[go: up one dir, main page]

JPH05259553A - Lasing apparatus - Google Patents

Lasing apparatus

Info

Publication number
JPH05259553A
JPH05259553A JP4053996A JP5399692A JPH05259553A JP H05259553 A JPH05259553 A JP H05259553A JP 4053996 A JP4053996 A JP 4053996A JP 5399692 A JP5399692 A JP 5399692A JP H05259553 A JPH05259553 A JP H05259553A
Authority
JP
Japan
Prior art keywords
laser
discharge
medium gas
resonator
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4053996A
Other languages
Japanese (ja)
Inventor
Hidehiko Karasaki
秀彦 唐崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4053996A priority Critical patent/JPH05259553A/en
Publication of JPH05259553A publication Critical patent/JPH05259553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To prevent discharge ignition failure at a repetion frequency lower than or equal to a specified value, at the time of pulse operation of low output and low duty. CONSTITUTION:A cavity resonator 21 for generating pre-discharge is arranged in the upper stream side of laser medium gas flow from an electrode 8 arranged in a discharge tube 7, so as to be set at a position deviated from the optical axis of a laser resonator. A cavity waveguide 22 is connected with the cavity resonator 21, and a magnetron 23 is connected with the cavity waveguide 22 via a stub tuner 24. Microwave power generated by the magnetron 24 is transmitted to the inside of the discharge tube 7, thereby causing pre-discharge.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発生したレーザ光を利
用して金属などの切断、溶接、熱処理などを行う工業用
のレーザ発振装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an industrial laser oscillating device for cutting, welding, heat treating metal or the like by utilizing a generated laser beam.

【0002】[0002]

【従来の技術】以下、従来のレーザ発振装置について図
面を参照にしながら説明する。図3は従来の高速軸流型
レーザ発振装置の構成図である。図3において、出力鏡
ホルダー1の一方端には出力鏡2が設けられ、他方端に
はメインフランジ3aが設けられている。また、終端鏡
ホルダー4の一方端には終端鏡5が設けられ、他方端に
はメインフランジ3bが設けられている。これらメイン
フランジ3a、3bと集合ブロック6の間にはそれぞれ
放電管7が設けられ、その放電管7を挟むように電極8
がそれぞれ設けられている。さらに、電極8の一方は接
地され、他方は銅板9、整合回路10さらに同軸ケーブル
11を介してRF電源12に接続されている。このRF電源
12から放電管7に電力を注入するためにはインピーダン
ス整合が重要で、RF電源12が一般に出力インピーダン
ス50オームで出力されているため、50オームのインピー
ダンスを持つ同軸ケーブル11などでレーザ共振器近くに
設置されている整合回路10に接続される。さらに、整合
回路10からは銅板9などで放電管7毎に設けた電極8に
並列接続され、整合回路10で放電管7側のインピーダン
スにインピーダンス変換され、RF電力が低損失でRF
電源12から放電管7まで伝送される。
2. Description of the Related Art A conventional laser oscillator will be described below with reference to the drawings. FIG. 3 is a configuration diagram of a conventional high-speed axial flow type laser oscillator. In FIG. 3, the output mirror 2 is provided at one end of the output mirror holder 1, and the main flange 3a is provided at the other end. A terminal mirror 5 is provided at one end of the terminal mirror holder 4, and a main flange 3b is provided at the other end. A discharge tube 7 is provided between each of the main flanges 3a and 3b and the assembly block 6, and an electrode 8 is provided so as to sandwich the discharge tube 7.
Are provided respectively. Further, one of the electrodes 8 is grounded, the other is a copper plate 9, a matching circuit 10 and a coaxial cable.
It is connected to the RF power source 12 via 11. This RF power supply
Impedance matching is important for injecting electric power from 12 into the discharge tube 7. Since the RF power source 12 is generally output with an output impedance of 50 ohms, a coaxial cable 11 having an impedance of 50 ohms, etc., near the laser resonator. It is connected to the matching circuit 10 installed in. Furthermore, the matching circuit 10 is connected in parallel to the electrode 8 provided for each discharge tube 7 by a copper plate 9 or the like, and the matching circuit 10 converts the impedance into the impedance of the discharge tube 7 side, and RF power is low loss and RF.
It is transmitted from the power supply 12 to the discharge tube 7.

【0003】また、送風器13の一方端とメインフランジ
3a、3bの間、および送風器13の他方端と集合ブロッ
ク6の間はそれぞれ、熱交換器14を介して配管15で連結
されている。以上のメインフランジ3a、3b、集合ブ
ロック6、放電管7、および配管15により真空容器が構
成され、この真空容器内にレーザ媒質ガスを充満させ
る。このレーザ媒質ガスを冷却する目的で配管15の途中
に熱交換器14が設けられている。
Further, one end of the blower 13 and the main flanges 3a, 3b, and the other end of the blower 13 and the assembly block 6 are connected by a pipe 15 via a heat exchanger 14. .. A vacuum container is constituted by the main flanges 3a and 3b, the collecting block 6, the discharge tube 7 and the pipe 15 described above, and the laser medium gas is filled in the vacuum container. A heat exchanger 14 is provided in the middle of the pipe 15 for the purpose of cooling the laser medium gas.

【0004】上記構成により、以下、その動作を説明す
る。まず、真空容器にレーザ媒質ガスを充満させ、一定
圧力で保持すると同時に送風器13でレーザ媒質ガスを真
空容器内で循環させる。この循環させた放電管7内のレ
ーザ媒質ガスにRF電源12からの出力を同軸ケーブル1
1、整合回路10、銅板9、さらに放電管7の外部に設け
られた電極8を通じて注入し、レーザ媒質ガスを放電さ
せてレーザ光を発生させる。発生したレーザ光は出力鏡
2と終端鏡5と放電管7から構成される光共振器で増幅
され、その一部が出力鏡2から外部に取り出されて加工
などに利用される。
The operation of the above arrangement will be described below. First, the vacuum chamber is filled with the laser medium gas and kept at a constant pressure, and at the same time, the blower 13 circulates the laser medium gas in the vacuum chamber. The output from the RF power source 12 is fed to the laser medium gas in the circulated discharge tube 7 by the coaxial cable 1
1, the matching circuit 10, the copper plate 9, and the electrode 8 provided outside the discharge tube 7 are injected to discharge the laser medium gas to generate laser light. The generated laser light is amplified by the optical resonator composed of the output mirror 2, the terminal mirror 5 and the discharge tube 7, and a part of the laser light is taken out from the output mirror 2 and used for processing.

【0005】このとき、熱交換器14は、放電管7で発生
した熱、および送風器13でレーザ媒質ガスを圧縮する際
に発生した熱などを除去してレーザ媒質ガスを冷却す
る。また、光共振器を構成するためには出力鏡2と終端
鏡5が平行に維持される必要があるが、出力鏡ホルダー
1と終端鏡ホルダー4を用いて微調整を行い、出力鏡2
と終端鏡5を平行に保つ。このため、メインフランジ3
a、3b、集合ブロック4は構造的に強固に構成されて
おり、熱膨張や外力に対してミラーの角度が変化しない
ように十分な強度を有している。
At this time, the heat exchanger 14 cools the laser medium gas by removing the heat generated in the discharge tube 7 and the heat generated when the laser medium gas is compressed by the blower 13. Further, in order to configure the optical resonator, the output mirror 2 and the terminal mirror 5 need to be maintained in parallel. However, the output mirror holder 1 and the terminal mirror holder 4 are used for fine adjustment, and the output mirror 2
Keep the end mirror 5 parallel. Therefore, the main flange 3
The a, 3b and the assembly block 4 are structurally rigidly configured and have sufficient strength so that the angle of the mirror does not change due to thermal expansion or external force.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の構成では、実際にRF電源12を整合回路10を介して
レーザ発振器に接続すると、パルスON時とパルスOF
F時の放電管7のインピーダンスが極端に異なることに
より、特に低出力低デューティのパルス運転時に十分な
電力が放電管7に伝送できず放電開始に十分な電界がか
からないため、ある繰り返し周波数以下で放電の着火ミ
スが発生するという問題があった。
However, in the above-mentioned conventional configuration, when the RF power source 12 is actually connected to the laser oscillator through the matching circuit 10, the pulse is turned on and the pulse OF is turned on.
Since the impedance of the discharge tube 7 at F is extremely different, sufficient electric power cannot be transmitted to the discharge tube 7 and a sufficient electric field is not applied to start the discharge particularly during pulse operation with low output and low duty. There was a problem that a discharge ignition mistake occurred.

【0007】本発明は上記従来の問題を解決するもの
で、パルスON時とパルスOFF時の放電管のインピー
ダンスが極端に異なるために低出力低デューティのパル
ス運転時においても、ある繰り返し周波数以下での放電
着火ミスを防止することができるレーザ発振装置を提供
することを目的とするものである。
The present invention solves the above-mentioned conventional problems. Since the impedance of the discharge tube at the time of pulse ON is extremely different from that at the time of pulse OFF, even at the time of pulse operation with a low output and a low duty, the frequency is kept below a certain repetition frequency. It is an object of the present invention to provide a laser oscillating device capable of preventing the discharge ignition mistake.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明のレーザ発振装置は、複数の放電管とその両端
部に具備されたミラーを有するレーザ共振器にレーザ媒
質ガスを循環させ、前記複数の放電管の外部にそれぞれ
配設された電極を介して前記レーザ媒質ガスに高周波電
力を伝送し、前記放電管内で前記レーザ媒質ガスを放電
させてレーザ光を発生させるレーザ発振装置であって、
前記放電管外部の電極部よりレーザ媒質ガスの流れの上
流部に設けられ、予備放電を発生する空洞共振手段と、
前記空洞共振手段にマイクロ波電力を伝送する空洞導波
管と、前記マイクロ波電力を発生するマグネトロンとを
備えたものである。
In order to solve the above problems, a laser oscillator of the present invention circulates a laser medium gas through a laser resonator having a plurality of discharge tubes and mirrors provided at both ends thereof, A laser oscillating device for transmitting high-frequency power to the laser medium gas via electrodes respectively arranged outside the plurality of discharge tubes to discharge the laser medium gas in the discharge tubes to generate laser light. hand,
Cavity resonance means provided in the upstream portion of the flow of the laser medium gas from the electrode portion outside the discharge tube to generate preliminary discharge,
A cavity waveguide for transmitting microwave power to the cavity resonating means and a magnetron for generating the microwave power are provided.

【0009】また、本発明のレーザ発振装置の空洞共振
手段は、レーザ共振器の光軸上から外れた位置に設けら
れたものである。
The cavity resonance means of the laser oscillator of the present invention is provided at a position off the optical axis of the laser resonator.

【0010】[0010]

【作用】上記構成により、放電管のレーザ媒質ガス上流
部に予備放電区域があるので、レーザ媒質ガスの流れに
より一部電離したプラズマが放電管に流れ込んで放電管
内のインピーダンス変化が少なくなり、低出力低デュー
ティのパルス運転時においても放電の着火が安定化して
パルスの制御可能範囲は拡大し、従来のようなある繰り
返し周波数以下での放電着火ミスは防止される。また、
マイクロ波は指向性が強く予備放電領域に集中して電力
を投入するこができて安定化したプラズマが生成される
だけではなく、空洞共振手段の幾何学設計を最適化する
ことで空洞共振手段の冷却も不要となり、構造的に簡単
でかつ電源にマグネトロンを使用できて安価な予備放電
装置が得られる。さらに、予備放電領域を電極よりレー
ザ媒質ガスの流れの上流部でかつレーザ共振器の光軸上
に存在しない位置に配するので、パルスOFF時に不要
なレーザ光が誤って出力される心配もなく、安全でかつ
レーザ加工空走時にワークに傷をつけることがない信頼
性の高い予備放電装置が得られる。
With the above structure, since there is a pre-discharge area in the upstream portion of the laser medium gas of the discharge tube, plasma partially ionized by the flow of the laser medium gas flows into the discharge tube, and the impedance change in the discharge tube is reduced, which reduces the Even during pulse operation with low output duty, discharge ignition is stabilized, the controllable range of pulses is expanded, and discharge ignition mistakes below a certain repetition frequency as in the past are prevented. Also,
Microwaves have a strong directivity and can concentrate power in the pre-discharge region to generate electric power and generate a stabilized plasma. No cooling is required, and the structure is simple and a magnetron can be used as a power source, and an inexpensive preliminary discharge device can be obtained. Further, since the priming discharge region is arranged at a position not existing on the optical axis of the laser resonator in the upstream part of the flow of the laser medium gas from the electrode, there is no fear that unnecessary laser light is erroneously output when the pulse is turned off. It is possible to obtain a safe and highly reliable pre-discharge device that does not damage the work when the laser processing is idle.

【0011】[0011]

【実施例】以下、本発明の一実施例について図面を参照
しながら説明する。なお、従来例と同一の作用効果を奏
するものには同一の符合を付してその説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. It should be noted that the same effects as those of the conventional example are given the same reference numerals and the description thereof will be omitted.

【0012】図1は本発明の一実施例を示す高速軸流型
レーザ発振装置の構成図である。図1において、予備放
電を発生する空洞共振器21は、複数の放電管7とその両
端に具備されたミラーとしての出力鏡2および終端鏡5
とを有するレーザ共振器の光軸上から外れた位置に設置
され、すなわち、空洞共振器21はレーザ共振器の光軸上
には存在しない。また、空洞共振器21は、放電管7の外
部で放電管7にほぼ平行に配した電極8よりレーザ媒質
ガスの流れの上流部に設置され、すなわち、放電管7に
近いレーザ媒質ガスの流れの上流側に設置され、ここ
で、予備放電を発生する。さらに、空洞共振器21は、マ
イクロ波電力を伝送する空洞導波管22と、この空洞導波
管22に設けられ、放電管7のインピーダンスとマグネト
ロン23の出力インピーダンスを整合するスタブチューナ
ー24とを介してマグネトロン23に接続され、このマグネ
トロン23で発生させたマイクロ波電力を空洞共振器21内
の放電区域に伝送する。また、マグネトロン23はレーザ
発振準備完了と同時に連続動作させることで、マグネト
ロン23の高圧電源が安価に構成される。
FIG. 1 is a block diagram of a high-speed axial flow type laser oscillating device showing an embodiment of the present invention. In FIG. 1, a cavity resonator 21 for generating a preliminary discharge includes a plurality of discharge tubes 7 and an output mirror 2 and a terminal mirror 5 as mirrors provided at both ends thereof.
Is installed at a position deviated from the optical axis of the laser resonator having, that is, the cavity resonator 21 does not exist on the optical axis of the laser resonator. The cavity resonator 21 is installed outside the discharge tube 7 and upstream of the flow of the laser medium gas from the electrode 8 arranged substantially parallel to the discharge tube 7, that is, the flow of the laser medium gas near the discharge tube 7. It is installed on the upstream side of where the preliminary discharge is generated. Further, the cavity resonator 21 includes a cavity waveguide 22 that transmits microwave power, and a stub tuner 24 that is provided in the cavity waveguide 22 and that matches the impedance of the discharge tube 7 and the output impedance of the magnetron 23. It is connected to a magnetron 23 via the magnetron 23 and transmits the microwave power generated by the magnetron 23 to the discharge area in the cavity 21. Further, the magnetron 23 is continuously operated at the same time as the preparation for laser oscillation is completed, so that the high voltage power source of the magnetron 23 is inexpensively constructed.

【0013】上記構成により、以下、その動作を説明す
る。まず、予備放電に必要なマイクロ波電力はマグネト
ロン23で発生させ、スタブチューナー24でインピーダン
ス変換された後、空洞導波管22を通して空洞共振器21に
伝送される。この空洞共振器21は定在波がたつように幾
何学的に設計されており、その空洞共振器21の中央部分
の電界が高くなるため放電が開始される。一方、空洞共
振器21を形成する壁付近の電界はゼロであり、そのため
壁の加熱が皆無となり特別な冷却は不要である。放電の
開始はレーザ媒質ガスが所定の圧力で安定化し、レーザ
発振準備完了したときに連続出力するように設定されて
いる。
The operation of the above arrangement will be described below. First, the microwave power required for preliminary discharge is generated by the magnetron 23, impedance-converted by the stub tuner 24, and then transmitted to the cavity resonator 21 through the cavity waveguide 22. The cavity resonator 21 is geometrically designed to have standing waves, and the electric field in the central portion of the cavity resonator 21 becomes high, so that discharge is started. On the other hand, the electric field in the vicinity of the wall forming the cavity resonator 21 is zero, so that the wall is not heated and no special cooling is required. The start of discharge is set so that the laser medium gas is stabilized at a predetermined pressure and is continuously output when the laser oscillation preparation is completed.

【0014】また、予備放電区域をレーザ共振器の光軸
から外すことで、空走時のワーク損傷を防止している。
このように設計された予備放電手段を具備すると、放電
管7には常時弱い電離状態が継続するが、その密度が薄
いためレーザ発振には至らない。しかし、放電区域をレ
ーザ共振器の光軸上に設けると、放電部の電離密度がレ
ーザ発振に十分な密度になるため、弱いレーザ光を出力
してワークに損傷を与える。このようにレーザ発振に至
らない程度の電離プラズマを常時放電管7に流入させる
ことでパルス制御可能範囲は拡大し、特に低出力低デュ
ーティーの領域で顕著な違いが現れる。
Further, by removing the preliminary discharge area from the optical axis of the laser resonator, damage to the work during idling is prevented.
When the preliminary discharge means designed in this way is provided, the discharge tube 7 always keeps a weakly ionized state, but laser oscillation does not occur due to its low density. However, when the discharge area is provided on the optical axis of the laser resonator, the ionization density of the discharge portion becomes a density sufficient for laser oscillation, so weak laser light is output and the work is damaged. In this way, the pulse controllable range is expanded by constantly flowing ionized plasma into the discharge tube 7 to the extent that laser oscillation does not occur, and a remarkable difference appears especially in the low output and low duty region.

【0015】したがって、放電管7のレーザ媒質ガス上
流側に予備放電区域があるので、レーザ媒質ガスの流れ
により一部電離したプラズマが放電管7に流れ込んで放
電管7内のインピーダンス変化が少なくなり、放電の着
火が安定化する。その結果、パルスの制御可能範囲も拡
大する。この様子を図2に示した。図2からも明らかな
ように、従来のものと異なり特に低出力低デューティの
パルス運転時に安定化したパルス特性を得ることができ
る。また、マイクロ波は指向性が強く予備放電領域に集
中して電力を投入することができて安定化したプラズマ
が生成するだけではなく、整合回路10などは空洞導波管
22とスタブチューナー24の幾何学的設計で決定され、空
洞共振器21の幾何学設計を最適化することで空洞共振器
21の冷却も不要で、構造的に簡単でかつ電源にマグネト
ロン23を使用できるため、安価な予備放電装置を得るこ
とができる。さらに、予備放電領域を電極8よりレーザ
媒質ガスの流れの上流側でかつ複数の放電管7とその両
端に具備されたミラーとしての出力鏡2および終端鏡5
とからなるレーザ共振器の光軸上に存在しない位置に配
することで、パルスOFF時に不要なレーザ光が誤って
出力される心配もなく、安全でかつレーザ加工空走時に
ワークに傷をつけることがない信頼性の高い予備放電装
置を得ることができる。
Therefore, since there is a preliminary discharge area on the upstream side of the laser medium gas of the discharge tube 7, plasma partially ionized by the flow of the laser medium gas flows into the discharge tube 7 and the impedance change in the discharge tube 7 is reduced. , The ignition of the discharge is stabilized. As a result, the controllable range of the pulse is also expanded. This state is shown in FIG. As is clear from FIG. 2, it is possible to obtain stabilized pulse characteristics during pulse operation with low output and low duty, unlike the conventional one. In addition, microwaves have a strong directivity and can concentrate power in the priming discharge area to supply electric power to generate stabilized plasma.
22 and the stub tuner 24 determined by the geometric design of the cavity resonator 21 by optimizing the geometric design of the cavity resonator
No cooling of 21 is required, the structure is simple, and the magnetron 23 can be used as a power source, so that an inexpensive preliminary discharge device can be obtained. Further, the pre-discharge region is located upstream of the flow of the laser medium gas from the electrode 8 and the discharge tubes 7 and the output mirror 2 and the terminal mirror 5 as mirrors provided at both ends thereof.
By arranging the laser resonator at a position that does not exist on the optical axis of the laser resonator, there is no fear of unnecessary laser light being output accidentally when the pulse is turned off, and it is safe and scratches the workpiece during laser processing idle running. It is possible to obtain a highly reliable preliminary discharge device.

【0016】[0016]

【発明の効果】以上のように本発明によれば、電極より
レーザ媒質ガスの流れの上流部でかつレーザ共振手段の
光軸上から外れた位置に予備放電領域を設けた簡単な構
成により、低出力低デューティのパルス運転時において
も放電の着火が安定化してパルス制御可能な範囲を著し
く拡大することができて従来のようなある繰り返し周波
数以下での放電着火ミスを防止することができ、また、
パルスOFF時に不要なレーザ光が誤って出力される心
配もなく、安全でかつレーザ加工空走時にワークに傷を
つけることがない信頼性の高い予備放電装置を得ること
ができるものである。
As described above, according to the present invention, the preliminary discharge region is provided at the position upstream of the flow of the laser medium gas from the electrode and off the optical axis of the laser resonating means. Even during low-power low-duty pulse operation, discharge ignition is stabilized, the pulse controllable range can be significantly expanded, and it is possible to prevent discharge ignition mistakes at a certain repetition frequency or lower as in the past. Also,
It is possible to obtain a safe preliminary discharge device that is safe and does not damage the work during laser processing idle running without fear of erroneously outputting unnecessary laser light when the pulse is turned off.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す高速軸流型レーザ発振
装置の構成図である。
FIG. 1 is a configuration diagram of a high-speed axial flow type laser oscillation device showing an embodiment of the present invention.

【図2】図1のレーザ発振装置を用いて制御可能になる
領域を示す図である。
FIG. 2 is a diagram showing a region that can be controlled using the laser oscillator of FIG.

【図3】従来の高速軸流型レーザ発振装置の構成図であ
る。
FIG. 3 is a configuration diagram of a conventional high-speed axial flow type laser oscillation device.

【符号の説明】[Explanation of symbols]

2 出力鏡 3a,3b メインフランジ 5 終端鏡 7 放電管 8 電極 10 整合回路 12 RF電源 13 送風器 15 配管 21 空洞共振器 22 空洞導波管 23 マグネトロン 24 スタブチューナー 2 Output mirrors 3a, 3b Main flange 5 End mirror 7 Discharge tube 8 Electrode 10 Matching circuit 12 RF power supply 13 Blower 15 Piping 21 Cavity resonator 22 Cavity waveguide 23 Magnetron 24 Stub tuner

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数の放電管とその両端部に具備されたミ
ラーを有するレーザ共振器にレーザ媒質ガスを循環さ
せ、前記複数の放電管の外部にそれぞれ配設された電極
を介して前記レーザ媒質ガスに高周波電力を伝送し、前
記放電管内で前記レーザ媒質ガスを放電させてレーザ光
を発生させるレーザ発振装置であって、前記放電管外部
の電極部よりレーザ媒質ガスの流れの上流部に設けら
れ、予備放電を発生する空洞共振手段と、前記空洞共振
手段にマイクロ波電力を伝送する空洞導波管と、前記マ
イクロ波電力を発生するマグネトロンとを備えたレーザ
発振装置。
1. A laser medium gas is circulated in a laser resonator having a plurality of discharge tubes and mirrors provided at both ends of the discharge tubes, and the laser is supplied via electrodes respectively arranged outside the plurality of discharge tubes. A laser oscillating device for transmitting high-frequency power to a medium gas to discharge the laser medium gas in the discharge tube to generate laser light, wherein the laser medium gas is provided upstream of an electrode portion outside the discharge tube. A laser oscillating device comprising: a cavity resonance unit that generates a preliminary discharge, a cavity waveguide that transmits microwave power to the cavity resonance unit, and a magnetron that generates the microwave power.
【請求項2】空洞共振手段はレーザ共振器の光軸上から
外れた位置に設けられた請求項1記載のレーザ発振装
置。
2. The laser oscillator according to claim 1, wherein the cavity resonator is provided at a position off the optical axis of the laser resonator.
JP4053996A 1992-03-13 1992-03-13 Lasing apparatus Pending JPH05259553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4053996A JPH05259553A (en) 1992-03-13 1992-03-13 Lasing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4053996A JPH05259553A (en) 1992-03-13 1992-03-13 Lasing apparatus

Publications (1)

Publication Number Publication Date
JPH05259553A true JPH05259553A (en) 1993-10-08

Family

ID=12958222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4053996A Pending JPH05259553A (en) 1992-03-13 1992-03-13 Lasing apparatus

Country Status (1)

Country Link
JP (1) JPH05259553A (en)

Similar Documents

Publication Publication Date Title
US6181719B1 (en) Gas laser RF power source apparatus and method
JPH01173771A (en) Method of activating laser gas electrically and gas laser
US4891819A (en) RF excited laser with internally folded resonator
US3602837A (en) Method and apparatus for exciting an ion laser at microwave frequencies
KR100522658B1 (en) Microwave Plasma Burner
JPH06164042A (en) Gas-laser oscillation apparatus
Mallavarpu et al. Behavior of a microwave cavity discharge over a wide range of pressures and flow rates
JPH05259553A (en) Lasing apparatus
US7538882B2 (en) Systems and methods for assisting start of electrodeless RF discharge in a ring laser gyro
JPH0246785A (en) Method of electric excitation of gas laser and gas laser
Habich et al. Resonators for coaxial slow-flow CO2 lasers
KR100500360B1 (en) High efficient-atmospheric microwave plasma system
Hage et al. New Rf-Excited Multikilowatt CO2-Laser For Industrial Use
JPH05235450A (en) Laser oscillator
JP2989296B2 (en) Microwave discharge excitation method for laser gas
JPS61228690A (en) Supersonic excimer laser device
JP2871217B2 (en) Microwave pumped gas laser device
JPH06140694A (en) Microwave discharge exciting laser
KR100620539B1 (en) Microwave Gas Laser Apparatus
JPH10190102A (en) Method for exciting discharge of gas laser and gas laser device
JPH06152029A (en) Exciting method for laser gas by use of microwave discharge
JP2001068770A (en) Microwave-excited gas laser oscillator
JPH05226742A (en) Laser oscillator
JP3281823B2 (en) Microwave discharge excitation method for laser gas
JP2792457B2 (en) Microwave-excited gas laser device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040310

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250