[go: up one dir, main page]

JPH0524571B2 - - Google Patents

Info

Publication number
JPH0524571B2
JPH0524571B2 JP59104207A JP10420784A JPH0524571B2 JP H0524571 B2 JPH0524571 B2 JP H0524571B2 JP 59104207 A JP59104207 A JP 59104207A JP 10420784 A JP10420784 A JP 10420784A JP H0524571 B2 JPH0524571 B2 JP H0524571B2
Authority
JP
Japan
Prior art keywords
film
magneto
alloy thin
amorphous alloy
reflective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59104207A
Other languages
Japanese (ja)
Other versions
JPS60247844A (en
Inventor
Yoshiteru Murakami
Akira Takahashi
Hiroyuki Katayama
Junji Hirokane
Kenji Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP10420784A priority Critical patent/JPS60247844A/en
Priority to US06/721,707 priority patent/US4719137A/en
Priority to CA000478873A priority patent/CA1234916A/en
Priority to EP19880201371 priority patent/EP0297689B1/en
Priority to DE8585302580T priority patent/DE3581230D1/en
Priority to EP85302580A priority patent/EP0161807B1/en
Priority to DE88201371T priority patent/DE3587538T2/en
Publication of JPS60247844A publication Critical patent/JPS60247844A/en
Publication of JPH0524571B2 publication Critical patent/JPH0524571B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • G11B11/10589Details
    • G11B11/10593Details for improving read-out properties, e.g. polarisation of light

Description

【発明の詳細な説明】 <発明の技術分野> 本発明は、レーザ等の光を照射することにより
情報の記録、再生、消去等を行なう磁気光学記憶
素子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field of the Invention> The present invention relates to a method for manufacturing a magneto-optical memory element in which information is recorded, reproduced, erased, etc. by irradiation with light such as a laser.

<発明の技術的背景とその問題点> 近年、情報の記録、再生、消去が可能な光メモ
リ素子として磁気光学記憶素子の開発が活発に行
なわれている。
<Technical background of the invention and its problems> In recent years, magneto-optical storage elements have been actively developed as optical memory elements capable of recording, reproducing, and erasing information.

中でも記憶媒体として希土類遷移金属非晶質合
金薄膜を用いたものは、記録ビツトが粒界の影響
を受けない点及び記録媒体の膜を大面積に亘つて
作成することが比較的容易である点から特に注目
を集めている。
Among these, those using rare earth transition metal amorphous alloy thin films as storage media have the advantage that recording bits are not affected by grain boundaries and that it is relatively easy to create a recording medium film over a large area. has attracted particular attention.

しかし、記録媒体として上記のような希土類遷
移金属非晶質合金範膜を用いて磁気光学記録素子
を構成したものでは、一般に光磁気効果(カー効
果、フアラデー効果)が充分に得られず、その為
再生信号のS/Nが不充分なものであつた。
However, when a magneto-optical recording element is constructed using the above-mentioned rare earth transition metal amorphous alloy film as a recording medium, it is generally not possible to obtain sufficient magneto-optical effects (Kerr effect, Faraday effect). Therefore, the S/N ratio of the reproduced signal was insufficient.

このような問題点を改良するため、従来より例
えば特開昭57−12428号公報に示されるように、
反射膜構造と呼ばれる素子構造が磁気光学記憶素
子において採用されている。
In order to improve such problems, as shown in Japanese Patent Application Laid-Open No. 57-12428,
An element structure called a reflective film structure is employed in magneto-optic memory elements.

第2図は従来の反射膜構造の光磁気記憶素子の
一部側面断面図である。
FIG. 2 is a partial side sectional view of a conventional magneto-optical memory element having a reflective film structure.

第2図において、1は透明基板、2はこの透明
基板1よりも屈折率の高い特性を有する透明木誘
電体膜、3は希土類遷移金属で形成された非晶質
合金薄膜、4は透明誘電体膜、5は金属反射膜で
ある。この構造の光磁気記憶素子では非晶質合金
薄膜3は充分に薄く、従つてこの非晶質合金薄膜
3に入射した光はその一部が通り抜ける。その
為、再生光は非晶質合金薄膜3表面での反射によ
るカー効果と、非晶質合金薄膜3を通り抜け金属
反射膜5で反射され、再び非晶質合金薄膜3を通
り抜けることで生起されるフアラデー効果が合わ
せられることによつて、単なるカー効果のみによ
る素子に比して見かけ上数倍カー回転角が増大す
るものである。
In Fig. 2, 1 is a transparent substrate, 2 is a transparent wood dielectric film having a higher refractive index than the transparent substrate 1, 3 is an amorphous alloy thin film made of rare earth transition metal, and 4 is a transparent dielectric film. Body membrane 5 is a metal reflective membrane. In the magneto-optical memory element of this structure, the amorphous alloy thin film 3 is sufficiently thin, so that a portion of the light incident on the amorphous alloy thin film 3 passes through. Therefore, the reproduced light is caused by the Kerr effect caused by reflection on the surface of the amorphous alloy thin film 3, as well as by passing through the amorphous alloy thin film 3, being reflected by the metal reflective film 5, and passing through the amorphous alloy thin film 3 again. By combining the Faraday effects, the Kerr rotation angle appears to increase several times compared to an element based only on the Kerr effect.

なお、非晶質合金薄膜3上の透明誘電体膜2も
カー回転角増大化させる働きをする。
Note that the transparent dielectric film 2 on the amorphous alloy thin film 3 also functions to increase the Kerr rotation angle.

一例として、第2図において透明基板1をガラ
ス板とし、透明誘電体膜2を120nmのSiOとし、
非晶質合金薄膜3を15nmのGdTdFeとし、透明
誘電体膜4を50nmのSiO2とし。金属反射膜5を
50nmのCuとした構成では見かけ上のカー回転角
が17.5度にまで増大した。
As an example, in FIG. 2, the transparent substrate 1 is a glass plate, the transparent dielectric film 2 is 120 nm SiO,
The amorphous alloy thin film 3 is made of 15 nm GdTdFe, and the transparent dielectric film 4 is made of 50 nm SiO 2 . metal reflective film 5
In the configuration with 50 nm of Cu, the apparent Kerr rotation angle increased to 17.5 degrees.

以上の素子構造の採用によつてカー回転角が著
るしく増大する理由について次に説明する。
The reason why the Kerr rotation angle increases significantly by employing the above element structure will be explained next.

第2図に示すように透明基板1からレーザ光L
を非晶質合金薄膜3に照射した場合、入射レーザ
光Lが透明誘電体膜2の内部で反射が繰返され、
干渉した結果見かけ上のカー回転角が増大するも
のであり、この際透明誘電体膜2の屈折率が大き
い程カー回転角の増大効果は大きい。
As shown in FIG. 2, a laser beam L is emitted from the transparent substrate 1.
When the amorphous alloy thin film 3 is irradiated with , the incident laser light L is repeatedly reflected inside the transparent dielectric film 2,
As a result of the interference, the apparent Kerr rotation angle increases, and in this case, the larger the refractive index of the transparent dielectric film 2, the greater the effect of increasing the Kerr rotation angle.

また、第2図に示すように非晶質合金薄膜3の
背面に反射膜5を配置したことが見かけ上のカー
回転角を増大させており、非晶質合金薄膜3と反
射膜5との間に透明誘電体膜4を介在させること
で見かけ上のカー回転角を更に増大させている。
In addition, as shown in FIG. 2, the arrangement of the reflective film 5 on the back surface of the amorphous alloy thin film 3 increases the apparent Kerr rotation angle, and the difference between the amorphous alloy thin film 3 and the reflective film 5 increases. By interposing the transparent dielectric film 4 between them, the apparent Kerr rotation angle is further increased.

次に、この作用の原理について定性的に説明す
る。
Next, the principle of this action will be qualitatively explained.

上記透明誘電体膜4と反射膜5との複合膜を一
つの反射層Aとして考えると、第2図において、
透明基板1側から入射し、非晶質合金薄膜3を通
過し、上記反射層Aにて反射された後、再び上記
非晶質合金薄膜3を通過した光と、透明基板1側
から入射し非晶質合金薄膜3の表面で反射された
光とが合成されるが、この場合、入射光Lが非晶
質合金薄膜3の表面で反射することにより生起さ
れるカー効果と、入射光Lが非晶質合金薄膜3の
内部を通過することにより生起されるフアラデー
効果とが合わされることにより、見かけ上のカー
回転角が増大するものである。
Considering the composite film of the transparent dielectric film 4 and the reflective film 5 as one reflective layer A, in FIG.
The light enters from the transparent substrate 1 side, passes through the amorphous alloy thin film 3, is reflected by the reflective layer A, and then passes through the amorphous alloy thin film 3 again, and the light enters from the transparent substrate 1 side. The light reflected on the surface of the amorphous alloy thin film 3 is combined, but in this case, the Kerr effect caused by the reflection of the incident light L on the surface of the amorphous alloy thin film 3 and the incident light L When combined with the Faraday effect caused by passing through the inside of the amorphous alloy thin film 3, the apparent Kerr rotation angle increases.

このような構造の磁気光学記憶素子において
は、上記フアラデー効果を如何にカー効果に加え
るかが極めて重要になる。
In a magneto-optical memory element having such a structure, it is extremely important how the Faraday effect is added to the Kerr effect.

フアラデー効果についていえば、非晶質合金薄
膜3の層厚を厚くすれば回転角を大きくすること
が出来るが、入射レーザ光Lが非晶質合金薄膜3
に吸収されるため、所期の目的を達成し得ない。
したがつて非晶質合金薄膜3の適切な層厚の値は
概ね10〜50nmであり、その値は使用するレーザ
光Lの波長や上記反射層Aの屈折率等によつて決
定される。
Regarding the Faraday effect, the rotation angle can be increased by increasing the layer thickness of the amorphous alloy thin film 3, but the incident laser beam L
As a result, the intended purpose cannot be achieved.
Therefore, the appropriate layer thickness of the amorphous alloy thin film 3 is approximately 10 to 50 nm, and the value is determined by the wavelength of the laser beam L used, the refractive index of the reflective layer A, and the like.

上記反射層Aに対して求められる条件は上記の
説明から明らかなように反射率が高いことであ
る。
As is clear from the above description, the condition required for the reflective layer A is that the reflectance be high.

以上のように、透明基板1と非晶質合金薄膜3
との間に介在する透明誘電体膜2及び非晶質合金
薄膜3の背面の反射層Aの構成を付加することに
よつて、カー回転角の増大の効果を得ることが出
来る。
As described above, the transparent substrate 1 and the amorphous alloy thin film 3
By adding the structure of the reflective layer A on the back surface of the transparent dielectric film 2 and the amorphous alloy thin film 3 interposed between the two, it is possible to obtain the effect of increasing the Kerr rotation angle.

上記の説明より明らかなように金属反射膜5に
対して求められる条件は、反射率が高いことであ
る。この条件を満たす材料として、Au,Ag,
Cu,Al等が挙げられる。
As is clear from the above description, the requirement for the metal reflective film 5 is that it has a high reflectance. Materials that meet this condition include Au, Ag,
Examples include Cu and Al.

一般に磁気光学記憶素子は作製の容易さからス
パツタ法によつて作製されることが多いが、Au,
Ag等の材料はターゲツトの入手が非常に困難で
ある。またCuはターゲツトの入手は容易であり、
スパツタリングを行ない易い材料であるので膜形
成が容易であるが、磁気光学記憶素子の長期信頼
性の面等から、必要とされる耐蝕性に欠ける問題
点がある。またAlはターゲツトの入手も容易で
あり、上記した耐蝕性にも優れているが高い反射
率を得る膜形成が困難であるという欠点を有して
いる。
In general, magneto-optical memory elements are often fabricated by the sputtering method due to ease of fabrication.
Materials such as Ag are extremely difficult to obtain as targets. In addition, the target of Cu is easy to obtain,
Since it is a material that can be sputtered easily, it is easy to form a film, but there is a problem in that it lacks the necessary corrosion resistance in terms of long-term reliability of magneto-optic storage elements. Further, although Al is easily available as a target and has excellent corrosion resistance as described above, it has the disadvantage that it is difficult to form a film with high reflectance.

スパツタリングによつてAlの反射膜を形成し
た場合に高い反射率を有する膜を形成することが
困難な理由は、スパツタリングによる膜形成の際
に白濁が生じることであり、この白濁によつて形
成された金属反射膜の反射率が低下してしまい、
好ましくない。この白濁の生じる原因の主なもの
は、第1に膜形成の際にわずかに存在するH,
C,O2,N2,H2,H2O等の混入物によるもので
あり、第2は膜形成に伴う磁気光学記憶素子の基
板温度の上昇によるものである。
The reason why it is difficult to form a film with high reflectivity when forming an Al reflective film by sputtering is that white turbidity occurs during film formation by sputtering, and this clouding causes The reflectance of the metal reflective film decreases,
Undesirable. The main cause of this cloudiness is, firstly, a small amount of H, which is present during film formation.
This is due to contaminants such as C, O 2 , N 2 , H 2 , H 2 O, etc., and the second is due to an increase in the substrate temperature of the magneto-optic memory element due to film formation.

従つて、白濁しない高反射率を有するアルミニ
ウム反射膜を得るには上記したH,C,O2,N2
H2,H2O等の混入を防止しし、磁気光学記憶素
子の基板温度上昇を防止することが必要とされる
が、このようなことを実現するにはスパツタ条件
が著るしく制限されてしまうことになり、極めて
困難である。
Therefore, in order to obtain an aluminum reflective film that does not become cloudy and has a high reflectance, the above-mentioned H, C, O 2 , N 2 ,
It is necessary to prevent the contamination of H 2 , H 2 O, etc., and to prevent the substrate temperature of the magneto-optic memory element from rising, but to achieve this, the sputtering conditions are severely limited. This is extremely difficult.

<発明の目的及び構成> そこで、本発明は上記諸点に鑑みて成されたも
のであり、スパツタリングによつて形成されるア
ルミニウム(Al)反射膜の白濁化を防止するこ
とのできる新規な磁気光学記憶素子の製造方法を
提供することを目的とする。この目的を達成する
ために、本発明はアルミニウム反射膜層を有する
多層膜構造の記録層を備える磁気光学記憶素子の
製造方法において、前記アルミニウム反射膜層を
スパツタリングによつて形成する際使用するター
ゲツトとして、当該アルミニウム反射膜層に発生
する白濁を防止するための元素であるニツケルを
添加したターゲツトを用いることを特徴とする磁
気光学記憶素子の製造方法である。
<Object and structure of the invention> Therefore, the present invention has been made in view of the above points, and is a novel magneto-optical method capable of preventing clouding of an aluminum (Al) reflective film formed by sputtering. An object of the present invention is to provide a method for manufacturing a memory element. To achieve this object, the present invention provides a method for manufacturing a magneto-optical storage element having a recording layer having a multilayer structure including an aluminum reflective film layer, in which a target used when forming the aluminum reflective film layer by sputtering is provided. This method of manufacturing a magneto-optical memory element is characterized by using a target to which nickel, which is an element for preventing clouding occurring in the aluminum reflective film layer, is added.

<発明の実施例> 以下、本発明の一実施例を図面を参照して詳細
に説明する。
<Embodiment of the Invention> Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明に係る磁気光学記憶素子の一実
施例としてアルミニウムにニツケルを添加して得
られたアルミニウム・ニツケル反射膜を有する磁
気光学記憶素子の構造を示す一部側面断面図であ
る。
FIG. 1 is a partial side sectional view showing the structure of a magneto-optic memory element having an aluminum/nickel reflective film obtained by adding nickel to aluminum as an embodiment of the magneto-optic memory element according to the present invention.

第1図において、1はガラス、ポリカーボネー
ト、アクリル等の透明基板であり、該透明基板1
上に第1の透明誘電体膜である透明な窒化アルミ
ニウム(AlN)膜6が例えば膜厚100nmに形成さ
れ、該窒化アルミニウム(AlN)該6上に希土
類遷移金属合金薄膜であるGdTbFe合金薄膜3が
例えば膜厚27nmに形成され、該GdTbFe合金薄
膜3上に第2の透明誘電体膜である透明な窒化ア
ルミニウム(AlN)膜7が例えば膜厚35nmに形
成され、更に該窒化アルミニウム膜7上に反射膜
として、アルミニウム(Al)にニツケル(Ni)
を添加したターゲツトをスパツタリングすること
により得たアルミニウム・ニツケル膜8が例えば
膜厚60nm以上に形成されている。
In FIG. 1, 1 is a transparent substrate made of glass, polycarbonate, acrylic, etc.
A transparent aluminum nitride (AlN) film 6, which is a first transparent dielectric film, is formed on the aluminum nitride (AlN) film 6 to have a thickness of, for example, 100 nm, and a GdTbFe alloy thin film 3, which is a rare earth transition metal alloy thin film, is formed on the aluminum nitride (AlN) film 6. is formed to have a thickness of 27 nm, for example, and a transparent aluminum nitride (AlN) film 7, which is a second transparent dielectric film, is formed to have a thickness of 35 nm, for example, on the GdTbFe alloy thin film 3, and further on the aluminum nitride film 7. As a reflective film, aluminum (Al) and nickel (Ni) are used as reflective films.
An aluminum/nickel film 8 obtained by sputtering a target doped with is formed to have a thickness of 60 nm or more, for example.

このように、反射膜8をアルミニウム・ニツケ
ルで形成した場合には次のような利点がある。
In this way, when the reflective film 8 is formed of aluminum/nickel, there are the following advantages.

即ち、上述したように透明誘電体膜7を窒化ア
ルミニウム(AlN)で形成した場合、その上に
アルミニウム(Al)等の従来の反射膜をレーザ
波長域(800nm)での反射率が高い状態でスパツ
タリングによつて被着することは白濁化を生じて
非常に困難であつた。この白濁化は窒化アルミニ
ウム(AlN)内の窒素成分のCuやAlに対する影
響が無視できない為と考えられる。
That is, when the transparent dielectric film 7 is formed of aluminum nitride (AlN) as described above, a conventional reflective film such as aluminum (Al) is applied thereon with a high reflectance in the laser wavelength range (800 nm). Deposition by sputtering was very difficult as it caused clouding. This clouding is thought to be because the influence of the nitrogen component in aluminum nitride (AlN) on Cu and Al cannot be ignored.

これに対してアルミニウム・ニツケルによる反
射膜8は窒化アルミニウムの透明誘電体膜7にレ
ーザ波長域での反射率が高い状態即ち、白濁を生
じない状態で被着することが容易に出来る。
On the other hand, the reflective film 8 made of aluminum/nickel can be easily applied to the transparent dielectric film 7 made of aluminum nitride in a state where the reflectance is high in the laser wavelength range, that is, in a state where no clouding occurs.

この結果、磁気光学記憶素子における反射光量
を多くすることが出来、再生信号の向上を得るこ
とが出来る。またアルミニウム・ニツケル膜8は
耐蝕性においても優れており、記録媒体(記録
層)の耐蝕性にも寄与できるものである。
As a result, the amount of light reflected by the magneto-optical storage element can be increased, and the reproduced signal can be improved. The aluminum-nickel film 8 also has excellent corrosion resistance and can contribute to the corrosion resistance of the recording medium (recording layer).

<発明の効果> 以上のように本発明に係る磁気光学記憶素子に
製造方法によれば、スパツタリングによつて形成
するアルミニウム反射膜の白濁を防止することが
できるので、高い反射率を有する反射膜を形成す
ることができ、この結果、情報再生特性を大幅に
向上した磁気光学記憶素子を提供することができ
る。
<Effects of the Invention> As described above, according to the manufacturing method for a magneto-optical memory element according to the present invention, clouding of the aluminum reflective film formed by sputtering can be prevented, so that a reflective film having high reflectance can be obtained. As a result, it is possible to provide a magneto-optical storage element with significantly improved information reproducing characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る磁気光学記憶素子の一実
施例の構成を示す一部側面断面図、第2図は従来
の磁気光学記憶素子の構成を示す一部側面断面図
である。 1……透明基板、3……希土類遷移金属合金薄
膜、6……第1の透明誘電体膜(AlN膜)、7…
…第2の透明誘電体膜(AlN膜)、8……金属反
射膜(AlNi反射膜)。
FIG. 1 is a partial side cross-sectional view showing the structure of an embodiment of a magneto-optic memory element according to the present invention, and FIG. 2 is a partial side cross-sectional view showing the structure of a conventional magneto-optic memory element. DESCRIPTION OF SYMBOLS 1... Transparent substrate, 3... Rare earth transition metal alloy thin film, 6... First transparent dielectric film (AlN film), 7...
...Second transparent dielectric film (AlN film), 8...Metal reflective film (AlNi reflective film).

Claims (1)

【特許請求の範囲】 1 アルミニウム反射膜層を有する多層膜構造の
記録層を備える磁気光学記憶素子の製造方法にお
いて、 前記アルミニウム反射膜層をスパツタリングに
よつて形成する際使用するターゲツトとして、当
該アルミニウム反射膜層に発生する白濁を防止す
るための元素であるニツケルを添加したターゲツ
トを用いることを特徴とする磁気光学記憶素子の
製造方法。
[Scope of Claims] 1. In a method for manufacturing a magneto-optical storage element having a recording layer having a multilayer structure including an aluminum reflective film layer, the target used when forming the aluminum reflective film layer by sputtering comprises: 1. A method for manufacturing a magneto-optical memory element, characterized by using a target doped with nickel, an element for preventing cloudiness occurring in a reflective film layer.
JP10420784A 1984-04-13 1984-05-22 Magnetooptic storage element Granted JPS60247844A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP10420784A JPS60247844A (en) 1984-05-22 1984-05-22 Magnetooptic storage element
US06/721,707 US4719137A (en) 1984-04-13 1985-04-10 Magneto-optic memory element
CA000478873A CA1234916A (en) 1984-04-13 1985-04-11 Magneto-optic memory element
EP19880201371 EP0297689B1 (en) 1984-04-13 1985-04-12 Magneto-optic memory element
DE8585302580T DE3581230D1 (en) 1984-04-13 1985-04-12 MAGNETO-OPTICAL STORAGE ELEMENT.
EP85302580A EP0161807B1 (en) 1984-04-13 1985-04-12 Magneto-optic memory element
DE88201371T DE3587538T2 (en) 1984-04-13 1985-04-12 Magneto-optical storage element.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10420784A JPS60247844A (en) 1984-05-22 1984-05-22 Magnetooptic storage element

Publications (2)

Publication Number Publication Date
JPS60247844A JPS60247844A (en) 1985-12-07
JPH0524571B2 true JPH0524571B2 (en) 1993-04-08

Family

ID=14374523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10420784A Granted JPS60247844A (en) 1984-04-13 1984-05-22 Magnetooptic storage element

Country Status (1)

Country Link
JP (1) JPS60247844A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697514B2 (en) * 1985-02-21 1994-11-30 シャープ株式会社 Magneto-optical storage element
JP2660569B2 (en) * 1989-02-10 1997-10-08 三菱電機株式会社 Magneto-optical recording medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860441A (en) * 1981-10-06 1983-04-09 Canon Inc Photothermomagnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860441A (en) * 1981-10-06 1983-04-09 Canon Inc Photothermomagnetic recording medium

Also Published As

Publication number Publication date
JPS60247844A (en) 1985-12-07

Similar Documents

Publication Publication Date Title
US4610912A (en) Magneto-optic memory element
EP0192256B1 (en) Magnetooptical storage element
EP0233034B1 (en) Optical memory element
US4719137A (en) Magneto-optic memory element
US4786559A (en) Magnetooptical storage element
US5914198A (en) Magneto-optical recording medium having dielectric layers with different indices of refraction
JP2547768B2 (en) Optical magnetic recording medium
US5143797A (en) Magneto-optic recording medium
JPH0524571B2 (en)
JPH0422291B2 (en)
EP0560625B1 (en) A magneto-optic memory medium and a method for producing the same
EP0475452B1 (en) Use of a quasi-amorphous or amorphous zirconia dielectric layer for optical or magneto-optic data storage media
EP0316508B1 (en) Magneto-optic memory device
US5040166A (en) Magneto-optical recording medium having a reflective film of Ag and Mn or Ag, Mn and Sn
JPH039546B2 (en)
JPH0462140B2 (en)
JPH0419618B2 (en)
JP2544684B2 (en) Magneto-optical recording medium
KR100209585B1 (en) Magneto-optical disk
JPS60209946A (en) Optomagnetic recording medium
JPH01294246A (en) Optical memory element
JPH03165350A (en) Magneto-optical recording medium
JPH0414647A (en) Magneto-optical recording medium
JPS6231049A (en) Photomagnetic recording medium
JPH0490153A (en) Magneto-optical disk

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term