JPH039546B2 - - Google Patents
Info
- Publication number
- JPH039546B2 JPH039546B2 JP58171488A JP17148883A JPH039546B2 JP H039546 B2 JPH039546 B2 JP H039546B2 JP 58171488 A JP58171488 A JP 58171488A JP 17148883 A JP17148883 A JP 17148883A JP H039546 B2 JPH039546 B2 JP H039546B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- transparent dielectric
- dielectric film
- alloy thin
- rare earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010408 film Substances 0.000 claims description 68
- 239000010409 thin film Substances 0.000 claims description 26
- 229910045601 alloy Inorganic materials 0.000 claims description 23
- 239000000956 alloy Substances 0.000 claims description 23
- 229910052723 transition metal Inorganic materials 0.000 claims description 21
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 20
- -1 rare earth transition metal Chemical class 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 9
- 150000004767 nitrides Chemical class 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 description 10
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 230000005374 Kerr effect Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10582—Record carriers characterised by the selection of the material or by the structure or form
- G11B11/10586—Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
- G11B11/10589—Details
- G11B11/10593—Details for improving read-out properties, e.g. polarisation of light
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/12—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
- H01F10/126—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing rare earth metals
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
Description
【発明の詳細な説明】
<技術分野>
本発明はレーザ等の光を照射することにより情
報の記録・再生・消去等を行なう磁気光学記憶素
子に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to a magneto-optical storage element that records, reproduces, erases, etc. information by irradiating it with light such as a laser.
<従来技術>
近年、情報の書換えが可能な光デイスクとして
磁気光学記憶素子の研究が活発に行なわれてい
る。中でも記憶媒体として希土類−遷移金属非晶
質合金薄膜を用いて構成したものは、記録ビツト
が粒界の影響を受けない点及び記録媒体の膜を大
面積に亘つて作成することが比較的容易である点
から特に注目を集めている。<Prior Art> In recent years, research has been actively conducted on magneto-optical storage elements as optical disks on which information can be written. Among these, storage media constructed using rare earth-transition metal amorphous alloy thin films have the advantage that the recording bits are not affected by grain boundaries and that it is relatively easy to create a recording medium film over a large area. It is attracting particular attention for this reason.
しかし上記記録媒体として希土類−遷移金属非
晶質合金薄膜を用いて磁気光学記憶素子を構成し
たものでは、一般に光磁気効果(カー効果、フア
ラデー効果)が十分得られずその為再生信号の
S/Nが不十分なものであつた。 However, when a magneto-optical storage element is constructed using a rare earth-transition metal amorphous alloy thin film as the above-mentioned recording medium, it is generally not possible to obtain sufficient magneto-optical effects (Kerr effect, Faraday effect). N was insufficient.
これに対する対応策として既に本発明者等は次
の如き素子構造の改良を試みた。第1図は既に改
良を試みた素子構造の磁気光学記憶素子の一部側
面断面図を示す。同図で1はガラス、ポリカーボ
ネート、アクリル等の透明基板であり、該透明基
板1上に第1の透明誘電体膜である透明なSiO膜
2(膜厚120nm)が形成され、該SiO膜2上に希
土類遷移金属合金薄膜であるGdTbFe合金薄膜3
(膜厚15nm)が形成され、該GdTbFe合金薄膜3
上に第2の透明誘電体膜である透明なSiO2膜4
(膜厚50nm)が形成され、該SiO2膜4上に反射
膜であるCu膜5(膜厚50nm)が形成されてい
る。以上の構造では見かけのカー回転角が1.75゜
もの大きな値が得られた。 As a countermeasure to this problem, the inventors of the present invention have already attempted to improve the device structure as follows. FIG. 1 shows a partial side sectional view of a magneto-optical memory element whose structure has already been attempted to be improved. In the figure, 1 is a transparent substrate made of glass, polycarbonate, acrylic, etc. A transparent SiO film 2 (film thickness 120 nm), which is a first transparent dielectric film, is formed on the transparent substrate 1. GdTbFe alloy thin film 3 which is a rare earth transition metal alloy thin film on top
(film thickness 15 nm) is formed, and the GdTbFe alloy thin film 3
A transparent SiO 2 film 4, which is a second transparent dielectric film, is placed on top.
(thickness: 50 nm), and a Cu film 5 (thickness: 50 nm), which is a reflective film, is formed on the SiO 2 film 4. In the above structure, the apparent Kerr rotation angle was as large as 1.75°.
以上の素子構造の採用によつてカー回転角が著
しく大きなものを得ることのできた理由を次に説
明する。 The reason why it was possible to obtain a significantly large Kerr rotation angle by adopting the above element structure will be explained below.
第1図に示す如く透明基板1側からレーザ光6
を希土類遷移金属合金薄膜3に照射した場合、入
射レーザ光が第1の透明誘電体膜2の内部で反射
が繰り返され、干渉した結果見かけ上のカー回転
角が増大するものであり、この際上記第1の透明
誘電体膜2の屈折率は大きい程カー回転角の増大
効果は大きい。 As shown in FIG.
When the rare earth transition metal alloy thin film 3 is irradiated with The larger the refractive index of the first transparent dielectric film 2, the greater the effect of increasing the Kerr rotation angle.
又第1図に示す如く希土類遷移金属合金薄膜3
の背面に反射膜5を配置したことで見かけ上のカ
ー回転角を増大させており、希土類遷移金属合金
薄膜3と反射膜5の間に第2の透明誘電体膜4を
介在させることで見かけ上のカー回転角を更に増
大させている。次にこの作用の原理について定性
的な説明を行なう。 In addition, as shown in FIG. 1, a rare earth transition metal alloy thin film 3
The apparent Kerr rotation angle is increased by arranging the reflective film 5 on the back surface of the film, and the apparent Kerr rotation angle is increased by interposing the second transparent dielectric film 4 between the rare earth transition metal alloy thin film 3 and the reflective film 5. The above Kerr rotation angle is further increased. Next, we will give a qualitative explanation of the principle of this action.
上記第2の透明誘電体膜4と反射膜5との複合
膜を一つの反射層Aとして考える。第1図に於て
透明基板1側から入射し、希土類遷移金属合金薄
膜3を通過し、上記反射層Aにて反射された後上
記希土類遷移金属合金薄膜3を再び通過した光と
透明基板1側から入射し希土類遷移金属合金薄膜
3の表面で反射された光とが合成されるが、この
場合入射光が希土類遷移金属合金薄膜3の表面で
反射することにより生起されるカー効果と、入射
光が希土類遷移金属合金薄膜3の内部を通過する
ことにより生起されるフアラデー効果とが合わさ
れることにより、見かけ上のカー回転角が増大す
るものである。上記構造の磁気光学記憶素子に於
ては上記フアラデー効果を如何にしてカー効果に
加えるかが極めて重要になる。フアラデー効果に
ついて謂えば記録媒体の層厚を厚くすれば回転角
を大きくできるが、入射レーザ光が記録媒体に吸
収される為所期の目的を達成し得ない。よつて上
記記録媒体の適切な層厚の値は概ね10〜50nmで
あり、その値は使用するレーザ光の波長や上記反
射層の屈折率等により決定される。上記反射層に
対して求められる条件は上記の説明から判るよう
に反射率が高いことにある。言い替えると入射レ
ーザ光を反射層内に入れないことであり、光学的
に見れば反射層(第2の透明誘電体膜+反射膜)
の等価的な屈折率が0に近いことが必要である。
この為には第2の透明誘電体膜の実数部の値が小
さく且つ虚数部の値が0で、更に反射膜の実数部
の値が小さいことが必要である。 A composite film of the second transparent dielectric film 4 and the reflective film 5 will be considered as one reflective layer A. In FIG. 1, light enters from the transparent substrate 1 side, passes through the rare earth transition metal alloy thin film 3, is reflected by the reflective layer A, and then passes through the rare earth transition metal alloy thin film 3 again, and the transparent substrate 1 The light incident from the side and reflected on the surface of the rare earth transition metal alloy thin film 3 is combined, but in this case, the Kerr effect caused by the reflection of the incident light on the surface of the rare earth transition metal alloy thin film 3 and the incident light are combined. When combined with the Faraday effect caused by light passing through the inside of the rare earth transition metal alloy thin film 3, the apparent Kerr rotation angle increases. In the magneto-optical memory element having the above structure, it is extremely important how to add the Faraday effect to the Kerr effect. Regarding the Faraday effect, if the layer thickness of the recording medium is increased, the rotation angle can be increased, but the intended purpose cannot be achieved because the incident laser beam is absorbed by the recording medium. Therefore, the appropriate layer thickness of the recording medium is approximately 10 to 50 nm, and the value is determined by the wavelength of the laser beam used, the refractive index of the reflective layer, etc. As can be seen from the above description, the condition required for the reflective layer is that it has a high reflectance. In other words, the incident laser beam is not allowed to enter the reflective layer, and from an optical perspective, the reflective layer (second transparent dielectric film + reflective film)
It is necessary that the equivalent refractive index of is close to zero.
For this purpose, it is necessary that the value of the real part of the second transparent dielectric film is small and the value of the imaginary part is 0, and furthermore, the value of the real part of the reflective film is small.
以上の如く透明基板1と希土類遷移金属合金薄
膜3との間に介する第1の透明誘電体膜2、及び
希土類遷移金属合金薄膜3の背面の反射層Aの構
成を付加することによつてカー回転角の増大の効
果を得ることができる。 As described above, by adding the configuration of the first transparent dielectric film 2 interposed between the transparent substrate 1 and the rare earth transition metal alloy thin film 3, and the reflective layer A on the back side of the rare earth transition metal alloy thin film 3, the car The effect of increasing the rotation angle can be obtained.
しかし、上述の効果が得られる反面で、第1の
透明誘電体膜2としてSiO膜を選択し、第2の透
明誘電体膜4としてSiO2膜を選択した場合、希
土類遷移金属合金薄膜3が酸化されるという問題
が発生した。本発明者はこの原因が上記SiO膜及
びSiO2膜の中に含有される酸素にあることを確
認した。即ち上記SiO膜及びSiO2膜の成膜時、あ
るいは成膜後に内部の酸素成分が分離等して希土
類遷移金属合金薄膜3が酸化されるものである。
しかるに希土類遷移金属合金薄膜3は酸化される
ことによつて磁気記録媒体としての能力を著しく
阻害されるものであるから上記酸化の問題は極め
て重大である。又、上記希土類遷移金属合金薄膜
3の膜厚が薄い場合は僅かの酸化であつても影響
が大きいので非常な注意が必要である。 However, while the above-mentioned effects can be obtained, if a SiO film is selected as the first transparent dielectric film 2 and a SiO 2 film is selected as the second transparent dielectric film 4, the rare earth transition metal alloy thin film 3 There was a problem with oxidation. The inventors have confirmed that the cause of this is the oxygen contained in the SiO film and SiO 2 film. That is, during or after the formation of the SiO film and SiO 2 film, internal oxygen components are separated and the rare earth transition metal alloy thin film 3 is oxidized.
However, when the rare earth transition metal alloy thin film 3 is oxidized, its ability as a magnetic recording medium is significantly inhibited, so the problem of oxidation is extremely serious. Furthermore, if the rare earth transition metal alloy thin film 3 is thin, even a slight oxidation will have a large effect, so extreme care must be taken.
<目的>
本発明は以上の問題点を解消する為になされた
ものであり、磁気光学特性を充分に確保し得ると
共に希土類遷移金属合金薄膜の化を防止した新規
な磁気光学記憶素子を提供することを目的とする
ものである。<Purpose> The present invention has been made to solve the above problems, and provides a novel magneto-optical memory element that can sufficiently secure magneto-optical properties and prevent formation of a rare earth transition metal alloy thin film. The purpose is to
<実施例>
第2図は本発明に係る磁気光学記憶素子の一実
施例の一部側面断面図である。同図において、1
はガラス、ポリカーボネート、アクリル等の透明
基板であり、該透明基板1上に第1の透明誘電体
膜である透明なSiN膜7(膜厚90nm)が形成さ
れ、該SiN膜7上に希土類遷移金属合金薄膜であ
るGdTbFe合金薄膜3(膜厚35nm)が形成され、
該GdTbFe合金薄膜3上に第2の透明誘電体膜で
ある透明なAlN膜8(膜厚40nm)が形成され、
該AlN膜8上に反射膜であるAl膜9(膜厚40nm
以上)が形成されている。<Example> FIG. 2 is a partial side cross-sectional view of an example of a magneto-optical memory element according to the present invention. In the same figure, 1
is a transparent substrate made of glass, polycarbonate, acrylic, etc. A transparent SiN film 7 (film thickness 90 nm), which is a first transparent dielectric film, is formed on the transparent substrate 1, and a rare earth transition layer is formed on the SiN film 7. A metal alloy thin film, GdTbFe alloy thin film 3 (film thickness 35 nm), is formed.
A transparent AlN film 8 (film thickness: 40 nm), which is a second transparent dielectric film, is formed on the GdTbFe alloy thin film 3,
On the AlN film 8, an Al film 9 (thickness: 40 nm) is formed as a reflective film.
above) are formed.
以上に構造の磁気光学記憶素子に於て、特に注
目すべき点は第1の透明誘電膜としてSiN膜、第
2の透明誘電膜としてAlN膜を用いた事である。 What is particularly noteworthy about the magneto-optical memory element having the above structure is that an SiN film is used as the first transparent dielectric film, and an AlN film is used as the second transparent dielectric film.
この構造の優利な点について以下説明する。 The advantages of this structure will be explained below.
SiN及びAlNは高融点の材料であり極めて安
定であり、又共に窒化物である為酸化物の膜に
比較して緻密な膜が形成できる。 SiN and AlN are materials with high melting points and are extremely stable, and since both are nitrides, denser films can be formed compared to oxide films.
第1の透明誘電体膜であるSiNは屈折率が
2.0程度であり、一方第2の透明誘電体膜であ
るAlNは屈折率が1.9〜1.8程度であり、相対的
に第1の透明誘電体膜の屈折率を第2の透明誘
電体膜の屈折率より大きくできる。 The first transparent dielectric film, SiN, has a refractive index of
On the other hand, AlN, which is the second transparent dielectric film, has a refractive index of about 1.9 to 1.8. Can be greater than the rate.
前述した如く第1の透明誘電体膜の屈折率は
大きい程カー回転角の増大効果が得られ、一方
第2の透明誘電体膜の屈折率は小さい程反射率
を高くできる。従つて上記SiNとAlNの組合せ
は極めて都合が良い。尚、上記構造において
SiN膜7は90nmをピークとして±10%程度の
膜厚であれば良好であり、又AlN膜8は40nm
をピークとして±10%程度の膜厚であれば良好
である。 As described above, the larger the refractive index of the first transparent dielectric film is, the more the Kerr rotation angle can be increased, while the smaller the refractive index of the second transparent dielectric film, the higher the reflectance can be obtained. Therefore, the combination of SiN and AlN is extremely convenient. Furthermore, in the above structure
The SiN film 7 is good if it has a thickness of about ±10% with a peak thickness of 90 nm, and the AlN film 8 has a thickness of 40 nm.
A film thickness of about ±10% with respect to the peak value is good.
上記SiNとAlNはその成分として酸素を含有
しないので希土類遷移金属合金薄膜が酸化され
る危険性を極度に減少せしめ得る。 Since the SiN and AlN do not contain oxygen as a component, the risk of the rare earth transition metal alloy thin film being oxidized can be extremely reduced.
<効果>
本発明によれば記録媒体の耐蝕性及び情報再生
特性を共に良好に確保せしめることができるもの
である。<Effects> According to the present invention, it is possible to ensure good corrosion resistance and information reproduction characteristics of a recording medium.
第1図は従来の磁気光学記憶素子の一部側面断
面図、第2図は本発明に係る磁気光学記憶素子の
一実施例の一部側面断面図を示す。
図中 1:透明基板、2:第1の透明誘電体
膜、3:希土類遷移金属合金薄膜、4:第2の透
明誘電体膜、5:Cu膜、6:レーザ光、7:
SiN膜、8:AlN膜、9:Al膜。
FIG. 1 is a partial side cross-sectional view of a conventional magneto-optical memory element, and FIG. 2 is a partial side cross-sectional view of an embodiment of the magneto-optic memory element according to the present invention. In the figure: 1: Transparent substrate, 2: First transparent dielectric film, 3: Rare earth transition metal alloy thin film, 4: Second transparent dielectric film, 5: Cu film, 6: Laser light, 7:
SiN film, 8: AlN film, 9: Al film.
Claims (1)
移金属合金薄膜、第2の透明誘電体膜、反射膜を
この順に被覆してなる磁気光学記憶素子におい
て、 前記第1の透明誘電体膜及び第2の透明誘電体
膜を、共に窒化物であつて、且つ前記第1の透明
誘電体膜の屈折率が前記第2の透明誘電体膜の屈
折率より大である物質にて構成したことを特徴と
する磁気光学記憶素子。[Scope of Claims] 1. A magneto-optical memory element comprising a transparent substrate coated with a first transparent dielectric film, a rare earth transition metal alloy thin film, a second transparent dielectric film, and a reflective film in this order, comprising: The first transparent dielectric film and the second transparent dielectric film are both made of nitride, and the refractive index of the first transparent dielectric film is higher than the refractive index of the second transparent dielectric film. A magneto-optical memory element characterized by being made of a certain substance.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17148883A JPS6063747A (en) | 1983-09-16 | 1983-09-16 | Magnetooptical storage element |
CA000462506A CA1224270A (en) | 1983-09-16 | 1984-09-05 | Magneto-optic memory element |
US06/648,741 US4610912A (en) | 1983-09-16 | 1984-09-10 | Magneto-optic memory element |
EP84306341A EP0139474B1 (en) | 1983-09-16 | 1984-09-17 | Magneto-optic memory element |
DE8484306341T DE3481878D1 (en) | 1983-09-16 | 1984-09-17 | MAGNETOOPTIC STORAGE ELEMENT. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17148883A JPS6063747A (en) | 1983-09-16 | 1983-09-16 | Magnetooptical storage element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6063747A JPS6063747A (en) | 1985-04-12 |
JPH039546B2 true JPH039546B2 (en) | 1991-02-08 |
Family
ID=15924023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17148883A Granted JPS6063747A (en) | 1983-09-16 | 1983-09-16 | Magnetooptical storage element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6063747A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62226452A (en) * | 1986-03-27 | 1987-10-05 | Nec Corp | Photomagnetic recording medium |
JP2779521B2 (en) * | 1989-06-26 | 1998-07-23 | 富士写真フイルム株式会社 | Magneto-optical recording medium |
JP2822455B2 (en) * | 1989-06-05 | 1998-11-11 | 松下電器産業株式会社 | Manufacturing method of magneto-optical recording medium |
JP2562219B2 (en) * | 1990-02-28 | 1996-12-11 | シャープ株式会社 | Magneto-optical disk |
JPH04205742A (en) * | 1990-11-29 | 1992-07-27 | Matsushita Electric Ind Co Ltd | Magneto-optical recording medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57169996A (en) * | 1981-04-09 | 1982-10-19 | Sharp Corp | Magnetooptic storage element |
JPS586541A (en) * | 1981-07-02 | 1983-01-14 | Sharp Corp | Magnetooptic storage element |
-
1983
- 1983-09-16 JP JP17148883A patent/JPS6063747A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57169996A (en) * | 1981-04-09 | 1982-10-19 | Sharp Corp | Magnetooptic storage element |
JPS586541A (en) * | 1981-07-02 | 1983-01-14 | Sharp Corp | Magnetooptic storage element |
Also Published As
Publication number | Publication date |
---|---|
JPS6063747A (en) | 1985-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4610912A (en) | Magneto-optic memory element | |
JPS61194664A (en) | Magnetooptic storage element | |
US4786559A (en) | Magnetooptical storage element | |
JPS6271042A (en) | Optical memory element | |
JPH0335734B2 (en) | ||
JPH0438055B2 (en) | ||
JPS586542A (en) | Magnetooptic storage element | |
JPH039546B2 (en) | ||
JPH0422291B2 (en) | ||
JPH0332144B2 (en) | ||
JPS586541A (en) | Magnetooptic storage element | |
JPH036582B2 (en) | ||
JPH0419618B2 (en) | ||
JPS5938780A (en) | Magnetooptic storage element | |
JPS6314342A (en) | Magneto-optical recording medium | |
JPS5979445A (en) | Photomagnetic memory element | |
JPH0379779B2 (en) | ||
JPH0462140B2 (en) | ||
JPS62232740A (en) | Magnetooptic memory element | |
JPS62154249A (en) | Magnetooptic memory element | |
JP2801984B2 (en) | Magneto-optical storage element | |
JPS5956241A (en) | Photomagnetic recording medium | |
JPH0524571B2 (en) | ||
JPS60209946A (en) | Optomagnetic recording medium | |
JP2672914B2 (en) | Magneto-optical storage element |