron powder are reduced. When the temperature exceeds 1250 ° C., the generated rare earth-iron mother alloy undergoes grain growth and sinters with each other. Therefore, uniform nitriding becomes difficult, and the squareness of the magnet powder decreases.

(3)水素処理
還元剤としてカルシウムを用いて還元拡散反応を行うと、得られた希土類−鉄系母合金は、酸化カルシウム、未反応の余剰の金属カルシウムなどからなる塊状の混合物となる。そのため、この反応生成物に対して水素処理を行う。
(3) Hydrogen treatment When a reduction diffusion reaction is performed using calcium as a reducing agent, the obtained rare earth-iron-based master alloy becomes a massive mixture composed of calcium oxide, unreacted excess metallic calcium, and the like. Therefore, hydrogen treatment is performed on this reaction product.

水素処理は、500℃以下の温度で実施するが、取り出した崩壊物の粒径が10mm以下、好ましくは1mm以下になるように、反応温度と時間を設定する必要がある。崩壊物が10mmを超える状態では、湿式処理に引き続いて行われる窒化処理工程で均一な窒化が困難になり、磁石粉末の角形性が低下する。   The hydrogen treatment is performed at a temperature of 500 ° C. or less, but it is necessary to set the reaction temperature and time so that the particle size of the taken-out collapsed product is 10 mm or less, preferably 1 mm or less. In the state where the collapsed material exceeds 10 mm, uniform nitriding becomes difficult in the nitriding treatment step performed subsequent to the wet treatment, and the squareness of the magnet powder is lowered.

(4)湿式処理
水素処理によって崩壊させた反応生成物は、可及的速やかに湿式処理工程に持ち込んで、希土類−鉄母合金から酸化カルシウムなどの還元剤成分に起因する副生成物(残留不純物)を分離除去する。
(4) Wet treatment The reaction product collapsed by the hydrogen treatment is brought into the wet treatment process as soon as possible, and a by-product (residual impurities from the rare earth-iron mother alloy due to a reducing agent component such as calcium oxide). ) Is removed.

反応生成物を可及的速やかに湿式処理工程に持ち込むのは、崩壊した反応生成物を長時間大気中に放置すると、生成した希土類−鉄系母合金が酸化すると同時に、炭酸カルシウムなどの還元剤成分の炭酸化物が生成し除去しにくくなり、その結果、窒化が均一に進行せず、最終的に得られた磁石粉末の磁化、保磁力、角形性が低下するためである。したがって、崩壊した反応生成物は、大気中では3日以内、好ましくは1日以内、仕掛品として不活性ガス雰囲気中に保管する場合には2週間以内に湿式処理するとよい。   The reaction product is brought into the wet treatment process as quickly as possible. When the collapsed reaction product is left in the atmosphere for a long time, the generated rare earth-iron master alloy is oxidized and at the same time a reducing agent such as calcium carbonate. This is because the component carbonate is generated and difficult to remove, and as a result, nitriding does not proceed uniformly, and the magnetism, coercive force, and squareness of the finally obtained magnet powder are lowered. Accordingly, the collapsed reaction product may be wet-treated within 3 days, preferably within 1 day in the atmosphere, or within 2 weeks when stored in an inert gas atmosphere as a work-in-process.

湿式処理は、まず崩壊した生成物を水中に投入し、デカンテーション−注水−デカンテーションを繰り返し行い、Ca(OH)の多くを除去する。適切に水素処理された反応生成物は、従来の水素処理物よりも、一層激しく水と反応する。 In the wet treatment, first, the disintegrated product is put into water, and decantation-water injection-decantation is repeated to remove much of Ca (OH) 2 . A properly hydrotreated reaction product reacts with water more vigorously than a conventional hydrotreated product.

次に、残留するCa(OH)を除去するために、酢酸および/または塩酸を用いて酸洗浄する。このとき、水溶液の水素イオン濃度(pH)を4〜6の範囲として実施するとよい。 Next, in order to remove residual Ca (OH) 2 , acid washing is performed using acetic acid and / or hydrochloric acid. At this time, the hydrogen ion concentration (pH) of the aqueous solution is preferably in the range of 4-6.

このような処理終了後には、例えば水洗し、アルコールあるいはアセトン等の有機溶媒で脱水し、不活性ガス雰囲気中または真空中で乾燥することで、希土類−鉄系母合金粉末を得ることができる。   After completion of such treatment, for example, it is washed with water, dehydrated with an organic solvent such as alcohol or acetone, and dried in an inert gas atmosphere or in vacuum, whereby a rare earth-iron-based mother alloy powder can be obtained.

本発明において、希土類−鉄−窒素系磁石粉末は、上記の希土類−鉄系母合金粉末を、アンモニアと水素とからなる混合気流中、400〜500℃、好ましくは410〜460℃で窒化熱処理する。ただし、TとしてFeの一部をMn、Cr、Vなどで7重量%以下含有させたときには、アンモニア分圧の比を0.4〜0.8、好ましくは0.4〜0.6とする。   In the present invention, the rare earth-iron-nitrogen based magnet powder is obtained by subjecting the rare earth-iron based mother alloy powder to a nitriding heat treatment at 400 to 500 ° C., preferably 410 to 460 ° C., in a mixed gas stream of ammonia and hydrogen. . However, when a part of Fe as T is contained by 7% by weight or less as M, Cr, V, etc., the ammonia partial pressure ratio is set to 0.4 to 0.8, preferably 0.4 to 0.6. .

ここで全気流圧力に対するアンモニア分圧の比が0.4未満であると、長時間かけても窒化が進まず、窒素量を0.35重量%以上とすることができず、アンモニア分圧の比が0.8を超えると個々の磁石粉末の表面近傍と中央付近とで窒素組成が均一にならず、特に表面付近でアモルファス相が増えるとともに、SmFe17化合物結晶相からなる10〜30nmのセルの結晶方位が乱れるため、磁石粉末の磁化と角形性が低下する。 Here, if the ratio of the ammonia partial pressure to the total air flow pressure is less than 0.4, nitriding does not proceed over a long period of time, and the amount of nitrogen cannot be increased to 0.35% by weight or more. When the ratio exceeds 0.8, the nitrogen composition is not uniform near the surface and near the center of each magnet powder, and in particular, the amorphous phase increases near the surface, and the Sm 2 Fe 17 N 3 compound crystal phase 10 Since the crystal orientation of the ˜30 nm cell is disturbed, the magnetization and squareness of the magnet powder are reduced.

加熱温度が400℃未満では窒化が進みにくく、一方、500℃を超えると合金が希土類元素の窒化物と鉄に分解することがあるので好ましくない。加熱温度が低すぎたり加熱時間が短かすぎると粉末内部に未窒化相が残り、逆に温度が高すぎたり加熱時間が長すぎると過窒化となり、磁石粉末の磁化、保磁力、角型性が低下するため、適宜処理条件を最適化する。なお、加熱装置としては、静置式加熱炉、流動床式加熱炉、回転式加熱炉等を用いることができるが、合金微粉末とガスとの接触を均一にするためには、粉末を攪拌しながら窒化すればよい。   When the heating temperature is less than 400 ° C., nitriding is difficult to proceed. On the other hand, when the heating temperature exceeds 500 ° C., the alloy may be decomposed into rare earth nitride and iron, which is not preferable. If the heating temperature is too low or the heating time is too short, an unnitrided phase will remain inside the powder. Conversely, if the temperature is too high or the heating time is too long, it will be overnitrided, and the magnet powder's magnetization, coercive force, squareness will be Therefore, the processing conditions are optimized as appropriate. As the heating device, a stationary heating furnace, a fluidized bed heating furnace, a rotary heating furnace, etc. can be used. In order to make the contact between the alloy fine powder and the gas uniform, the powder is stirred. However, nitriding may be performed.

こうして得られた磁石粉の平均粒径は、1〜30μm、特に2〜25μmであることが望ましい。平均粒径が1μm未満では磁石粉末を工業的に取り扱うのが困難であり、30μmを超えると圧密化で相対密度を85%以上とすることが困難になるからである。   The average particle size of the magnet powder thus obtained is preferably 1 to 30 μm, particularly 2 to 25 μm. If the average particle size is less than 1 μm, it is difficult to handle the magnet powder industrially, and if it exceeds 30 μm, it becomes difficult to achieve a relative density of 85% or more by compaction.

また、該磁石粉は、その表面に酸化被膜が形成されており、酸素量は磁石粉全量に対して0.2〜1.6重量%、特に0.5〜1.0重量%であることが必要である。
磁石粉表面に形成されている酸化被膜は、酸素を制御した雰囲気中で磁石粉自体を徐々に酸化し徐酸化被膜とする方法、あるいはコーティング剤などを用いたり、スパッタリングやCVD(化学的蒸着)などによってアルミナ、シリカなどの酸化物を磁石粉に被覆する方法などによって形成することができる。本発明では、酸化被膜は徐酸化被膜であることが好ましい。
The magnet powder has an oxide film formed on the surface thereof, and the oxygen content is 0.2 to 1.6% by weight, particularly 0.5 to 1.0% by weight, based on the total amount of the magnet powder. is required.
The oxide film formed on the surface of the magnet powder is a method that gradually oxidizes the magnet powder itself in an oxygen controlled atmosphere to form a gradual oxide film, or using a coating agent, sputtering, CVD (chemical vapor deposition) For example, it can be formed by a method of coating an oxide such as alumina or silica on magnet powder. In the present invention, the oxide film is preferably a slow oxide film.

酸素量が0.2重量%未満では磁石粉が活性であるため、予備圧縮成形工程での取り扱いが工業的に困難になる。また1.6重量%を超えると、予備圧縮成形に引き続いて実施される磁石粉の圧密化工程で磁石粉そのものが酸化されてしまい十分な保磁力が得られなくなってしまう。0.2〜1.6重量%の酸素が徐酸化被膜など、酸化被膜として存在する限り保磁力低下は許容できるレベルである。   When the amount of oxygen is less than 0.2% by weight, the magnet powder is active, so that handling in the pre-compression molding process is industrially difficult. On the other hand, if it exceeds 1.6% by weight, the magnet powder itself is oxidized in the magnet powder compacting step performed subsequent to the pre-compression molding, and a sufficient coercive force cannot be obtained. As long as 0.2 to 1.6% by weight of oxygen is present as an oxide film such as a gradual oxide film, the coercive force reduction is at an acceptable level.

このような酸素を徐酸化被膜として有する磁石粉は、酸素量を制御した雰囲気下で処理すれば容易に得ることができる。たとえば、希土類−鉄系合金を得て、その後粉砕により磁石粉を製造する場合、ジェットミルなどを用いた乾式粉砕であれば、酸素を所定量含む不活性ガス中で磁石粉を粉砕する、あるいはボールミルなどを用いた湿式粉砕であれば、磁石粉を粉砕後に、酸素を所定量含む不活性ガス中で乾燥するといった公知の手段を用いることができる。   Such magnet powder having oxygen as a gradual oxide film can be easily obtained by processing in an atmosphere in which the amount of oxygen is controlled. For example, when a rare earth-iron-based alloy is obtained and then magnet powder is produced by pulverization, if the dry pulverization using a jet mill or the like, the magnet powder is pulverized in an inert gas containing a predetermined amount of oxygen, or In the case of wet pulverization using a ball mill or the like, known means such as drying in an inert gas containing a predetermined amount of oxygen after pulverizing the magnet powder can be used.

一方、従来のように酸化被膜を形成していない磁石粉を用いて、下記に詳述する方法で圧密磁石を製造する場合には、Sm−Fe−N系化合物の分解や脱窒素あるいは磁石粉粒子同士の金属結合による粒子間磁気的相互作用が強まるためか、得られた圧密磁石の保磁力は低く、実用材としては十分なものとならない。これに対して、本発明に係わる磁石粉を用いると、圧密化するとき化合物の分解や脱窒素を防止でき、保磁力の低下を防ぐことができる。   On the other hand, when producing a compacted magnet by the method described in detail below using magnet powder that does not form an oxide film as in the prior art, decomposition or denitrification of Sm-Fe-N compounds or magnet powder The coercive force of the obtained compacted magnet is low because the magnetic interaction between particles due to metal bonding between particles is strengthened, and it is not sufficient as a practical material. On the other hand, when the magnetic powder according to the present invention is used, decomposition and denitrification of the compound can be prevented when compacted, and a decrease in coercive force can be prevented.

こうして得られた希土類−鉄系磁石粉には、本発明の目的を損なわない限り、フェライト、アルニコなどの磁石粉を混合してもよい。   The rare earth-iron-based magnet powder thus obtained may be mixed with magnet powder such as ferrite and alnico unless the object of the present invention is impaired.

2.予備圧縮成形
磁石粉は、圧密化の前に、非酸化性雰囲気中で必要により磁界をかけながら、所定の形状に予備圧縮成形する。予備圧縮成形せずに、後で述べる圧密化だけを行っても高い相対密度は得られない。
2. Pre-compression molding The magnet powder is pre-compression molded into a predetermined shape while applying a magnetic field as necessary in a non-oxidizing atmosphere before consolidation. A high relative density cannot be obtained even if only compaction described later is performed without pre-compression molding.

予備圧縮時は、雰囲気を非酸化性(例えば、アルゴンガス、ヘリウムガス、窒素ガスの雰囲気、あるいは真空)とする必要がある。   At the time of pre-compression, the atmosphere needs to be non-oxidizing (for example, an atmosphere of argon gas, helium gas, nitrogen gas, or vacuum).

希土類−鉄−窒素系磁石粉にZn粉末を添加して、磁石粉をZn粉末との混合粉で用いると、これを予備圧縮成形したときに磁石粉表面の軟磁性相や欠陥などが低減するので特に好適である。この場合、Zn粉末の添加量が多いと磁化が低下するので、その添加量は10重量%以下でなければならず、例えば3〜10重量%であることが好ましい。   When Zn powder is added to rare earth-iron-nitrogen based magnet powder and the magnet powder is used as a mixed powder with Zn powder, the soft magnetic phase and defects on the surface of the magnet powder are reduced when pre-compression molding is performed. Therefore, it is particularly suitable. In this case, since the magnetization decreases when the amount of Zn powder added is large, the amount added must be 10% by weight or less, for example, preferably 3 to 10% by weight.

希土類−鉄−窒素系磁石粉の個々の粒子が等方性の粉末であるときは、磁石粉は、圧密化の前に、非酸化性雰囲気中で予備圧縮成形する。この場合、予備成形体の相対密度が40%以上となるようにしなければならない。予備成形体の相対密度が40%未満では、これを圧密化しても85%以上の相対密度とすることができない。
等方性磁石は、配向の乱れを考慮しなくても良いために、相対密度の上限は特に限定されない。通常、圧力を高めることによって、相対密度を70%程度まで予備圧縮することができる。
圧力については、特に限定されず、相対密度が40%以上の予備成形体が得られる圧力条件であればよい。温度は、予備圧縮成形中に磁石粉の酸化が進行しないことが望ましく、通常常温で行うことが好ましい。
When the individual particles of the rare earth-iron-nitrogen based magnet powder are isotropic powders, the magnet powder is pre-compressed in a non-oxidizing atmosphere before consolidation. In this case, the relative density of the preform must be 40% or more. If the relative density of the preform is less than 40%, even if it is consolidated, the relative density of 85% or more cannot be obtained.
Since the isotropic magnet does not need to consider disorder of orientation, the upper limit of the relative density is not particularly limited. Usually, the relative density can be pre-compressed to about 70% by increasing the pressure.
It does not specifically limit about a pressure, What is necessary is just the pressure conditions from which a preform with a relative density of 40% or more is obtained. As for the temperature, it is desirable that the oxidation of the magnet powder does not proceed during the precompression molding, and it is usually preferable to carry out at normal temperature.

予備圧縮の方法も特に限定されず、通常用いられるプレス法などを用いることができる。予備圧縮工程で、良好な磁石粉の配向を得るためには、冷間静水圧プレス(CIP)や特開平05−271705号公報に開示されるようなゴムモールドによるプレスによることができ、CIPの場合では、アルミニウムカプセルを用いてプレスを行うのが有効である。   The method for pre-compression is not particularly limited, and a conventionally used press method or the like can be used. In order to obtain a good magnet powder orientation in the pre-compression step, it can be performed by a cold isostatic press (CIP) or a press using a rubber mold as disclosed in JP-A-05-271705. In some cases, it is effective to press using an aluminum capsule.

一方、希土類−鉄−窒素系磁石粉の個々の粒子が異方性の粉末であるときは、磁界をかけながら予備圧縮することによって磁石粉の磁化容易軸が磁界方向に揃ったまま成形され、その後圧密化して得られた磁石は、さらに高い残留磁束密度を有する異方性の希土類永久磁石とすることができる。
予備圧縮時にかける磁界は、400kA/m以上、好ましくは1000kA/m以上、より好ましくは1500kA/m以上とし、該磁界をかけながら予備成形体の相対密度が40〜55%となるように予備圧縮する。配向磁界が400kA/m未満では磁石粉を十分配向させることができない。
On the other hand, when the individual particles of the rare earth-iron-nitrogen based magnet powder are anisotropic powders, the magnet powder is easily compressed while preliminarily compressing it while applying a magnetic field, so that the easy axis of magnet magnet is aligned in the magnetic field direction, The magnet obtained by subsequent compaction can be an anisotropic rare earth permanent magnet having a higher residual magnetic flux density.
The magnetic field applied during the pre-compression is 400 kA / m or more, preferably 1000 kA / m or more, more preferably 1500 kA / m or more, and the pre-compression is performed so that the relative density of the preform is 40 to 55% while applying the magnetic field. To do. If the orientation magnetic field is less than 400 kA / m, the magnet powder cannot be sufficiently oriented.

この異方性の磁石粉でも、等方性の磁石粉と同じく、予備成形体の相対密度が40%未満では、これを圧密化しても85%以上の相対密度とすることができない。ところが、相対密度が55%を超えると、磁界によって揃えた予備成形体の磁石粉の配向が乱れるため、次の工程で圧密化して得られる異方性希土類永久磁石の残留磁束密度が低下して最大エネルギー積が低下する。したがって、異方性の磁石粉の場合は、予備成形体の相対密度が40〜55%となるようにすることが好ましい。   Even in this anisotropic magnet powder, as in the case of isotropic magnet powder, if the relative density of the preform is less than 40%, the relative density of 85% or more cannot be obtained even if the preform is consolidated. However, when the relative density exceeds 55%, the orientation of the magnet powder of the preform formed by the magnetic field is disturbed, so that the residual magnetic flux density of the anisotropic rare earth permanent magnet obtained by consolidation in the next step is reduced. The maximum energy product is reduced. Therefore, in the case of anisotropic magnet powder, it is preferable that the relative density of the preform is 40 to 55%.

3.予備成形体の圧密化
圧密化は、予備圧縮成形によって得られた予備成形体を圧縮し、磁石粉密度が85%以上に高められた磁石成形体とする工程である。
3. Consolidation of preformed body Consolidation is a step of compressing a preformed body obtained by precompression molding into a magnet molded body having a magnet powder density increased to 85% or more.

圧密化の手段としては、熱間静水圧プレス法、プラズマ焼結法、衝撃圧縮法が適用できる。ただし衝撃圧縮法は安全上の制約があるため、熱間静水圧プレス法またはプラズマ焼結法のいずれかが好適である。   As a means for consolidation, a hot isostatic pressing method, a plasma sintering method, and an impact compression method can be applied. However, since the impact compression method has safety restrictions, either the hot isostatic pressing method or the plasma sintering method is suitable.

圧密化時は、雰囲気を非酸化性ガス(例えば、アルゴンガス、ヘリウムガス、窒素ガス)の雰囲気、あるいは真空とする必要がある。また、圧密化時の試料温度は500℃以下、好ましくは490℃以下とする。500℃を超える温度で圧密化すると希土類−鉄−窒素系磁石粉が分解するので好ましくない。   At the time of consolidation, the atmosphere needs to be a non-oxidizing gas (for example, argon gas, helium gas, nitrogen gas) atmosphere or a vacuum. The sample temperature during consolidation is 500 ° C. or lower, preferably 490 ° C. or lower. Consolidation at a temperature exceeding 500 ° C. is not preferable because the rare earth-iron-nitrogen based magnet powder is decomposed.

さらに、磁石粉の磁化容易軸を配向させた異方性磁石を製造する場合には、圧密化過程で磁石粉の磁化容易軸の配向乱れが起こりにくい熱間静水圧プレス法がより好適である。   Furthermore, when manufacturing an anisotropic magnet in which the easy axis of magnet powder is oriented, the hot isostatic pressing method in which the orientation disorder of the easy axis of magnet powder hardly occurs in the consolidation process is more preferable. .

この場合、内側が予備成形体と同一形状になったアルミニウムカプセル中に予備成形体を納めてカプセルを密閉してから、熱間静水圧プレスを行うのが望ましい。アルミニウムカプセルは、熱間で静水圧プレスしたとき塑性変形し、中の予備成形体を圧密化する。前記特許文献3(特開平5−217728号公報)に記載されているようなアルミナ製容器では、容器が変形しないので圧密化することができない。   In this case, it is desirable to perform hot isostatic pressing after enclosing the preform in an aluminum capsule having the same inner shape as the preform and sealing the capsule. The aluminum capsules are plastically deformed when hot isostatically pressed to consolidate the preformed body therein. In an alumina container as described in Patent Document 3 (Japanese Patent Laid-Open No. 5-217728), the container cannot be compacted because it does not deform.

なお、アルミニウムカプセルと予備成形体との間に隙間ができる場合には、窒化硼素粉末、窒化珪素粉末、窒化アルミニウム粉末、窒化カルシウム粉末などの窒化物粉末を隙間に充填することで圧密化することができる。窒化物粉末以外の、たとえば酸化物粉末では希土類−鉄−窒素系磁石粉が充填した粉末と反応し、磁気特性が低下するので好ましくない。密閉したカプセル内の雰囲気は、真空か、あるいは、アルゴンガス、ヘリウムガス、窒素ガスなどの非酸化性雰囲気とすることが望ましい。   If there is a gap between the aluminum capsule and the preform, consolidation is achieved by filling the gap with a nitride powder such as boron nitride powder, silicon nitride powder, aluminum nitride powder, or calcium nitride powder. Can do. Other than nitride powder, for example, oxide powder is not preferable because it reacts with powder filled with rare earth-iron-nitrogen based magnet powder and magnetic properties are deteriorated. The atmosphere in the sealed capsule is preferably a vacuum or a non-oxidizing atmosphere such as argon gas, helium gas, nitrogen gas or the like.

また、静水圧プレスの圧力媒体としては、純度99.99%以上のアルゴンガス、ヘリウムガス、窒素ガスが望ましい。熱間静水圧プレス法で圧密化する場合には、温度は350〜500℃、好ましくは400〜490℃で行う。ここで温度が350℃より低いと圧密化が進まず、500℃より高いと磁石粉末が分解してα−Feが生成し、保磁力が低下するためである。   Moreover, as a pressure medium of an isostatic press, argon gas, helium gas, and nitrogen gas with a purity of 99.99% or more are desirable. In the case of consolidation by hot isostatic pressing, the temperature is 350 to 500 ° C, preferably 400 to 490 ° C. This is because if the temperature is lower than 350 ° C., consolidation does not proceed, and if it is higher than 500 ° C., the magnet powder is decomposed to produce α-Fe and the coercive force is reduced.

圧力は、100〜200MPa、特に150〜200MPaで行うのが好ましい。圧力が100MPaより低いと圧密化が進まず、200MPaを超える熱間静水圧プレスは安全上問題があるためである。   The pressure is preferably 100 to 200 MPa, particularly 150 to 200 MPa. This is because if the pressure is lower than 100 MPa, consolidation does not proceed and a hot isostatic press exceeding 200 MPa has a safety problem.

4.希土類永久磁石
本発明の希土類永久磁石は、上記の方法によって製造され、相対密度が85%以上、好ましくは90%以上の磁石成形体とされた永久磁石である。この永久磁石には、Sm−Fe−N系、Sm−Fe−Mn−N系、これらとZn粉末との混合系永久磁石などが挙げられ、いずれも保磁力及び最大エネルギー積などが高く優れた磁気特性を有している。
4). Rare earth permanent magnet The rare earth permanent magnet of the present invention is a permanent magnet produced by the above method and having a relative density of 85% or more, preferably 90% or more. Examples of the permanent magnet include Sm—Fe—N, Sm—Fe—Mn—N, and mixed permanent magnets of these and Zn powder, all of which are excellent in high coercive force and maximum energy product. Has magnetic properties.

例えば、Sm−Fe−N系永久磁石では、保磁力HcJが0.60MA/m以上、(BH)maxが80kJ/m以上であり、また、Sm−Fe−Mn−N系永久磁石では、保磁力HcJが0.50MA/m以上、(BH)maxが30kJ/m以上という優れた磁気特性を有している。
一方、ボールミル粉砕の際に磁石粉に所定量のZn粉末を添加して製造したSm−Fe−N系永久磁石では、保磁力HcJが0.50MA/m以上、(BH)maxが160kJ/m以上という優れた磁気特性を有するものとなる。
For example, in the Sm-Fe-N permanent magnet, the coercive force HcJ is 0.60 MA / m or more and (BH) max is 80 kJ / m 3 or more. In the Sm-Fe-Mn-N permanent magnet, It has excellent magnetic properties such as a coercive force HcJ of 0.50 MA / m or more and (BH) max of 30 kJ / m 3 or more.
On the other hand, in an Sm-Fe-N permanent magnet manufactured by adding a predetermined amount of Zn powder to magnet powder during ball milling, the coercive force HcJ is 0.50 MA / m or more, and (BH) max is 160 kJ / m. It has excellent magnetic properties of 3 or more.

以下に、本発明の実施例及び比較例を示すが、本発明は、これらの実施例によって何ら限定されるものではない。
なお、相対密度は、試料にパラフィンをコーティングし、(株)東洋精機製作所製、自動比重計D−Hを用いて測定した。また、磁気特性は、圧密化した試料を円柱状に加工し、東英工業(株)製の直流自記磁束計TRF−5を用いて測定した。このとき、試料は、前もってピーク磁界が3200kA/mのパルス磁界で着磁しておいた。
Examples of the present invention and comparative examples are shown below, but the present invention is not limited to these examples.
The relative density was measured by coating the sample with paraffin and using an automatic hydrometer DH manufactured by Toyo Seiki Seisakusho. The magnetic properties were measured by using a DC self-recording magnetometer TRF-5 manufactured by Toei Kogyo Co., Ltd. after processing the consolidated sample into a cylindrical shape. At this time, the sample was previously magnetized with a pulse magnetic field having a peak magnetic field of 3200 kA / m.

(実施例1)
純度99.9重量%、粒度:ふるいの目開き104μm(150メッシュ、タイラー標準であり、以下同じ)以下の電解Fe粉:7.5kgと、純度99重量%平均粒度ふるいの目開き43μm(325メッシュ)の酸化Sm粉末:3.4kgと、純度99重量%の粒状金属Ca:1.5kgと、無水塩化Ca粉末:0.17kgとを、Vブレンダーを用いて混合した。得られた混合物をステンレス容器に入れ、アルゴン雰囲気下、1150℃で8時間加熱し還元拡散反応させた。
次いで、反応生成物を冷却してから水中に投入し、崩壊させた。得られたスラリーに対して水洗と酢酸による酸洗浄を繰り返して、未反応のCaと副生したCaOを除去した。得られたスラリーを濾過し、エタノールで置換した後、真空乾燥して、150μm以下の25重量%Sm−bal.Fe合金粉末約10kgを得た。ここで、bal.とは、残部であることを示している。
ついで、この粉末を管状炉中に装填し、アンモニア分圧0.35のアンモニア−水素混合ガス雰囲気中、465℃で6時間加熱(窒化処理)し、その後アルゴンガス中465℃で2時間加熱(アニール処理)し、Sm−Fe−N合金粉末を得た。この粉末をX線解析したところ、菱面体晶系のThZn17型結晶構造の回折線(SmFe17金属間化合物)を示した。
次に、このSm−Fe−N合金粉末を、脱水ヘキサンを溶媒としてボールミル粉砕し、酸素濃度0.3容量%の窒素ガス雰囲気でミキサーによる徐酸化を行った。得られたSm−Fe−N磁石粉は、フィッシャー平均粒径が1.4μmで、Sm組成は24.0重量%、N組成は3.6重量%、酸素量が0.2重量%、bal.Feであった。なお、磁石粉の酸素量は、EGMA(堀場製作所製)によって測定した。
得られたSm−Fe−N磁石粉を、窒素ガス雰囲気中でゴムモールドに充填して、2000kA/mのパルス磁界をかけて配向させた後、180MPaで静水圧プレスし、およそ直径11mm×高さ25mmの円柱状予備成形体を得た。得られた予備成形体の相対密度は46%であった。ここで相対密度は、Sm−Fe−N磁石粉の真密度をX線密度(7.67g/cc)として算出している。
この予備成形体を外径14mm×内径11mmのアルミニウム製カプセルに収納し、上下に蓋をして密閉した。なお密閉した内部は真空引きしておいた。このカプセルを、グラファイト製ヒータを有する熱間静水圧プレス機に配置し、アルゴンガスを圧力媒体として450℃、200MPaで30分間圧密化処理した。カプセルから取り出した圧密磁石の相対密度を測定し、磁気特性を自記磁束計で評価しところ、相対密度が90%、保磁力HcJは0.82MA/m、(BH)maxは155kJ/mであった。
(Example 1)
Purity 99.9 wt%, particle size: sieve opening 104 μm (150 mesh, Tyler standard, the same applies hereinafter) Electrolytic Fe powder: 7.5 kg and purity 99 wt% average particle size sieve opening 43 μm (325 Mesh) oxidized Sm powder: 3.4 kg, granular metal Ca having a purity of 99% by weight: 1.5 kg, and anhydrous Ca chloride powder: 0.17 kg were mixed using a V blender. The obtained mixture was put in a stainless steel container and heated at 1150 ° C. for 8 hours in an argon atmosphere to cause a reduction diffusion reaction.
Next, the reaction product was cooled and then poured into water to be disintegrated. The obtained slurry was repeatedly washed with water and acid with acetic acid to remove unreacted Ca and by-produced CaO. The obtained slurry was filtered, replaced with ethanol, and then vacuum-dried to obtain 25 wt% Sm-bal. About 10 kg of Fe alloy powder was obtained. Here, bal. Indicates the remaining part.
Next, this powder was loaded into a tube furnace, heated in an ammonia-hydrogen mixed gas atmosphere having an ammonia partial pressure of 0.35 at 465 ° C. for 6 hours (nitriding treatment), and then heated in argon gas at 465 ° C. for 2 hours ( (Annealing treatment) to obtain an Sm—Fe—N alloy powder. X-ray analysis of this powder showed a diffraction line (Sm 2 Fe 17 N 3 intermetallic compound) having a rhombohedral Th 2 Zn 17 type crystal structure.
Next, this Sm—Fe—N alloy powder was ball milled using dehydrated hexane as a solvent and subjected to gradual oxidation using a mixer in a nitrogen gas atmosphere having an oxygen concentration of 0.3 vol%. The obtained Sm—Fe—N magnet powder has a Fisher average particle size of 1.4 μm, an Sm composition of 24.0% by weight, an N composition of 3.6% by weight, an oxygen content of 0.2% by weight, bal . Fe. The oxygen content of the magnet powder was measured by EGMA (manufactured by Horiba).
The obtained Sm—Fe—N magnet powder was filled in a rubber mold in a nitrogen gas atmosphere, oriented by applying a pulse magnetic field of 2000 kA / m, and then hydrostatically pressed at 180 MPa, and approximately 11 mm in diameter × high A cylindrical preform with a thickness of 25 mm was obtained. The relative density of the obtained preform was 46%. Here, the relative density is calculated with the true density of the Sm—Fe—N magnet powder as the X-ray density (7.67 g / cc).
The preform was housed in an aluminum capsule having an outer diameter of 14 mm and an inner diameter of 11 mm, and sealed up and down. The sealed interior was evacuated. The capsule was placed in a hot isostatic press having a graphite heater, and compacted at 450 ° C. and 200 MPa for 30 minutes using argon gas as a pressure medium. The relative density of the compacted magnet taken out from the capsule was measured, and the magnetic properties were evaluated with a self-recording magnetometer. The relative density was 90%, the coercive force HcJ was 0.82 MA / m, and (BH) max was 155 kJ / m 3 . there were.

(実施例2)
酸素濃度を2容量%として徐酸化し、Sm 23.7重量%、N 3.3重量%、酸素量1重量%、bal.FeとしたSm−Fe−N磁石粉磁石粉を200MPaで予備成形した以外は、実施例1と同様にして圧密磁石を作製した。予備成形体の相対密度は54%であった。得られた圧密磁石の相対密度は89%、保磁力HcJは0.64MA/m、(BH)maxは124kJ/mであった。
(Example 2)
Slow oxidation was performed with an oxygen concentration of 2% by volume, Sm 23.7% by weight, N 3.3% by weight, oxygen amount 1% by weight, bal. A compacted magnet was produced in the same manner as in Example 1 except that the Sm—Fe—N magnet powder magnet powder made of Fe was preformed at 200 MPa. The relative density of the preform was 54%. The relative density of the obtained compacted magnet was 89%, the coercive force HcJ was 0.64 MA / m, and (BH) max was 124 kJ / m 3 .

(実施例3)
酸素濃度を1.7容量%として徐酸化し、Sm−Fe−N磁石粉磁石粉の組成を、Sm 23.8重量%、N 3.4重量%、酸素量0.8重量%、bal.Feとした以外は、実施例1と同様にして圧密磁石を作製した。190MPaで圧縮した予備成形体の相対密度は50%であった。得られた圧密磁石の相対密度は91%、保磁力HcJは0.75MA/m、(BH)maxは113kJ/mであった。
(Example 3)
Slow oxidation was performed with an oxygen concentration of 1.7% by volume, and the composition of the Sm—Fe—N magnet powder magnet powder was Sm 23.8 wt%, N 3.4 wt%, oxygen content 0.8 wt%, bal. A consolidated magnet was produced in the same manner as in Example 1 except that Fe was used. The relative density of the preform compacted at 190 MPa was 50%. The relative density of the obtained compacted magnet was 91%, the coercive force HcJ was 0.75 MA / m, and (BH) max was 113 kJ / m 3 .

(実施例4)
酸化Sm粉末の投入量を3.7kg、Fe粉7.1kg、二酸化Mn 0.7kgとして還元拡散を行った以外は実施例1に準じて、Sm−(Fe、Mn)合金を得た。この粉末を管状炉中に装填し、アンモニア分圧0.5のアンモニア−水素混合ガス雰囲気中、465℃で10時間加熱(窒化処理)し、その後アルゴンガス中465℃で2時間加熱(アニール処理)し、フィッシャー平均粒径18μmのSm−(Fe、Mn)−N磁石粉を得た。この粉末をX線解析したところ、菱面体晶系のThZn17型結晶構造の回折線(Sm(Fe、Mn)17金属間化合物)を示した。磁石粉組成は、Sm 24.7重量%、Mn 3.4重量%、N 5.0重量%、酸素量0.5重量%、bal.Feであった。
この磁石粉を用い、実施例1と同様にして圧密磁石を作製した。190MPaで予備圧縮した予備成形体の相対密度は44%であった。得られた圧密磁石の相対密度は87%、保磁力HcJは0.78MA/m、(BH)maxは40kJ/mであった。なお相対密度は、Sm−(Fe、Mn)−N磁石粉の真密度をX線回折から求めた7.66g/ccとして算出している。
Example 4
An Sm- (Fe, Mn) alloy was obtained in the same manner as in Example 1 except that the reduction diffusion was performed with the amount of oxidized Sm powder being 3.7 kg, Fe powder 7.1 kg, and Mn dioxide 0.7 kg. This powder was loaded into a tubular furnace, heated in an ammonia-hydrogen mixed gas atmosphere with an ammonia partial pressure of 0.5 at 465 ° C. for 10 hours (nitriding treatment), and then heated in argon gas at 465 ° C. for 2 hours (annealing treatment). Sm— (Fe, Mn) —N magnet powder having a Fisher average particle diameter of 18 μm was obtained. X-ray analysis of this powder showed a diffraction line (Sm 2 (Fe, Mn) 17 N 3 intermetallic compound) having a rhombohedral Th 2 Zn 17 type crystal structure. The magnet powder composition was Sm 24.7% by weight, Mn 3.4% by weight, N 5.0% by weight, oxygen content 0.5% by weight, bal. Fe.
Using this magnet powder, a compacted magnet was produced in the same manner as in Example 1. The relative density of the preform that was pre-compressed at 190 MPa was 44%. The relative density of the obtained compacted magnet was 87%, the coercive force HcJ was 0.78 MA / m, and (BH) max was 40 kJ / m 3 . The relative density is calculated as 7.66 g / cc obtained from the X-ray diffraction of the true density of the Sm— (Fe, Mn) —N magnet powder.

(実施例5)
窒化処理時間を9時間とし、Sm 24.3重量%、Mn 3.6重量%、N 4.8重量%、酸素量0.2重量%、bal.Fe、平均粒径15μmのSm−(Fe、Mn)−N磁石粉を得た。この磁石粉を用いて、熱間静水圧プレス温度を490℃とした以外は実施例4と同様にして圧密磁石を作製した。
予備成形体の相対密度は41%であった。得られた圧密磁石の相対密度は88%、保磁力HcJは0.58MA/m、(BH)maxは35kJ/mであった。
(Example 5)
The nitriding time was 9 hours, Sm 24.3% by weight, Mn 3.6% by weight, N 4.8% by weight, oxygen content 0.2% by weight, bal. Fe, Sm— (Fe, Mn) —N magnet powder having an average particle size of 15 μm was obtained. Using this magnet powder, a compacted magnet was produced in the same manner as in Example 4 except that the hot isostatic pressing temperature was 490 ° C.
The relative density of the preform was 41%. The relative density of the obtained compacted magnet was 88%, the coercive force HcJ was 0.58 MA / m, and (BH) max was 35 kJ / m 3 .

(実施例6)
実施例5で得られた予備成形体をグラファイト製ダイに配置し、アルゴンガス雰囲気中、100MPaの圧力をかけながら、465℃で10分間放電プラズマ焼結を行い圧密化した。得られた圧密磁石の相対密度は90%、保磁力HcJは0.84MA/m、(BH)maxは85kJ/mであった。
(Example 6)
The preformed body obtained in Example 5 was placed on a graphite die, and compacted by performing discharge plasma sintering at 465 ° C. for 10 minutes while applying a pressure of 100 MPa in an argon gas atmosphere. The relative density of the obtained compacted magnet was 90%, the coercive force HcJ was 0.84 MA / m, and (BH) max was 85 kJ / m 3 .

(実施例7)
Sm−Fe−N合金粉末にZn粉末を5重量%添加したものをボールミル粉砕した以外は、実施例1と同様にしてSm 22.8重量%、N 3.4重量%、Zn 4.7重量%、酸素量が0.6重量%、bal.FeのSm−Fe−N磁石粉とZnの混合粉末(平均粒径3.4μm)を製造した。この粉末をアルゴンガス雰囲気中、1500kA/mの磁界をかけながら、200MPaで横磁界プレスして予備成形体を得た。予備成形体の相対密度は42%であった。なお混合粉の相対密度は、理論密度を7.64g/ccとして算出している。この予備成形体を実施例1と同様にして圧密化処理した。得られた圧密磁石の相対密度は87%、保磁力HcJは0.56MA/m、(BH)maxは168kJ/mであった。
(Example 7)
Sm 22.8 wt%, N 3.4 wt%, Zn 4.7 wt% in the same manner as in Example 1 except that 5 wt% Zn powder added to the Sm—Fe—N alloy powder was ball milled. %, Oxygen content is 0.6% by weight, bal. A mixed powder of Fe Sm—Fe—N magnet powder and Zn (average particle size 3.4 μm) was produced. This powder was subjected to a transverse magnetic field press at 200 MPa while applying a magnetic field of 1500 kA / m in an argon gas atmosphere to obtain a preform. The relative density of the preform was 42%. The relative density of the mixed powder is calculated with a theoretical density of 7.64 g / cc. The preform was compacted in the same manner as in Example 1. The relative density of the obtained compacted magnet was 87%, the coercive force HcJ was 0.56 MA / m, and (BH) max was 168 kJ / m 3 .

(実施例8)
Zn粉末の添加量を10重量%とした以外は実施例7と同様にして、Sm 21.6重量%、N 3.1重量%、Zn 9.5重量%、酸素量が0.4重量%、bal.FeのSm−Fe−N磁石粉とZnの混合粉末(平均粒径3.6μm)を製造した。この粉末を実施例7と同様にして、予備圧縮した後、圧密化処理した。予備成形体の密度は45%であった。得られた圧密磁石の相対密度は93%、保磁力HcJは0.91MA/m、(BH)maxは162kJ/mであった。
(Example 8)
Sm 21.6 wt%, N 3.1 wt%, Zn 9.5 wt%, oxygen content 0.4 wt%, except that the amount of Zn powder added was 10 wt% , Bal. A mixed powder of Fe Sm—Fe—N magnet powder and Zn (average particle size 3.6 μm) was produced. This powder was pre-compressed in the same manner as in Example 7 and then consolidated. The density of the preform was 45%. The relative density of the obtained compacted magnet was 93%, the coercive force HcJ was 0.91 MA / m, and (BH) max was 162 kJ / m 3 .

(比較例1)
酸素濃度を0.1容量%として徐酸化し、Sm 24.1重量%、N 3.6重量%、酸素量0.1重量%、bal.FeのSm−Fe−N磁石粉を得た。実施例1と同様にして圧密磁石を作製しようとしたが、予備圧縮成形の作業中に磁石粉が燃えてしまった。
(Comparative Example 1)
Slow oxidation was performed with an oxygen concentration of 0.1% by volume, Sm 24.1% by weight, N 3.6% by weight, oxygen content 0.1% by weight, bal. An Sm—Fe—N magnet powder of Fe was obtained. An attempt was made to produce a compacted magnet in the same manner as in Example 1, but the magnet powder burned during the pre-compression molding operation.

(比較例2)
酸素濃度を4容量%として徐酸化し、Sm−Fe−N磁石粉の組成を、Sm 23.5重量%、N 3.0重量%、酸素量1.7重量%、bal.Feとした以外は、実施例1と同様にして圧密磁石を作製した。予備成形体の相対密度は45%であった。得られた圧密磁石の相対密度は90%、保磁力HcJは0.45MA/m、(BH)maxは60kJ/mであった。
(Comparative Example 2)
Slow oxidation was performed with an oxygen concentration of 4% by volume, and the composition of the Sm—Fe—N magnet powder was changed to Sm 23.5 wt%, N 3.0 wt%, oxygen content 1.7 wt%, A consolidated magnet was produced in the same manner as in Example 1 except that Fe was used. The relative density of the preform was 45%. The relative density of the obtained compacted magnet was 90%, the coercive force HcJ was 0.45 MA / m, and (BH) max was 60 kJ / m 3 .

(比較例3)
150MPaで予備圧縮した以外は、実施例2と同様にして圧密磁石を作製した。予備成形体の相対密度は38%であった。得られた圧密磁石の相対密度は84%、保磁力HcJは0.65MA/m、(BH)maxは98kJ/mであった。
(Comparative Example 3)
A compacted magnet was produced in the same manner as in Example 2 except that the pre-compression was performed at 150 MPa. The relative density of the preform was 38%. The relative density of the obtained compacted magnet was 84%, the coercive force HcJ was 0.65 MA / m, and (BH) max was 98 kJ / m 3 .

(比較例4)
220MPaで予備圧縮した以外は、実施例2と同様にして圧密磁石を作製した。予備成形体の相対密度は57%であった。得られた圧密磁石の相対密度は92%、保磁力HcJは0.62MA/m、(BH)maxは100kJ/mであった。
(Comparative Example 4)
A consolidated magnet was produced in the same manner as in Example 2 except that the pre-compression was performed at 220 MPa. The relative density of the preform was 57%. The relative density of the obtained compacted magnet was 92%, the coercive force HcJ was 0.62 MA / m, and (BH) max was 100 kJ / m 3 .

(比較例5)
圧密化するときの温度を510℃で行った以外は、実施例2と同様にして圧密磁石を作製した。予備成形体の相対密度は54%であった。得られた圧密磁石の相対密度は90%、保磁力HcJは0.33MA/m、(BH)maxは28kJ/mであった。
(Comparative Example 5)
A consolidated magnet was produced in the same manner as in Example 2 except that the temperature at the time of consolidation was 510 ° C. The relative density of the preform was 54%. The relative density of the obtained compacted magnet was 90%, the coercive force HcJ was 0.33 MA / m, and (BH) max was 28 kJ / m 3 .

(比較例6)
放電プラズマ焼結を超鋼製のダイを用いて大気中で行った以外は、実施例6と同様にして圧密磁石を作製した。得られた圧密磁石の相対密度は52%、保磁力HcJは0.11MA/m、(BH)maxは12kJ/mであった。
(Comparative Example 6)
A consolidated magnet was produced in the same manner as in Example 6 except that discharge plasma sintering was performed in the air using a die made of super steel. The relative density of the obtained compacted magnet was 52%, the coercive force HcJ was 0.11 MA / m, and (BH) max was 12 kJ / m 3 .

(比較例7)
徐酸化被膜に代えて、リン酸塩被膜を磁石粉に形成させた以外は、実施例1と同様にして、予備圧縮成形してから圧密化し、圧密磁石を製造した。リン酸溶液中で磁石粉を粉砕して形成したリン酸塩の被膜厚さは20nm、酸素量は1.9重量%であった。得られた圧密磁石の相対密度は86%、保磁力HcJは0.26MA/m、(BH)maxは27kJ/mであった。
(Comparative Example 7)
A compacted magnet was manufactured in the same manner as in Example 1 except that a phosphate film was formed on the magnet powder instead of the gradual oxide film, followed by pre-compression. The film thickness of the phosphate formed by pulverizing the magnet powder in the phosphoric acid solution was 20 nm, and the oxygen content was 1.9% by weight. The relative density of the obtained compacted magnet was 86%, the coercive force HcJ was 0.26 MA / m, and (BH) max was 27 kJ / m 3 .

(参考例1)
酸化Smの投入量を3.2kgとして還元拡散を行い、酸素濃度を2容量%として徐酸化し、Sm−Fe−N磁石粉の組成を、Sm 23.4重量%、N 3.3重量%、酸素量0.9重量%、bal.Feとした以外は、実施例1と同様にして圧密磁石を作製した。予備成形体の相対密度は46%であった。得られた圧密磁石の相対密度は89%、保磁力HcJは0.28MA/m、(BH)maxは21kJ/mであった。
(Reference Example 1)
Reduction diffusion was carried out with an input amount of oxidized Sm of 3.2 kg, and oxygen was gradually oxidized with an oxygen concentration of 2% by volume. , Oxygen content 0.9% by weight, bal. A consolidated magnet was produced in the same manner as in Example 1 except that Fe was used. The relative density of the preform was 46%. The relative density of the obtained compacted magnet was 89%, the coercive force HcJ was 0.28 MA / m, and (BH) max was 21 kJ / m 3 .

(参考例2)
酸化Smの投入量を3.8kgとして還元拡散を行い、酸素濃度を2容量%として徐酸化し、Sm−Fe−N磁石粉の組成を、Sm 25.2重量%、N 3.5重量%、酸素量1重量%、bal.Feとした以外は、実施例1と同様にして圧密磁石を作製した。予備成形体の相対密度は46%であった。得られた圧密磁石の相対密度は91%、保磁力HcJは0.68MA/m、(BH)maxは34kJ/mであった。
(Reference Example 2)
Reduced diffusion was performed with an input amount of oxidized Sm of 3.8 kg, and oxygen was gradually oxidized with an oxygen concentration of 2% by volume. , 1% by weight of oxygen, bal. A consolidated magnet was produced in the same manner as in Example 1 except that Fe was used. The relative density of the preform was 46%. The relative density of the obtained compacted magnet was 91%, the coercive force HcJ was 0.68 MA / m, and (BH) max was 34 kJ / m 3 .

(参考例3)
窒化処理時間を4時間とし、Sm−Fe−N磁石粉の組成を、Sm 24.1重量%、N 2.7重量%、酸素量1.1重量%、bal.Feとした以外は、実施例1と同様にして圧密磁石を作製した。予備成形体の相対密度は47%であった。得られた圧密磁石の相対密度は88%、保磁力HcJは0.32MA/m、(BH)maxは19kJ/mであった。
(Reference Example 3)
The nitriding time was 4 hours, and the composition of the Sm—Fe—N magnet powder was Sm 24.1 wt%, N 2.7 wt%, oxygen content 1.1 wt%, bal. A consolidated magnet was produced in the same manner as in Example 1 except that Fe was used. The relative density of the preform was 47%. The relative density of the obtained compacted magnet was 88%, the coercive force HcJ was 0.32 MA / m, and (BH) max was 19 kJ / m 3 .

(参考例4)
窒化処理時間を13時間とし、Sm−Fe−N磁石粉の組成を、Sm 24重量%、N5.2重量%、酸素量1.2重量%、bal.Feとした以外は、実施例1と同様にして圧密磁石を作製した。予備成形体の相対密度は46%であった。得られた圧密磁石の相対密度は87%、保磁力HcJは0.3MA/m、(BH)maxは25kJ/mであった。
(Reference Example 4)
The nitriding time was 13 hours, and the composition of the Sm—Fe—N magnet powder was Sm 24 wt%, N 5.2 wt%, oxygen content 1.2 wt%, bal. A consolidated magnet was produced in the same manner as in Example 1 except that Fe was used. The relative density of the preform was 46%. The relative density of the obtained compacted magnet was 87%, the coercive force HcJ was 0.3 MA / m, and (BH) max was 25 kJ / m 3 .

(参考例5)
パルス配向磁界を300kA/mとした以外は、実施例2と同様にして圧密磁石を作製した。予備成形体の相対密度は54%であった。得られた圧密磁石の相対密度は89%、保磁力HcJは0.70MA/m、(BH)maxは74kJ/mであった。
(Reference Example 5)
A consolidated magnet was produced in the same manner as in Example 2 except that the pulse orientation magnetic field was changed to 300 kA / m. The relative density of the preform was 54%. The relative density of the obtained compacted magnet was 89%, the coercive force HcJ was 0.70 MA / m, and (BH) max was 74 kJ / m 3 .

「評価」
上記比較例1、2より、磁石粉の酸素量が0.2〜1.6重量%をはずれると、取り扱い上の問題や大幅な保磁力低下が起こることが分かる。比較例3、4を実施例2と対比させることにより、予備成形体の相対密度が40〜55%をはずれると、圧密化工程後の相対密度が上がらなかったり、最大エネルギー積が低下したりすることが分かる。比較例5は、圧密化時の試料温度を、500℃を超えるようにしたもので、保磁力が低下していることが分かる。比較例6は、圧密化時の雰囲気を非酸化性雰囲気としなかったもので、保磁力が低下していることが分かる。さらに、比較例7は、酸素量が1.6重量%を超えているので、保磁力が十分ではなかった。
"Evaluation"
From the above Comparative Examples 1 and 2, it can be seen that when the oxygen content of the magnet powder deviates from 0.2 to 1.6% by weight, a problem in handling and a significant reduction in coercive force occur. By comparing Comparative Examples 3 and 4 with Example 2, when the relative density of the preform is off 40 to 55%, the relative density after the consolidation process does not increase or the maximum energy product decreases. I understand that. In Comparative Example 5, the sample temperature at the time of consolidation was made to exceed 500 ° C., and it can be seen that the coercive force was lowered. In Comparative Example 6, it can be seen that the coercive force is reduced because the atmosphere during consolidation is not a non-oxidizing atmosphere. Further, in Comparative Example 7, since the oxygen amount exceeded 1.6% by weight, the coercive force was not sufficient.

なお、参考例1〜5は、本発明の条件で製造した圧密磁石であるが、条件が好ましい範囲から外れているので実施例よりも磁気特性が悪化した。例えば、参考例1、2より、希土類元素Rが23.5〜25重量%をはずれると、保磁力低下や最大エネルギー積の低下が起こることが分かる。参考例3、4より、窒素Nが2.8〜5.1重量%をはずれると、保磁力低下や最大エネルギー積の低下が起こることが分かる。参考例5は、予備圧縮成形工程での配向磁界を400kA/m未満としたものであって、最大エネルギー積が低下していることが分かる。   In addition, although the reference examples 1-5 are the compacted magnets manufactured on the conditions of this invention, since conditions remove | deviated from the preferable range, the magnetic characteristic deteriorated rather than the Example. For example, it can be seen from Reference Examples 1 and 2 that when the rare earth element R deviates from 23.5 to 25% by weight, the coercive force decreases and the maximum energy product decreases. From Reference Examples 3 and 4, it can be seen that when the nitrogen N deviates from 2.8 to 5.1% by weight, the coercive force decreases and the maximum energy product decreases. In Reference Example 5, it is understood that the orientation magnetic field in the preliminary compression molding step is less than 400 kA / m, and the maximum energy product is reduced.

Claims (8)

希土類−鉄−窒素系磁石粉の表面上に予め全量に対して0.2〜1.6重量%の酸素を含有する酸化被膜を形成させた後、該酸化被膜を有する磁石粉を非酸化性雰囲気中で所定の形状に予備圧縮成形して相対密度が40%以上の予備成形体とし、次いで該予備成形体を非酸化性雰囲気中、350〜500℃の温度で圧密化して相対密度が85%以上の磁石成形体を得ることを特徴とする希土類永久磁石の製造方法。   An oxide film containing 0.2 to 1.6% by weight of oxygen is formed on the surface of the rare earth-iron-nitrogen magnet powder in advance, and the magnet powder having the oxide film is made non-oxidizing. Pre-compression molding into a predetermined shape in an atmosphere to obtain a preform with a relative density of 40% or more, and then compacting the preform in a non-oxidizing atmosphere at a temperature of 350 to 500 ° C. to give a relative density of 85. % Rare earth permanent magnet manufacturing method, characterized by obtaining a magnet molded body of at least%. 希土類−鉄−窒素系磁石粉が、ThZn17型結晶構造を持つ磁石粉であることを特徴とする請求項1に記載の希土類永久磁石の製造方法。 The method for producing a rare earth permanent magnet according to claim 1, wherein the rare earth-iron-nitrogen based magnet powder is a magnet powder having a Th 2 Zn 17 type crystal structure. 希土類−鉄−窒素系磁石粉が、23.5〜25重量%のR(希土類元素)、2.8〜5.1重量%のN(窒素)及び残部がT(Feを必須とする遷移金属元素および不可避的不純物)であることを特徴とする請求項1に記載の希土類永久磁石の製造方法。   Rare earth-iron-nitrogen based magnet powder is 23.5-25 wt% R (rare earth element), 2.8-5.1 wt% N (nitrogen) and the balance is T (Fe is an essential transition metal The method for producing a rare earth permanent magnet according to claim 1, wherein the element is an element and an unavoidable impurity. 希土類−鉄−窒素系磁石粉が、R(希土類元素)としてSmを50重量%以上含み、遷移金属元素として、さらにMnを7重量%以下含むことを特徴とする請求項3に記載の希土類永久磁石の製造方法。   The rare earth-iron-nitrogen based magnet powder contains Sm as a R (rare earth element) at 50% by weight or more, and further contains Mn as a transition metal element at 7% by weight or less. Magnet manufacturing method. 予備圧縮成形する前に、酸化被膜を有する磁石粉に対して10重量%以下のZn粉末を添加することを特徴とする請求項1に記載の希土類永久磁石の製造方法。   2. The method for producing a rare earth permanent magnet according to claim 1, wherein 10% by weight or less of Zn powder is added to the magnet powder having an oxide film before the pre-compression molding. 予備圧縮成形する際に、異方性の磁石粉に対して400kA/m以上の磁界をかけながら成形することを特徴とする請求項1に記載の希土類永久磁石の製造方法。   2. The method for producing a rare earth permanent magnet according to claim 1, wherein the pre-compression molding is performed while applying a magnetic field of 400 kA / m or more to the anisotropic magnet powder. 3. 予備成形体を、熱間静水圧プレス(HIP)により圧密化することを特徴とする請求項1に記載の希土類永久磁石の製造方法。   The method for producing a rare earth permanent magnet according to claim 1, wherein the preform is compacted by hot isostatic pressing (HIP). 請求項1〜7に記載の製造方法で得られ、最大エネルギー積(BH)maxが30kJ/m以上であることを特徴とする希土類永久磁石。 A rare earth permanent magnet obtained by the production method according to claim 1 and having a maximum energy product (BH) max of 30 kJ / m 3 or more.
JP2004032128A 2004-02-09 2004-02-09 Method for manufacturing rare earth permanent magnet and resulting rare earth permanent magnet Pending JP2005223263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004032128A JP2005223263A (en) 2004-02-09 2004-02-09 Method for manufacturing rare earth permanent magnet and resulting rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004032128A JP2005223263A (en) 2004-02-09 2004-02-09 Method for manufacturing rare earth permanent magnet and resulting rare earth permanent magnet

Publications (1)

Publication Number Publication Date
JP2005223263A true JP2005223263A (en) 2005-08-18

Family

ID=34998633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004032128A Pending JP2005223263A (en) 2004-02-09 2004-02-09 Method for manufacturing rare earth permanent magnet and resulting rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP2005223263A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073842A (en) * 2005-09-08 2007-03-22 Sumitomo Metal Mining Co Ltd Rare earth-iron-manganese-nitrogen magnetic powder
JP2009088121A (en) * 2007-09-28 2009-04-23 Sumitomo Metal Mining Co Ltd Rare earth-iron-manganese-nitrogen magnet powder
JP2011124394A (en) * 2009-12-10 2011-06-23 Daido Electronics Co Ltd Magnetic powder recovering method of rare-earth bonded magnet and magnet material for rare-earth bonded magnet
EP1569251A3 (en) * 2004-02-26 2011-07-06 Shin-Etsu Chemical Co., Ltd. Sealed rare earth magnet and method for manufacturing the same
WO2013099495A1 (en) * 2011-12-26 2013-07-04 日産自動車株式会社 Molded rare-earth magnet and low-temperature solidification and molding method
JP2013161829A (en) * 2012-02-01 2013-08-19 Nissan Motor Co Ltd Rare earth magnet compact and manufacturing method of the same, and magnet motor with rare earth magnet
EP2631918A2 (en) 2012-02-27 2013-08-28 JTEKT Corporation Method of manufacturing magnet and magnet
EP2680280A1 (en) 2012-06-25 2014-01-01 Jtekt Corporation Method of manufacturing magnet and magnet
JP2014500611A (en) * 2010-10-15 2014-01-09 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング High corrosion resistance sintered NdFeB magnet and method for preparing the same
EP2822003A1 (en) 2013-06-25 2015-01-07 Jtekt Corporation Magnet manufacturing method and magnet
JP2015201628A (en) * 2014-04-04 2015-11-12 日産自動車株式会社 SmFeN MAGNET EXCELLENT IN COERCIVE FORCE
WO2015198396A1 (en) * 2014-06-24 2015-12-30 日産自動車株式会社 Method for manufacturing molded rare earth magnet
JP2016082175A (en) * 2014-10-21 2016-05-16 日産自動車株式会社 Samarium-iron-nitrogen based magnet mold and method for manufacturing the same
EP3086332A1 (en) 2015-04-16 2016-10-26 Jtekt Corporation Magnet manufacturing method and magnet
EP3086333A1 (en) 2015-04-16 2016-10-26 Jtekt Corporation Magnet manufacturing method and magnet
EP3089174A1 (en) 2015-04-16 2016-11-02 Jtekt Corporation Magnet manufacturing method and magnet
JP2017055072A (en) * 2015-09-11 2017-03-16 国立研究開発法人産業技術総合研究所 Samarium-iron-nitrogen based sintered magnet and method for producing samarium-iron-nitrogen based sintered magnet
US9601246B2 (en) 2012-02-27 2017-03-21 Jtekt Corporation Method of manufacturing magnet, and magnet
WO2018221512A1 (en) * 2017-05-30 2018-12-06 国立研究開発法人産業技術総合研究所 Samarium-iron-nitrogen magnetic powder and method for producing same
JP2020013887A (en) * 2018-07-18 2020-01-23 国立研究開発法人産業技術総合研究所 Method for producing alloy particles and alloy particles
JP2020053440A (en) * 2018-09-21 2020-04-02 トヨタ自動車株式会社 Method of manufacturing rare earth magnet
JP2020155545A (en) * 2019-03-19 2020-09-24 トヨタ自動車株式会社 Method for producing rare earth magnet
JP2021180236A (en) * 2020-05-13 2021-11-18 学校法人千葉工業大学 Manufacturing method of Samalium-iron-nitrogen permanent magnet material
CN114864208A (en) * 2021-02-03 2022-08-05 丰田自动车株式会社 Manufacturing method of rare earth magnet
US11476020B2 (en) * 2017-06-30 2022-10-18 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and production method thereof

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1569251A3 (en) * 2004-02-26 2011-07-06 Shin-Etsu Chemical Co., Ltd. Sealed rare earth magnet and method for manufacturing the same
JP2007073842A (en) * 2005-09-08 2007-03-22 Sumitomo Metal Mining Co Ltd Rare earth-iron-manganese-nitrogen magnetic powder
JP2009088121A (en) * 2007-09-28 2009-04-23 Sumitomo Metal Mining Co Ltd Rare earth-iron-manganese-nitrogen magnet powder
JP2011124394A (en) * 2009-12-10 2011-06-23 Daido Electronics Co Ltd Magnetic powder recovering method of rare-earth bonded magnet and magnet material for rare-earth bonded magnet
JP2014500611A (en) * 2010-10-15 2014-01-09 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング High corrosion resistance sintered NdFeB magnet and method for preparing the same
US20140349099A1 (en) * 2011-12-26 2014-11-27 Nissan Motor Co., Ltd. Molded rare-earthrare-earth magnet and low temperature solidification molding method
WO2013099495A1 (en) * 2011-12-26 2013-07-04 日産自動車株式会社 Molded rare-earth magnet and low-temperature solidification and molding method
JP2013135071A (en) * 2011-12-26 2013-07-08 Nissan Motor Co Ltd Rare earth magnet compact and low temperature solidifying molding method
CN104040649A (en) * 2011-12-26 2014-09-10 日产自动车株式会社 Molded rare-earth magnet and low-temperature solidification and molding method
JP2013161829A (en) * 2012-02-01 2013-08-19 Nissan Motor Co Ltd Rare earth magnet compact and manufacturing method of the same, and magnet motor with rare earth magnet
EP2631918A2 (en) 2012-02-27 2013-08-28 JTEKT Corporation Method of manufacturing magnet and magnet
US9601246B2 (en) 2012-02-27 2017-03-21 Jtekt Corporation Method of manufacturing magnet, and magnet
JP2014007278A (en) * 2012-06-25 2014-01-16 Jtekt Corp Method for producing magnet, and magnet
EP2680280A1 (en) 2012-06-25 2014-01-01 Jtekt Corporation Method of manufacturing magnet and magnet
EP2822003A1 (en) 2013-06-25 2015-01-07 Jtekt Corporation Magnet manufacturing method and magnet
JP2015201628A (en) * 2014-04-04 2015-11-12 日産自動車株式会社 SmFeN MAGNET EXCELLENT IN COERCIVE FORCE
WO2015198396A1 (en) * 2014-06-24 2015-12-30 日産自動車株式会社 Method for manufacturing molded rare earth magnet
WO2015199096A1 (en) * 2014-06-24 2015-12-30 日産自動車株式会社 Method for manufacturing rare earth magnetic mold
JPWO2015199096A1 (en) * 2014-06-24 2017-04-20 日産自動車株式会社 Method for producing rare earth magnet compact
JP2016082175A (en) * 2014-10-21 2016-05-16 日産自動車株式会社 Samarium-iron-nitrogen based magnet mold and method for manufacturing the same
EP3086332A1 (en) 2015-04-16 2016-10-26 Jtekt Corporation Magnet manufacturing method and magnet
EP3089174A1 (en) 2015-04-16 2016-11-02 Jtekt Corporation Magnet manufacturing method and magnet
EP3086333A1 (en) 2015-04-16 2016-10-26 Jtekt Corporation Magnet manufacturing method and magnet
JP2017055072A (en) * 2015-09-11 2017-03-16 国立研究開発法人産業技術総合研究所 Samarium-iron-nitrogen based sintered magnet and method for producing samarium-iron-nitrogen based sintered magnet
US11361888B2 (en) 2017-05-30 2022-06-14 National Institute Of Advanced Industrial Science And Technology Samarium-iron-nitrogen magnet powder and method for manufacturing same
JPWO2018221512A1 (en) * 2017-05-30 2020-03-26 国立研究開発法人産業技術総合研究所 Samarium-iron-nitrogen magnet powder and method for producing the same
CN110662617B (en) * 2017-05-30 2021-10-26 国立研究开发法人产业技术综合研究所 Samarium-iron-nitrogen magnet powder and method for producing same
CN110662617A (en) * 2017-05-30 2020-01-07 国立研究开发法人产业技术综合研究所 Samarium-iron-nitrogen magnet powder and method for producing the same
WO2018221512A1 (en) * 2017-05-30 2018-12-06 国立研究開発法人産業技術総合研究所 Samarium-iron-nitrogen magnetic powder and method for producing same
US11476020B2 (en) * 2017-06-30 2022-10-18 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and production method thereof
JP2020013887A (en) * 2018-07-18 2020-01-23 国立研究開発法人産業技術総合研究所 Method for producing alloy particles and alloy particles
JP7137830B2 (en) 2018-07-18 2022-09-15 国立研究開発法人産業技術総合研究所 Method for producing alloy particles and alloy particles
JP2020053440A (en) * 2018-09-21 2020-04-02 トヨタ自動車株式会社 Method of manufacturing rare earth magnet
JP7028123B2 (en) 2018-09-21 2022-03-02 トヨタ自動車株式会社 Manufacturing method of rare earth magnets
JP2020155545A (en) * 2019-03-19 2020-09-24 トヨタ自動車株式会社 Method for producing rare earth magnet
JP7183890B2 (en) 2019-03-19 2022-12-06 トヨタ自動車株式会社 Method for manufacturing rare earth magnet
JP2021180236A (en) * 2020-05-13 2021-11-18 学校法人千葉工業大学 Manufacturing method of Samalium-iron-nitrogen permanent magnet material
JP7458067B2 (en) 2020-05-13 2024-03-29 学校法人千葉工業大学 Method for producing samarium-iron-nitrogen permanent magnet material
CN114864208A (en) * 2021-02-03 2022-08-05 丰田自动车株式会社 Manufacturing method of rare earth magnet

Similar Documents

Publication Publication Date Title
JP2005223263A (en) Method for manufacturing rare earth permanent magnet and resulting rare earth permanent magnet
JP5999106B2 (en) Method for producing RTB-based sintered magnet
JP5609783B2 (en) Method for producing rare earth-transition metal alloy powder
US11087922B2 (en) Production method of rare earth magnet
JP4314244B2 (en) Magnetic material powder manufacturing method and bonded magnet manufacturing method
JPH0424401B2 (en)
Lalana Permanent magnets and its production by powder metallurgy
JP3540438B2 (en) Magnet and manufacturing method thereof
WO2017086268A1 (en) Method for producing rare earth magnet and rare earth magnet
JP4241461B2 (en) Rare earth-transition metal-nitrogen based magnet alloy powder, method for producing the same, and rare earth bonded magnet using the same
JP2017098412A (en) Rare earth magnet, and manufacturing method thereof
EP0414645B2 (en) Permanent magnet alloy having improved resistance to oxidation and process for production thereof
JP5501826B2 (en) Manufacturing method of rare earth sintered magnet
JP2006291257A (en) Rare earth-transition metal-nitrogen based magnetic powder, and method for producing the same
JP2015195326A (en) Rare earth-iron-nitrogen based magnet powder and manufacturing method therefor, bond magnet composition using the same, and bond magnet
JP2023067693A (en) Rare earth magnet and manufacturing method thereof
JP4345588B2 (en) Rare earth-transition metal-nitrogen magnet powder, method for producing the same, and bonded magnet obtained
JP3157661B2 (en) Method for producing R-Fe-B permanent magnet material
JPH0617535B2 (en) Method of manufacturing permanent magnet material
JP4862269B2 (en) Rare earth-transition metal-nitrogen based magnet powder, method for producing the same, composition for bonded magnet using the same, and bonded magnet
JPS6333506A (en) Production of raw material powder for permanent magnet material
JP2008001953A (en) Method for producing rare earth-iron-nitrogen-based alloy powder
JP3779338B2 (en) Method for producing magnetic material powder and method for producing bonded magnet
JPH11307330A (en) Manufacture of r-fe-b system magnet
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet