JPH05234899A - Atomic layer epitaxy system - Google Patents
Atomic layer epitaxy systemInfo
- Publication number
- JPH05234899A JPH05234899A JP23610591A JP23610591A JPH05234899A JP H05234899 A JPH05234899 A JP H05234899A JP 23610591 A JP23610591 A JP 23610591A JP 23610591 A JP23610591 A JP 23610591A JP H05234899 A JPH05234899 A JP H05234899A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- atomic layer
- layer epitaxy
- substrate
- gas cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003877 atomic layer epitaxy Methods 0.000 title claims abstract description 55
- 239000007789 gas Substances 0.000 claims abstract description 154
- 239000000758 substrate Substances 0.000 claims abstract description 80
- 238000009792 diffusion process Methods 0.000 claims abstract description 16
- 239000002994 raw material Substances 0.000 claims description 37
- 239000002019 doping agent Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 238000000407 epitaxy Methods 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 description 11
- 239000013078 crystal Substances 0.000 description 8
- 125000004429 atom Chemical group 0.000 description 6
- 238000005253 cladding Methods 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 4
- 229910052711 selenium Inorganic materials 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 3
- 229910052714 tellurium Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000002109 crystal growth method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910021478 group 5 element Inorganic materials 0.000 description 2
- 229910021476 group 6 element Inorganic materials 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Led Devices (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Vapour Deposition (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
(57)【要約】
【目的】真空チャンバの容積を小さくし、原子層エピタ
キシーを極めて効率良く行ない、かつ信頼性を向上す
る。
【構成】ガスセル20、24、26、25を真空チャン
バ16内に配置し、ガスセル20、24、26、25の
吐出口の形状を長辺が少なくとも基板15の直径よりも
長い長方形とし、ガスセル20、24、26、25のガ
ス導入管7から吐出口までの間にガス拡散板8を設け、
複数の基板15をガスセル20、24、26、25の拡
散方向に対し直角方向に回転移動し、基板15上に複数
種の原料ガスをガスセル20、24、26、25から交
互に照射して、原子層エピタキシーを繰り返す。
(57) [Abstract] [Purpose] To reduce the volume of the vacuum chamber, perform atomic layer epitaxy extremely efficiently, and improve reliability. The gas cells 20, 24, 26, 25 are arranged in a vacuum chamber 16, and the shape of the discharge ports of the gas cells 20, 24, 26, 25 is a rectangle whose long sides are at least longer than the diameter of the substrate 15. , 24, 26, 25 are provided with a gas diffusion plate 8 between the gas introduction pipe 7 and the discharge port,
A plurality of substrates 15 are rotationally moved in a direction perpendicular to the diffusion direction of the gas cells 20, 24, 26, 25, and a plurality of kinds of source gases are alternately irradiated onto the substrate 15 from the gas cells 20, 24, 26, 25, Repeat atomic layer epitaxy.
Description
【0001】[0001]
【産業上の利用分野】この発明は化合物半導体等の原子
層エピタキシーによる超格子構造の形成、周期的な異種
材料の積層、原子層ドーピングによる高濃度のドーピン
グまたは薄膜を成長させるための原子層エピタキシー装
置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to atomic layer epitaxy for forming a superlattice structure by atomic layer epitaxy of a compound semiconductor, periodical stacking of different materials, high concentration doping by atomic layer doping or growing a thin film. It relates to the device.
【0002】[0002]
【従来の技術】従来、セルフリミティング機構を利用し
た原子層エピタキシーによる超格子構造の形成、周期的
な異種材料の積層に用いられる原子層エピタキシー装置
(たとえば、特開昭62−222628号公報、特開昭
63−136616号公報)は、図7に示すような基本
構成となっている。すなわち、真空チャンバ46内は真
空排気装置49と液体窒素温度に冷却されたシュラウド
44とによって、超高真空に維持されている。真空チャ
ンバ46にはヒータ43を備えたガスセル41a〜41
cが設置されており、ヒータ43はガスセル41a〜4
1c内の原料ガスの熱分解を行ない、ガスセル41a〜
41cから供給される原料ガスの流量はマスフローコン
トローラおよびバルブ42によって制御される。ガスセ
ル41a〜41cに対向して基板47が配置されてい
る。また、ガスセル41a〜41cの吐出口近傍に分子
線を遮断するためのシャッタ45が備えられている。一
方、基板47は基板ヒータ48によって適当な結晶成長
温度に加熱され、面内の温度および膜厚の均一性を得る
ため、基板ヒータ48は自転運動を行なう。2. Description of the Related Art Conventionally, an atomic layer epitaxy apparatus used for forming a superlattice structure by atomic layer epitaxy using a self-limiting mechanism and periodically laminating different kinds of materials (for example, JP-A-62-222628, Japanese Patent Laid-Open No. 63-136616) has a basic configuration as shown in FIG. That is, the inside of the vacuum chamber 46 is maintained at an ultrahigh vacuum by the vacuum exhaust device 49 and the shroud 44 cooled to the liquid nitrogen temperature. In the vacuum chamber 46, gas cells 41a to 41 having a heater 43 are provided.
c is installed, and the heater 43 is a gas cell 41a-4.
The raw material gas in 1c is thermally decomposed, and the gas cells 41a to
The flow rate of the raw material gas supplied from 41c is controlled by the mass flow controller and the valve 42. A substrate 47 is arranged so as to face the gas cells 41a to 41c. Further, a shutter 45 for blocking the molecular beam is provided near the discharge ports of the gas cells 41a to 41c. On the other hand, the substrate 47 is heated to an appropriate crystal growth temperature by the substrate heater 48, and the substrate heater 48 rotates about its axis in order to obtain in-plane temperature and film thickness uniformity.
【0003】この原子層エピタキシー装置においては、
各ガスセル41a〜41cのバルブ42の開閉、シャッ
タ45の開閉を制御することによって原子層エピタキシ
ーが行なわれる。すなわち、ガスセル41aのバルブ4
2、シャッタ45を開にし、第1種の原料ガスを基板4
7に照射して1原子層を成長させた後、ガスセル41a
のバルブ42、シャッタ45を閉じる。つぎに、真空チ
ャンバ46内に残留する原料ガスを排気したのち、ガス
セル41bのバルブ42、シャッタ45を開き、第2種
の原料ガスを基板47に照射する。このように、第1
種、第2種の原料ガスを交互に照射しながら原子層エピ
タキシーを行ない、超格子構造を形成していく。また、
ドーピングを行なう場合は、ドーパントガスを第1種の
原料ガスと第2種の原料ガスとを照射する間に、ガスセ
ル41cによって照射するか、第1種、第2種の原料ガ
スのいずれかと同時に照射する。In this atomic layer epitaxy apparatus,
Atomic layer epitaxy is performed by controlling the opening / closing of the valve 42 and the opening / closing of the shutter 45 of each of the gas cells 41a to 41c. That is, the valve 4 of the gas cell 41a
2. The shutter 45 is opened, and the first type raw material gas is supplied to the substrate 4
After irradiating 7 to grow one atomic layer, the gas cell 41a
The valve 42 and the shutter 45 are closed. Next, after exhausting the raw material gas remaining in the vacuum chamber 46, the valve 42 and the shutter 45 of the gas cell 41b are opened, and the substrate 47 is irradiated with the second type raw material gas. Thus, the first
Atomic layer epitaxy is performed while alternately irradiating the source gases of the first and second types to form a superlattice structure. Also,
When doping is performed, the dopant gas is irradiated by the gas cell 41c during the irradiation of the first type raw material gas and the second type raw material gas, or at the same time as either the first type or the second type raw material gas is irradiated. Irradiate.
【0004】[0004]
【発明が解決しようとする課題】この原子層エピタキシ
ー装置においては、基板47の全面にわたって分子線を
できだけ均一な強度分布で照射するためには、基板47
とガスセル41a〜41cの吐出口との距離を長く取る
必要があるから、真空チャンバ46の容積も大きくな
る。また、基板47とガスセル41a〜41cの吐出口
との距離が長くなると、基板47に直接照射される分子
線の比率は小さくなり、ガスセル41a〜41cから射
出されたほとんどの原料ガスは実際に基板47上での成
長には寄与せず、余剰ガスとして排気しなければならな
い。したがって、真空排気装置49には排気流量の大き
いものが必要になるばかりでなく、原料ガスを切り換え
る際に余剰ガスを排気するための排気時間が長くなる。
また、1回の成長で1枚の基板47しか処理できない。
このため、原子層エピタキシーの効率が低い。さらに、
原料ガスを切り換える度にバルブ42の開閉動作とシャ
ッタ45の開閉動作とが必要なため、積層回数を多くし
たり、また開閉動作の速度を早くすると、故障の原因と
なり、またバルブ42、シャッタ45の開閉動作の際
に、ガス流量のオーバーシュート、アンダーシュートが
生ずるから、安定なガス流量制御が困難になるので、信
頼性が低い。In this atomic layer epitaxy apparatus, in order to irradiate the molecular beam over the entire surface of the substrate 47 with the intensity distribution as uniform as possible, the substrate 47 is used.
Since it is necessary to take a long distance from the discharge ports of the gas cells 41a to 41c, the volume of the vacuum chamber 46 also becomes large. Further, when the distance between the substrate 47 and the discharge ports of the gas cells 41a to 41c becomes long, the ratio of the molecular beam directly irradiated to the substrate 47 becomes small, and most of the raw material gas injected from the gas cells 41a to 41c is actually the substrate. It does not contribute to the growth above 47 and must be exhausted as surplus gas. Therefore, not only the evacuation device 49 having a large evacuation flow rate is required, but also the evacuation time for exhausting the surplus gas when switching the source gas becomes long.
Further, only one substrate 47 can be processed by one growth.
Therefore, the efficiency of atomic layer epitaxy is low. further,
Since it is necessary to open / close the valve 42 and open / close the shutter 45 every time the source gas is switched, increasing the number of laminations or increasing the speed of the opening / closing causes a failure, and also causes the valve 42 and the shutter 45 to rotate. Since the gas flow rate overshoots and undershoots occur during the opening / closing operation of (1), stable gas flow rate control becomes difficult, resulting in low reliability.
【0005】この発明は上述の課題を解決するためにな
されたもので、真空チャンバの容積を小さくすることが
でき、原子層エピタキシーを極めて効率良く行なうこと
ができ、かつ信頼性の高い原子層エピタキシー装置を提
供することを目的とする。The present invention has been made to solve the above-mentioned problems, and it is possible to reduce the volume of a vacuum chamber, to perform atomic layer epitaxy extremely efficiently, and to achieve highly reliable atomic layer epitaxy. The purpose is to provide a device.
【0006】[0006]
【課題を解決するための手段】この目的を達成するた
め、この発明においては、基板上に複数種の原料ガスを
ガスセルから交互に照射して、原子層エピタキシーを繰
り返す原子層エピタキシー装置において、上記ガスセル
を真空チャンバ内に複数配置し、上記ガスセルの吐出口
の形状をほぼ長方形とし、上記ガスセルのガス導入管か
ら上記吐出口までの間にガス拡散板を設け、複数の上記
基板を上記ガスセルの拡散方向に対し直角方向に回転移
動する。In order to achieve this object, in the present invention, in the atomic layer epitaxy apparatus for repeating atomic layer epitaxy by alternately irradiating a substrate with plural kinds of source gases from a gas cell, A plurality of gas cells are arranged in a vacuum chamber, the shape of the discharge port of the gas cell is substantially rectangular, a gas diffusion plate is provided between the gas introduction pipe of the gas cell and the discharge port, and a plurality of the substrates are provided in the gas cell. It rotates and moves in the direction perpendicular to the diffusion direction.
【0007】この場合、上記ガスセルから供給される上
記原料ガスを、成長中において一定流量に保持するして
もよい。In this case, the source gas supplied from the gas cell may be maintained at a constant flow rate during growth.
【0008】また、ドーパントガスが供給されるガスセ
ルを設置してもよい。A gas cell to which the dopant gas is supplied may be installed.
【0009】また、上記ガスセルにヒータを設けてもよ
い。A heater may be provided in the gas cell.
【0010】また、上記原料ガスを有機金属ガスとして
もよい。The raw material gas may be an organic metal gas.
【0011】また、複数種の上記原料ガスを1つの上記
ガスセルから上記基板に照射してもよい。Further, the substrate may be irradiated with a plurality of kinds of the raw material gas from one of the gas cells.
【0012】[0012]
【作用】この原子層エピタキシー装置においては、基板
をガスセルの拡散方向に対し直角方向に移動させること
により、基板全面にわたり均一な強度の分子線を照射す
ることができるから、ガスセルと基板との距離を短くす
ることができ、また基板の回転により原料ガスを切り換
えることができるから、バルブ、シャッタの開閉動作が
必要なくなる。In this atomic layer epitaxy apparatus, by moving the substrate in a direction perpendicular to the diffusion direction of the gas cell, it is possible to irradiate a molecular beam of uniform intensity over the entire surface of the gas cell. Can be shortened, and the source gas can be switched by rotating the substrate, so that the valve and shutter opening / closing operations are not required.
【0013】[0013]
【実施例】以下、この発明を実施例により詳細に説明す
る。EXAMPLES The present invention will now be described in detail with reference to examples.
【0014】図1はこの発明に係る原子層エピタキシー
装置を示す平断面図、図2は図1に示した原子層エピタ
キシー装置の正断面図、図3は図1に示した原子層エピ
タキシー装置の一部を示す平断面図、図4は図1に示し
た原子層エピタキシー装置の一部を示す正断面図であ
る。円筒状の真空チャンバ16の上部に基板回転機構2
9が設置され、基板回転機構29によって基板保持体1
3が回転される。基板保持体13に基板ホルダ22およ
び基板ホルダ22の間に配置されたシールド板23が取
り付けられ、基板ホルダ22に複数の基板15がそれぞ
れ保持されている。また、基板保持体13と円筒状のシ
ュラウド18の内壁との間には干渉しない程度のわずか
な隙間が設けられている。ガスセル20、24、26、
25はベローズ21を介して真空チャンバ16の側面に
取り付けられ、ガスセル20、24、26、25と基板
15との距離を選択できるようになっている。シュラウ
ド18の側面にガスセル20、24、26、25を基板
15に直接対向させるためのガスセル導入口19が設け
られている。また、シュラウド18には各ガスセル導入
口19の間に排気口17が設けられている。円筒状の加
熱面を持つ基板ヒータ27は真空チャンバ16の中央に
配置されたヒータ保持部材28によって保持され、基板
ヒータ27は回転する基板15を背面から輻射加熱す
る。ここで、基板ヒータ27は基板15とともに回転さ
せる必要がないので固定である。また、真空チャンバ1
6に放出された原料ガスおよび真空チャンバ16の内部
の構成部材からの放出ガスは、真空チャンバ16の下部
の排気口30に接続されたターボ分子ポンプ、ディフュ
ージョンポンプ等の排気流量が大きくかつ到達圧力が低
い真空排気装置31によって真空チャンバ16の外部に
排気される。さらに、ガスセル20、24、26、25
の吐出口の形状は長辺が少なくとも基板15の直径より
も長い長方形であり、原料ガスはバルブ14およびガス
導入管7を通過後、内部にガス拡散板8が配置され、ガ
スシールド板3で囲まれたガス拡散ゾーンを通過して放
出される。ガス拡散ゾーンを通過した際の分子線9の強
度分布はガス拡散板8によって縦方向になだらかな分布
となり、基板15にほぼ均一に照射される。熱分解が必
要な原料ガスの場合は、このガス拡散ゾーンをヒータ5
によって所定の熱分解温度以上に加熱する。ヒータ5の
外側には熱シールド板4が設けられている。FIG. 1 is a plan sectional view showing an atomic layer epitaxy apparatus according to the present invention, FIG. 2 is a front sectional view of the atomic layer epitaxy apparatus shown in FIG. 1, and FIG. 3 is a view of the atomic layer epitaxy apparatus shown in FIG. FIG. 4 is a plan sectional view showing a part thereof, and FIG. 4 is a front sectional view showing a part of the atomic layer epitaxy apparatus shown in FIG. The substrate rotating mechanism 2 is provided on the upper portion of the cylindrical vacuum chamber 16.
9 is installed, and the substrate rotation mechanism 29 causes the substrate holder 1
3 is rotated. A substrate holder 22 and a shield plate 23 arranged between the substrate holders 22 are attached to the substrate holder 13, and a plurality of substrates 15 are respectively held by the substrate holder 22. In addition, a slight gap is provided between the substrate holder 13 and the inner wall of the cylindrical shroud 18 so as not to interfere. Gas cells 20, 24, 26,
25 is attached to the side surface of the vacuum chamber 16 via a bellows 21, and the distance between the gas cells 20, 24, 26, 25 and the substrate 15 can be selected. A gas cell introduction port 19 for directly facing the gas cells 20, 24, 26, 25 to the substrate 15 is provided on the side surface of the shroud 18. Further, the shroud 18 is provided with an exhaust port 17 between each gas cell inlet port 19. The substrate heater 27 having a cylindrical heating surface is held by a heater holding member 28 arranged in the center of the vacuum chamber 16, and the substrate heater 27 radiatively heats the rotating substrate 15 from the back surface. Here, the substrate heater 27 is fixed because it does not need to be rotated together with the substrate 15. Also, the vacuum chamber 1
The raw material gas released in 6 and the gas released from the components inside the vacuum chamber 16 have a large exhaust flow rate and a reached pressure of a turbo molecular pump, a diffusion pump, etc. connected to the exhaust port 30 in the lower part of the vacuum chamber 16. Is evacuated to the outside of the vacuum chamber 16 by the low vacuum evacuation device 31. Furthermore, the gas cells 20, 24, 26, 25
The discharge port has a rectangular shape whose long side is longer than at least the diameter of the substrate 15. The raw material gas passes through the valve 14 and the gas introduction pipe 7, and then the gas diffusion plate 8 is arranged inside the gas shielding plate 3. It is released through the enclosed gas diffusion zone. The intensity distribution of the molecular beam 9 when passing through the gas diffusion zone becomes a gentle distribution in the vertical direction by the gas diffusion plate 8, and the substrate 15 is irradiated almost uniformly. In the case of a raw material gas that needs to be pyrolyzed, this gas diffusion zone is used for the heater 5
To heat above a predetermined thermal decomposition temperature. A heat shield plate 4 is provided outside the heater 5.
【0015】この原子層エピタキシー装置によって第1
種〜第4種の原料ガスを交互に照射しながら原子層エピ
タキシーを行なうには、基板保持体13を図1の時計方
向に一定速度(原料原子の基板15の表面への付着とマ
イグレーションのための時間が最も大きい原料種におい
て、その時間を十分に取ることができる速度)で回転し
た状態で、ガスセル20、24、26、25に供給する
ガス流量を一定に保持し、ガスセル20、24、26、
25から基板15に第1種〜第4種の原料ガスを照射す
る。ここで、基板15はガス分子線の拡散方向と直角な
方向に移動するから、基板15の全面にわたって分子線
を均一な強度分布で照射することができ、シュラウド1
8の壁面と基板15およびシールド板23によって形成
される略閉空間の圧力は平衡状態となる。さらに、基板
15に直接照射されなかった余剰ガスと基板15の表面
から再放出されたガスはシュラウド18の壁面に付着す
るか、ガスセル20、24、26、25とシュラウド1
8との隙間から放出され、真空排気装置31によって排
気される。また、シールド板23は真空チャンバ16の
中央部への原料ガスの周り込みを防ぐ。さらに、シュラ
ウド18には各ガスセル導入口19の間に排気口17が
設けられているから、基板15がガスセル20、24、
26、25に対向しながら回転する過程で、基板15の
表面上に残留する原料ガスを排出することができるの
で、各原料ガス間の相互汚染を防止することができる。With this atomic layer epitaxy apparatus, the first
In order to perform atomic layer epitaxy while alternately irradiating the source gases of the first to fourth types, the substrate holder 13 is moved at a constant speed in the clockwise direction in FIG. 1 (for attachment and migration of the source atoms to the surface of the substrate 15). In the raw material species having the largest time, the gas flow rate to be supplied to the gas cells 20, 24, 26, 25 is kept constant in a state of being rotated at a speed capable of sufficiently taking the time, and the gas cells 20, 24, 26,
From 25, the substrate 15 is irradiated with the first to fourth source gases. Here, since the substrate 15 moves in the direction perpendicular to the diffusion direction of the gas molecular beam, the molecular beam can be irradiated with a uniform intensity distribution over the entire surface of the substrate 15, and the shroud 1
The pressure in the substantially closed space formed by the wall surface 8 and the substrate 15 and the shield plate 23 is in equilibrium. Further, the surplus gas not directly irradiated to the substrate 15 and the gas re-emitted from the surface of the substrate 15 adhere to the wall surface of the shroud 18, or the gas cells 20, 24, 26, 25 and the shroud 1
8 is discharged from the gap between the vacuum chamber 8 and the vacuum exhaust device 31. Further, the shield plate 23 prevents the raw material gas from entering the central portion of the vacuum chamber 16. Further, since the shroud 18 is provided with the exhaust port 17 between each gas cell inlet port 19, the substrate 15 is connected to the gas cells 20, 24,
Since the raw material gas remaining on the surface of the substrate 15 can be discharged in the process of rotating while facing 26 and 25, mutual contamination between the respective raw material gases can be prevented.
【0016】この原子層エピタキシー装置においては、
図7に示す原子層エピタキシー装置のように、基板15
に対するガス分子線の強度分布の均一性を確保するため
の適当な拡散空間を必要としないから、基板15とガス
セル20、24、26、25の先端との距離を充分小さ
くすることができるので、真空チャンバ16の容積を小
さくすることができるばかりでなく、基板15に直接照
射されない余剰ガスが少なくなるため、ガスセル20、
24、26、25に供給された原料ガスの大半は薄膜の
成長に寄与することになる。したがって、原子層エピタ
キシー的な成長を行なう場合は、原理的には1原子層分
程度という極めてわずかな原料ガス供給量で済む。この
ことは、シュラウド18の壁面と基板15およびシール
ド板23によって形成される略閉空間の圧力を低い状態
に維持し、成長中の薄膜への不純物の混入を少なくする
ためには極めて重要である。また、成長に無関係なガス
によって基板15の面上での原料原子の付着や結晶化が
阻害されにくくなるため、低い成長温度でも結晶欠陥が
少ない良質な薄膜を得ることにつながる。In this atomic layer epitaxy apparatus,
As in the atomic layer epitaxy device shown in FIG.
Since a proper diffusion space for ensuring the uniformity of the intensity distribution of the gas molecular beam with respect to is not required, the distance between the substrate 15 and the tips of the gas cells 20, 24, 26, 25 can be made sufficiently small. Not only can the volume of the vacuum chamber 16 be reduced, but the surplus gas that is not directly irradiated on the substrate 15 is reduced, so that the gas cell 20,
Most of the source gas supplied to 24, 26 and 25 contributes to the growth of the thin film. Therefore, in the case of performing atomic layer epitaxy, in principle, an extremely small amount of raw material gas supply of about one atomic layer is sufficient. This is extremely important for maintaining a low pressure in the substantially closed space formed by the wall surface of the shroud 18, the substrate 15 and the shield plate 23, and reducing impurities mixed into the growing thin film. .. Further, the deposition of the source atoms on the surface of the substrate 15 and the crystallization thereof are less likely to be hindered by the gas irrelevant to the growth, so that a good quality thin film with few crystal defects can be obtained even at a low growth temperature.
【0017】また、この原子層エピタキシー装置におい
ては、成長に寄与しない余剰ガスの比率を非常に小さく
することができるので、原料ガスの切換時間を短くする
ことができるとともに、複数の基板を同時に処理するこ
とができるため、原子層エピタキシーを極めて効率良く
行なうことができる。ここで、図1等に示した原子層エ
ピタキシー装置の成膜効率と図7に示した原子層エピタ
キシー装置の成膜効率とを比較してみる。所定の膜厚に
なるまでの原料ガスの切換回数をS、図7に示した原子
層エピタキシー装置における第1種の原料ガスの照射時
間をT1、第2種の原料ガスの照射時間をT2、また原料
ガスの切換の際に要する残留ガスの排気時間をT3と
し、T1>T2とすると、図7に示した原子層エピタキシ
ー装置の場合の成長はシリーズに行なわれるため、所定
の膜厚を得るに要する時間は基板1枚当たりS(T1+
T2+2T3)となる。一方、図1等に示した原子層エピ
タキシー装置において、照射時間を長く取る必要のある
第1種の原料ガスの照射時間T1に合わせて基板15の
回転速度を設定し、基板15を次のガスセル20、2
4、26、25に対向させるまでの時間をT4、原子層
エピタキシー装置内の基板15の設置枚数をKとする
と、所定の膜厚を得るに要する時間は基板1枚当たりS
{K(T1+T4)}/K=S(T1+T4)となる。すな
わち、S{T2+(2T3−T4)}の時間が削減でき
る。たとえば、格子定数が5.6Å程度の3−5族のG
aAsや2−6族のZnSeの場合、原子層エピタキシ
ーによって1μmの膜厚を得るには、1800回程度の
原料ガスの切り換えを行なう必要があるため、削減でき
る時間は非常に大きい。すなわち、かりにS=1800
回、T2=7s、T3=10s、T4=1sとすると、基
板1枚当たり14.5hの時間が削減できる。また、図
1等に示した原子層エピタキシー装置では、基板保持体
13の回転速度は照射時間を最も長く取る必要のある原
料ガスの照射時間で律速されているため、原料ガスの種
類が増えても処理速度は増加しないという利点がある。Further, in this atomic layer epitaxy apparatus, the ratio of the surplus gas that does not contribute to the growth can be made extremely small, so that the switching time of the source gas can be shortened and a plurality of substrates can be simultaneously processed. Therefore, atomic layer epitaxy can be performed very efficiently. Here, the film forming efficiency of the atomic layer epitaxy apparatus shown in FIG. 1 and the like will be compared with the film forming efficiency of the atomic layer epitaxy apparatus shown in FIG. The number of times the source gas is switched to a predetermined thickness is S, the irradiation time of the source gas of the first type in the atomic layer epitaxy apparatus shown in FIG. 7 is T 1 , and the irradiation time of the source gas of the second type is T 1 . 2 , and when the exhaust time of the residual gas required when switching the source gas is T 3 and T 1 > T 2 , the growth in the case of the atomic layer epitaxy apparatus shown in FIG. The time required to obtain the film thickness of S (T 1 +
T 2 + 2T 3 ). On the other hand, in the atomic layer epitaxy apparatus shown in FIG. 1 etc., the rotation speed of the substrate 15 is set in accordance with the irradiation time T 1 of the first type source gas, which requires a long irradiation time, and the substrate 15 is Gas cell 20, 2
Assuming that the time required to face 4 , 4 , and 25 is T 4 and the number of substrates 15 installed in the atomic layer epitaxy apparatus is K, the time required to obtain a predetermined film thickness is S per substrate.
{K (T 1 + T 4 )} / K = S (T 1 + T 4 ). That is, the time of S {T 2 + (2T 3 −T 4 )} can be reduced. For example, G in the 3-5 group with a lattice constant of about 5.6 Å
In the case of aAs or ZnSe of the 2-6 group, in order to obtain a film thickness of 1 μm by atomic layer epitaxy, it is necessary to switch the source gas about 1800 times, so the time that can be saved is very long. That is, S = 1800
If T 2 = 7 s, T 3 = 10 s, and T 4 = 1 s, the time for each substrate can be reduced by 14.5 h. Further, in the atomic layer epitaxy apparatus shown in FIG. 1 and the like, since the rotation speed of the substrate holder 13 is limited by the irradiation time of the raw material gas that requires the longest irradiation time, the number of types of raw material gas increases. However, there is an advantage that the processing speed does not increase.
【0018】なお、この発明に係る原子層エピタキシー
装置は、異種原子の付着係数に比べ同一原子の付着係数
がはるかに小さく、原子層単位での交互の積層が可能な
原料種であれば、有機物、無機物にかかわらず効率的な
原子層エピタキシーが可能である。また、原子層ドーピ
ングについても同様であるため、ドーピング濃度の制御
性が向上するばかりでなく、高濃度のドーピングも可能
である。The atomic layer epitaxy apparatus according to the present invention has a much smaller sticking coefficient of the same atom than the sticking coefficient of different atoms. Efficient atomic layer epitaxy is possible regardless of inorganic substances. Since the same applies to atomic layer doping, not only the controllability of the doping concentration is improved, but also high concentration doping is possible.
【0019】つぎに、この発明に係る原子層エピタキシ
ー装置による結晶成長方法について2−6族化合物半導
体を例に説明する。Next, a crystal growth method using the atomic layer epitaxy apparatus according to the present invention will be described by taking a group 2-6 compound semiconductor as an example.
【0020】2族原素であるZn、Cdと6族原素であ
るSe、S、Teとの組合せからなるワイドバンドギャ
プの化合物半導体は、直接遷移型のバンド構造を持ち、
電子線、レーザ光の照射によって比較的容易に0.4〜
0.5μmの短波長光を取り出すことができる。また、
構成元素の組成制御により、禁制帯幅を1.5〜3.8
eVの範囲で変えることができること等から、高効率の
短波長可視発光素子材料としての応用が期待されてい
る。たとえば、発光ダイオードの場合は、図5に示すよ
うな素子構造が考えられる。図5において、基板15に
はn型GaAsを用い、n型層34にはZnSeに3族
元素のGaをドーピングしたものを用い、p型層33に
はZnSeに5族元素のNをドーピングしたものを用
い、これらを順次成長させ、電極32を設ける。また、
半導体レーザの場合は、図6に示すような基本構造が考
えられる。一例として「光学、第20巻、第4号、21
6〜217頁(1991)」に記載されている理論的発
振波長が0.52μmの半導体レーザへの応用について
説明する。図6において、基板15にはn型GaAsを
用い、n型クラッド層39にはZnSSeの混晶に3族
元素のGaをドーピングしたものを用い、活性層38に
はZnSTeの混晶を用い、p型クラッド層37にはZ
nSSeの混晶に5族元素のNをドーピングしたものを
用い、これらを順次成長させて、ダブルヘテロ構造を形
成し、電極36を設ける。このような3元の混晶によっ
て各層を形成するのは、GaAsの基板15との格子整
合性を得るためであり、n型クラッド層39のZnSS
eにおいてSとSeとの組成比を6:94、活性層38
のZnSTeにおいてSとTeとの組成比を65:3
5、p型クラッド層37のZnSSeにおいてSとSe
との組成比を6:94とすることが望ましい。ここで、
たとえば2族原素であるZnの原料としてDMZ、6族
原素であるSe、S、Teの原料としてはDMSe、D
MS、DMTe等の有機金属ガスを用いて、各ガスセル
で熱分解した上で基板15に照射する。n型のドーパン
トであるGaの原料としてTMG等の有機金属ガスを用
い、p型のドーパントであるNの原料としてはNH3ガ
スを用い、各ガスセルで熱分解した上で基板15に照射
する。A wide band gap compound semiconductor composed of a combination of Group 2 elements Zn, Cd and Group 6 elements Se, S, Te has a direct transition type band structure.
Irradiation with an electron beam or laser light makes it relatively easy 0.4 ~
Light with a short wavelength of 0.5 μm can be extracted. Also,
By controlling the composition of constituent elements, the forbidden band width is 1.5 to 3.8.
Since it can be changed within the range of eV, it is expected to be applied as a highly efficient short wavelength visible light emitting device material. For example, in the case of a light emitting diode, an element structure as shown in FIG. 5 can be considered. In FIG. 5, n-type GaAs is used for the substrate 15, ZnSe doped with Ga of Group 3 element is used for the n-type layer 34, and ZnSe is doped with N of Group 5 element for the p-type layer 33. The electrode 32 is provided by sequentially growing these. Also,
In the case of a semiconductor laser, a basic structure as shown in FIG. 6 can be considered. As an example, “Optics, Volume 20, No. 4, 21
The application to a semiconductor laser having a theoretical oscillation wavelength of 0.52 μm described in “Pages 6 to 217 (1991)” will be described. In FIG. 6, n-type GaAs is used for the substrate 15, ZnSSe mixed crystal doped with Ga of Group 3 element is used for the n-type cladding layer 39, and ZnSTe mixed crystal is used for the active layer 38. Z for the p-type cladding layer 37
A mixed crystal of nSSe doped with N of Group 5 element is used, and these are sequentially grown to form a double hetero structure, and an electrode 36 is provided. Each layer is formed by such a ternary mixed crystal in order to obtain lattice matching with the substrate 15 of GaAs, and ZnSS of the n-type cladding layer 39 is formed.
In e, the composition ratio of S and Se is 6:94, and the active layer 38
ZnSTe has a composition ratio of S and Te of 65: 3.
5, S and Se in ZnSSe of the p-type cladding layer 37
It is desirable that the composition ratio of and is 6:94. here,
For example, DMZ is used as a raw material for Zn, which is a Group 2 element, and DMSe, D is used as a source for Se, S, and Te, which are Group 6 elements.
An organic metal gas such as MS or DMTe is used for thermal decomposition in each gas cell, and then the substrate 15 is irradiated. An organic metal gas such as TMG is used as a raw material of Ga, which is an n-type dopant, and NH 3 gas is used as a raw material of N, which is a p-type dopant.
【0021】以上説明したような発光ダイオードあるい
は半導体レーザをこの発明に係る原子層エピタキシー装
置によって、どのように成長させるかについて以下に説
明する。How to grow the above-described light emitting diode or semiconductor laser by the atomic layer epitaxy apparatus according to the present invention will be described below.
【0022】上記の発光ダイオードの場合、n型層34
の成長時は、DMZはガスセル20から、DMSeはガ
スセル26から、TMGはガスセル24から熱分解した
上で、基板15に照射する。ここで、DMZとDMSe
との流量比は1:1程度に維持する。つぎに、p型層3
3の成長時は、DMZ、DMSeの供給はそのままで、
TMGのガスセル24のバルブ14を閉じて、ガスセル
25からNH3を熱分解した上で基板15に照射する。
一方、基板ヒータ27によって基板15の温度を250
〜400℃に保持し、基板保持体13の回転速度を原料
原子の基板15の表面への付着とマイグレーションのた
めの時間が最も大きい原料種において、その時間を十分
に取ることができる程度とする。In the case of the above light emitting diode, the n-type layer 34
During the growth of DMZ, DMZ is thermally decomposed from the gas cell 20, DMSe is decomposed from the gas cell 26, and TMG is decomposed from the gas cell 24, and then the substrate 15 is irradiated. Where DMZ and DMSe
The flow rate ratio between and is maintained at about 1: 1. Next, the p-type layer 3
At the time of growth of 3, the supply of DMZ and DMSe is unchanged,
The valve 14 of the TMG gas cell 24 is closed, NH 3 is thermally decomposed from the gas cell 25, and then the substrate 15 is irradiated.
On the other hand, the temperature of the substrate 15 is set to 250 by the substrate heater 27.
The temperature is kept at ˜400 ° C., and the rotation speed of the substrate holder 13 is set to such an extent that the time is long enough for the raw material species that has the longest time for the attachment and migration of the raw material atoms to the surface of the substrate 15. ..
【0023】上記の半導体レーザの場合、n型クラッド
層39の成長時は、DMZはガスセル20から、DMS
eはガスセル26から、DMSはガスセル24から、T
MGはガスセル25から熱分解した上で基板15に照射
する。ここで、DMZ、DMS、DMSeの流量比は
1:0.06:0.94程度に維持する。つぎに、活性
層38の成長時は、ガスセル26の原料供給ラインをD
MTeに切り換え、TMGのガスセル25のバルブ14
を閉じる。ここで、DMZ、DMS、DMTeの流量比
は1:0.65:0.35程度に維持する。つぎに、p
型クラッド層37の成長時は、ガスセル26の原料供給
ラインをDMSeに切り換え、ガスセル25の原料供給
ラインをNH3に切り換える。ここで、DMZ、DM
S、DMSeの流量比は1:0.06:0.94程度に
維持する。一方、基板ヒータ27によって基板15の温
度を250〜400℃に保持し、基板保持体13の回転
速度を原料原子の基板15の表面への付着とマイグレー
ションのための時間が最も大きい原料種において、その
時間を十分に取ることができる程度とする。In the case of the above semiconductor laser, when the n-type cladding layer 39 is grown, the DMZ is fed from the gas cell 20 to the DMS.
e from the gas cell 26, DMS from the gas cell 24, T
The MG is thermally decomposed from the gas cell 25 and then irradiated onto the substrate 15. Here, the flow rate ratio of DMZ, DMS, and DMSe is maintained at about 1: 0.06: 0.94. Next, when the active layer 38 is grown, the raw material supply line of the gas cell 26 is set to D
Switch to MTe, valve 14 of TMG gas cell 25
Close. Here, the flow rate ratio of DMZ, DMS, and DMTe is maintained at about 1: 0.65: 0.35. Next, p
When the mold cladding layer 37 is grown, the raw material supply line of the gas cell 26 is switched to DMSe and the raw material supply line of the gas cell 25 is switched to NH 3 . Where DMZ, DM
The flow rate ratio of S and DMSe is maintained at about 1: 0.06: 0.94. On the other hand, the temperature of the substrate 15 is kept at 250 to 400 ° C. by the substrate heater 27, and the rotation speed of the substrate holder 13 is the maximum in the raw material species in which the time for attachment and migration of the raw material atoms to the surface of the substrate 15 is the longest. The time should be long enough.
【0024】以上、この発明に係る原子層エピタキシー
装置による2−6族化合物半導体およびその混晶の結晶
成長方法を、発光ダイオード、半導体レーザを例に取っ
て述べてきたが、3−5族化合物半導体およびその他の
混晶等の場合も同様であり、この発明は適応する原料種
およびその組合せは限定しない。The crystal growth method of the 2-6 group compound semiconductor and the mixed crystal thereof by the atomic layer epitaxy apparatus according to the present invention has been described above by taking the light emitting diode and the semiconductor laser as examples. The same applies to semiconductors and other mixed crystals, and the present invention does not limit applicable raw material species and combinations thereof.
【0025】なお、上述実施例においては、ガスセル2
0、24、26、25に供給する原料ガスを1種類とし
たが、複数種の原料ガスを所定の混合比で1つのガスセ
ル20、24、26、25から供給してもよい。In the above embodiment, the gas cell 2
Although one type of raw material gas is supplied to 0, 24, 26 and 25, a plurality of types of raw material gas may be supplied from one gas cell 20, 24, 26 and 25 at a predetermined mixing ratio.
【0026】[0026]
【発明の効果】以上説明したように、この発明に係る原
子層エピタキシー装置においては、ガスセルと基板との
距離を短くすることができるから、真空チャンバの容積
を小さくすることができるばかりでなく、成長に寄与し
ない余剰ガスの比率を非常に小さくすることができるの
で、原料ガスの切換時間を短くすることができるととも
に、複数の基板を同時に処理することができるため、原
子層エピタキシーを極めて効率良く行なうことができ
る。また、バルブの開閉動作が必要なくなるから、ガス
流量の変動がなくなり、原料ガスの安定な供給ができ、
また機構動作が単純化され、装置の信頼性が向上する。
このように、この発明の効果は顕著である。As described above, in the atomic layer epitaxy apparatus according to the present invention, since the distance between the gas cell and the substrate can be shortened, not only can the volume of the vacuum chamber be reduced, but also Since the ratio of the surplus gas that does not contribute to the growth can be made extremely small, the switching time of the raw material gas can be shortened and a plurality of substrates can be processed at the same time, so that atomic layer epitaxy can be performed very efficiently. Can be done. Also, since the opening and closing operation of the valve is unnecessary, there is no fluctuation in the gas flow rate and a stable supply of the raw material gas can be achieved.
Further, the mechanical operation is simplified and the reliability of the device is improved.
As described above, the effect of the present invention is remarkable.
【図1】この発明に係る原子層エピタキシー装置を示す
平断面図である。FIG. 1 is a plan sectional view showing an atomic layer epitaxy apparatus according to the present invention.
【図2】図1に示した原子層エピタキシー装置の正断面
図である。FIG. 2 is a front sectional view of the atomic layer epitaxy apparatus shown in FIG.
【図3】図1に示した原子層エピタキシー装置の一部を
示す平断面図である。3 is a plan sectional view showing a part of the atomic layer epitaxy apparatus shown in FIG.
【図4】図1に示した原子層エピタキシー装置の一部を
示す正断面図である。4 is a front sectional view showing a part of the atomic layer epitaxy apparatus shown in FIG.
【図5】発光ダイオードの基本構造図である。FIG. 5 is a basic structural diagram of a light emitting diode.
【図6】半導体レーザの基本構造図である。FIG. 6 is a basic structural diagram of a semiconductor laser.
【図7】従来の原子層エピタキシー装置を示す断面図で
ある。FIG. 7 is a cross-sectional view showing a conventional atomic layer epitaxy apparatus.
7…ガス導入管 8…ガス拡散板 15…基板 16…真空チャンバ 20、24、25、26…ガスセル 7 ... Gas introduction pipe 8 ... Gas diffusion plate 15 ... Substrate 16 ... Vacuum chamber 20, 24, 25, 26 ... Gas cell
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 33/00 D 8934−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location H01L 33/00 D 8934-4M
Claims (6)
交互に照射して、原子層エピタキシーを繰り返す原子層
エピタキシー装置において、上記ガスセルを真空チャン
バ内に複数配置し、上記ガスセルの吐出口の形状をほぼ
長方形とし、上記ガスセルのガス導入管から上記吐出口
までの間にガス拡散板を設け、複数の上記基板を上記ガ
スセルの拡散方向に対し直角方向に回転移動することを
特徴とする原子層エピタキシー装置。1. In an atomic layer epitaxy apparatus in which plural kinds of source gases are alternately irradiated from a gas cell on a substrate to repeat atomic layer epitaxy, a plurality of the gas cells are arranged in a vacuum chamber, and a gas outlet of the gas cell is arranged. An atom characterized in that the shape is substantially rectangular, a gas diffusion plate is provided between the gas introduction pipe of the gas cell and the discharge port, and the plurality of substrates are rotationally moved in a direction perpendicular to the diffusion direction of the gas cell. Layer epitaxy equipment.
を、成長中において一定流量に保持することを特徴とす
る請求項1記載の原子層エピタキシー装置。2. The atomic layer epitaxy apparatus according to claim 1, wherein the source gas supplied from the gas cell is maintained at a constant flow rate during growth.
置したことを特徴とする請求項1記載の原子層エピタキ
シー装置。3. The atomic layer epitaxy apparatus according to claim 1, further comprising a gas cell to which a dopant gas is supplied.
とする請求項1記載の原子層エピタキシー装置。4. The atomic layer epitaxy apparatus according to claim 1, wherein the gas cell is provided with a heater.
特徴とする請求項1記載の原子層エピタキシー装置。5. The atomic layer epitaxy apparatus according to claim 1, wherein the source gas is an organic metal gas.
ルから上記基板に照射することを特徴とする請求項1記
載の原子層エピタキシー装置。6. The atomic layer epitaxy apparatus according to claim 1, wherein the substrate is irradiated with a plurality of kinds of the raw material gas from one of the gas cells.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23610591A JPH05234899A (en) | 1991-09-17 | 1991-09-17 | Atomic layer epitaxy system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23610591A JPH05234899A (en) | 1991-09-17 | 1991-09-17 | Atomic layer epitaxy system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05234899A true JPH05234899A (en) | 1993-09-10 |
Family
ID=16995811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23610591A Pending JPH05234899A (en) | 1991-09-17 | 1991-09-17 | Atomic layer epitaxy system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05234899A (en) |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6855368B1 (en) | 2000-06-28 | 2005-02-15 | Applied Materials, Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
US6866746B2 (en) | 2002-01-26 | 2005-03-15 | Applied Materials, Inc. | Clamshell and small volume chamber with fixed substrate support |
US6868859B2 (en) | 2003-01-29 | 2005-03-22 | Applied Materials, Inc. | Rotary gas valve for pulsing a gas |
US6878206B2 (en) | 2001-07-16 | 2005-04-12 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
US6911391B2 (en) | 2002-01-26 | 2005-06-28 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
US6916398B2 (en) | 2001-10-26 | 2005-07-12 | Applied Materials, Inc. | Gas delivery apparatus and method for atomic layer deposition |
US6936906B2 (en) | 2001-09-26 | 2005-08-30 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
US6951804B2 (en) | 2001-02-02 | 2005-10-04 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
US6972267B2 (en) | 2002-03-04 | 2005-12-06 | Applied Materials, Inc. | Sequential deposition of tantalum nitride using a tantalum-containing precursor and a nitrogen-containing precursor |
US6994319B2 (en) | 2003-01-29 | 2006-02-07 | Applied Materials, Inc. | Membrane gas valve for pulsing a gas |
US6998579B2 (en) | 2000-12-29 | 2006-02-14 | Applied Materials, Inc. | Chamber for uniform substrate heating |
US7022948B2 (en) | 2000-12-29 | 2006-04-04 | Applied Materials, Inc. | Chamber for uniform substrate heating |
US7049226B2 (en) | 2001-09-26 | 2006-05-23 | Applied Materials, Inc. | Integration of ALD tantalum nitride for copper metallization |
EP1674592A2 (en) | 2004-12-22 | 2006-06-28 | Canon Anelva Corporation | Thin film processing system with different processing chambers |
US7085616B2 (en) | 2001-07-27 | 2006-08-01 | Applied Materials, Inc. | Atomic layer deposition apparatus |
US7101795B1 (en) | 2000-06-28 | 2006-09-05 | Applied Materials, Inc. | Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer |
US7115499B2 (en) | 2002-02-26 | 2006-10-03 | Applied Materials, Inc. | Cyclical deposition of tungsten nitride for metal oxide gate electrode |
US7175713B2 (en) | 2002-01-25 | 2007-02-13 | Applied Materials, Inc. | Apparatus for cyclical deposition of thin films |
US7201803B2 (en) | 2001-03-07 | 2007-04-10 | Applied Materials, Inc. | Valve control system for atomic layer deposition chamber |
US7204886B2 (en) | 2002-11-14 | 2007-04-17 | Applied Materials, Inc. | Apparatus and method for hybrid chemical processing |
US7208413B2 (en) | 2000-06-27 | 2007-04-24 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
US7211144B2 (en) | 2001-07-13 | 2007-05-01 | Applied Materials, Inc. | Pulsed nucleation deposition of tungsten layers |
US7262133B2 (en) | 2003-01-07 | 2007-08-28 | Applied Materials, Inc. | Enhancement of copper line reliability using thin ALD tan film to cap the copper line |
US7270709B2 (en) | 2002-07-17 | 2007-09-18 | Applied Materials, Inc. | Method and apparatus of generating PDMAT precursor |
US7294208B2 (en) | 2002-07-29 | 2007-11-13 | Applied Materials, Inc. | Apparatus for providing gas to a processing chamber |
US7342984B1 (en) | 2003-04-03 | 2008-03-11 | Zilog, Inc. | Counting clock cycles over the duration of a first character and using a remainder value to determine when to sample a bit of a second character |
US7402534B2 (en) | 2005-08-26 | 2008-07-22 | Applied Materials, Inc. | Pretreatment processes within a batch ALD reactor |
US7405158B2 (en) | 2000-06-28 | 2008-07-29 | Applied Materials, Inc. | Methods for depositing tungsten layers employing atomic layer deposition techniques |
US7416979B2 (en) | 2001-07-25 | 2008-08-26 | Applied Materials, Inc. | Deposition methods for barrier and tungsten materials |
US7422637B2 (en) | 2002-10-09 | 2008-09-09 | Applied Materials, Inc. | Processing chamber configured for uniform gas flow |
US7439191B2 (en) | 2002-04-05 | 2008-10-21 | Applied Materials, Inc. | Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications |
US7464917B2 (en) | 2005-10-07 | 2008-12-16 | Appiled Materials, Inc. | Ampoule splash guard apparatus |
US7547952B2 (en) | 2003-04-04 | 2009-06-16 | Applied Materials, Inc. | Method for hafnium nitride deposition |
US7595263B2 (en) | 2003-06-18 | 2009-09-29 | Applied Materials, Inc. | Atomic layer deposition of barrier materials |
US7611990B2 (en) | 2001-07-25 | 2009-11-03 | Applied Materials, Inc. | Deposition methods for barrier and tungsten materials |
JP2010245448A (en) * | 2009-04-09 | 2010-10-28 | Tokyo Electron Ltd | Film depositing device, film depositing method, and storage medium |
JP2010245449A (en) * | 2009-04-09 | 2010-10-28 | Tokyo Electron Ltd | Substrate processing apparatus, substrate processing method, and storage medium |
US8187970B2 (en) | 2001-07-25 | 2012-05-29 | Applied Materials, Inc. | Process for forming cobalt and cobalt silicide materials in tungsten contact applications |
US9032906B2 (en) | 2005-11-04 | 2015-05-19 | Applied Materials, Inc. | Apparatus and process for plasma-enhanced atomic layer deposition |
US9051641B2 (en) | 2001-07-25 | 2015-06-09 | Applied Materials, Inc. | Cobalt deposition on barrier surfaces |
-
1991
- 1991-09-17 JP JP23610591A patent/JPH05234899A/en active Pending
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7208413B2 (en) | 2000-06-27 | 2007-04-24 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
US7501343B2 (en) | 2000-06-27 | 2009-03-10 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
US7501344B2 (en) | 2000-06-27 | 2009-03-10 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
US6855368B1 (en) | 2000-06-28 | 2005-02-15 | Applied Materials, Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
US7405158B2 (en) | 2000-06-28 | 2008-07-29 | Applied Materials, Inc. | Methods for depositing tungsten layers employing atomic layer deposition techniques |
US7235486B2 (en) | 2000-06-28 | 2007-06-26 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
US7465666B2 (en) | 2000-06-28 | 2008-12-16 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
US7033922B2 (en) | 2000-06-28 | 2006-04-25 | Applied Materials. Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
US7115494B2 (en) | 2000-06-28 | 2006-10-03 | Applied Materials, Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
US7101795B1 (en) | 2000-06-28 | 2006-09-05 | Applied Materials, Inc. | Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer |
US6998579B2 (en) | 2000-12-29 | 2006-02-14 | Applied Materials, Inc. | Chamber for uniform substrate heating |
US7022948B2 (en) | 2000-12-29 | 2006-04-04 | Applied Materials, Inc. | Chamber for uniform substrate heating |
US7781326B2 (en) | 2001-02-02 | 2010-08-24 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
US6951804B2 (en) | 2001-02-02 | 2005-10-04 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
US7094680B2 (en) | 2001-02-02 | 2006-08-22 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
US7201803B2 (en) | 2001-03-07 | 2007-04-10 | Applied Materials, Inc. | Valve control system for atomic layer deposition chamber |
US7211144B2 (en) | 2001-07-13 | 2007-05-01 | Applied Materials, Inc. | Pulsed nucleation deposition of tungsten layers |
US6878206B2 (en) | 2001-07-16 | 2005-04-12 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
US10280509B2 (en) | 2001-07-16 | 2019-05-07 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
US7416979B2 (en) | 2001-07-25 | 2008-08-26 | Applied Materials, Inc. | Deposition methods for barrier and tungsten materials |
US9051641B2 (en) | 2001-07-25 | 2015-06-09 | Applied Materials, Inc. | Cobalt deposition on barrier surfaces |
US7611990B2 (en) | 2001-07-25 | 2009-11-03 | Applied Materials, Inc. | Deposition methods for barrier and tungsten materials |
US8187970B2 (en) | 2001-07-25 | 2012-05-29 | Applied Materials, Inc. | Process for forming cobalt and cobalt silicide materials in tungsten contact applications |
US9209074B2 (en) | 2001-07-25 | 2015-12-08 | Applied Materials, Inc. | Cobalt deposition on barrier surfaces |
US8027746B2 (en) * | 2001-07-27 | 2011-09-27 | Applied Materials, Inc. | Atomic layer deposition apparatus |
US9031685B2 (en) | 2001-07-27 | 2015-05-12 | Applied Materials, Inc. | Atomic layer deposition apparatus |
US7860597B2 (en) | 2001-07-27 | 2010-12-28 | Applied Materials, Inc. | Atomic layer deposition apparatus |
US7085616B2 (en) | 2001-07-27 | 2006-08-01 | Applied Materials, Inc. | Atomic layer deposition apparatus |
US6936906B2 (en) | 2001-09-26 | 2005-08-30 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
US7049226B2 (en) | 2001-09-26 | 2006-05-23 | Applied Materials, Inc. | Integration of ALD tantalum nitride for copper metallization |
US7494908B2 (en) | 2001-09-26 | 2009-02-24 | Applied Materials, Inc. | Apparatus for integration of barrier layer and seed layer |
US7352048B2 (en) | 2001-09-26 | 2008-04-01 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
US6916398B2 (en) | 2001-10-26 | 2005-07-12 | Applied Materials, Inc. | Gas delivery apparatus and method for atomic layer deposition |
US7175713B2 (en) | 2002-01-25 | 2007-02-13 | Applied Materials, Inc. | Apparatus for cyclical deposition of thin films |
US7732325B2 (en) | 2002-01-26 | 2010-06-08 | Applied Materials, Inc. | Plasma-enhanced cyclic layer deposition process for barrier layers |
US6911391B2 (en) | 2002-01-26 | 2005-06-28 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
US7094685B2 (en) | 2002-01-26 | 2006-08-22 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
US6866746B2 (en) | 2002-01-26 | 2005-03-15 | Applied Materials, Inc. | Clamshell and small volume chamber with fixed substrate support |
US7473638B2 (en) | 2002-01-26 | 2009-01-06 | Applied Materials, Inc. | Plasma-enhanced cyclic layer deposition process for barrier layers |
US7429516B2 (en) | 2002-02-26 | 2008-09-30 | Applied Materials, Inc. | Tungsten nitride atomic layer deposition processes |
US7115499B2 (en) | 2002-02-26 | 2006-10-03 | Applied Materials, Inc. | Cyclical deposition of tungsten nitride for metal oxide gate electrode |
US6972267B2 (en) | 2002-03-04 | 2005-12-06 | Applied Materials, Inc. | Sequential deposition of tantalum nitride using a tantalum-containing precursor and a nitrogen-containing precursor |
US7514358B2 (en) | 2002-03-04 | 2009-04-07 | Applied Materials, Inc. | Sequential deposition of tantalum nitride using a tantalum-containing precursor and a nitrogen-containing precursor |
US7439191B2 (en) | 2002-04-05 | 2008-10-21 | Applied Materials, Inc. | Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications |
US7588736B2 (en) | 2002-07-17 | 2009-09-15 | Applied Materials, Inc. | Apparatus and method for generating a chemical precursor |
US7429361B2 (en) | 2002-07-17 | 2008-09-30 | Applied Materials, Inc. | Method and apparatus for providing precursor gas to a processing chamber |
US7569191B2 (en) | 2002-07-17 | 2009-08-04 | Applied Materials, Inc. | Method and apparatus for providing precursor gas to a processing chamber |
US7270709B2 (en) | 2002-07-17 | 2007-09-18 | Applied Materials, Inc. | Method and apparatus of generating PDMAT precursor |
US7597758B2 (en) | 2002-07-17 | 2009-10-06 | Applied Materials, Inc. | Chemical precursor ampoule for vapor deposition processes |
US7294208B2 (en) | 2002-07-29 | 2007-11-13 | Applied Materials, Inc. | Apparatus for providing gas to a processing chamber |
US7422637B2 (en) | 2002-10-09 | 2008-09-09 | Applied Materials, Inc. | Processing chamber configured for uniform gas flow |
US7204886B2 (en) | 2002-11-14 | 2007-04-17 | Applied Materials, Inc. | Apparatus and method for hybrid chemical processing |
US7591907B2 (en) | 2002-11-14 | 2009-09-22 | Applied Materials, Inc. | Apparatus for hybrid chemical processing |
US7402210B2 (en) | 2002-11-14 | 2008-07-22 | Applied Materials, Inc. | Apparatus and method for hybrid chemical processing |
US7262133B2 (en) | 2003-01-07 | 2007-08-28 | Applied Materials, Inc. | Enhancement of copper line reliability using thin ALD tan film to cap the copper line |
US6994319B2 (en) | 2003-01-29 | 2006-02-07 | Applied Materials, Inc. | Membrane gas valve for pulsing a gas |
US6868859B2 (en) | 2003-01-29 | 2005-03-22 | Applied Materials, Inc. | Rotary gas valve for pulsing a gas |
US7342984B1 (en) | 2003-04-03 | 2008-03-11 | Zilog, Inc. | Counting clock cycles over the duration of a first character and using a remainder value to determine when to sample a bit of a second character |
US7547952B2 (en) | 2003-04-04 | 2009-06-16 | Applied Materials, Inc. | Method for hafnium nitride deposition |
US7595263B2 (en) | 2003-06-18 | 2009-09-29 | Applied Materials, Inc. | Atomic layer deposition of barrier materials |
EP1674592A2 (en) | 2004-12-22 | 2006-06-28 | Canon Anelva Corporation | Thin film processing system with different processing chambers |
US7402534B2 (en) | 2005-08-26 | 2008-07-22 | Applied Materials, Inc. | Pretreatment processes within a batch ALD reactor |
US7464917B2 (en) | 2005-10-07 | 2008-12-16 | Appiled Materials, Inc. | Ampoule splash guard apparatus |
US9032906B2 (en) | 2005-11-04 | 2015-05-19 | Applied Materials, Inc. | Apparatus and process for plasma-enhanced atomic layer deposition |
JP2010245448A (en) * | 2009-04-09 | 2010-10-28 | Tokyo Electron Ltd | Film depositing device, film depositing method, and storage medium |
JP2010245449A (en) * | 2009-04-09 | 2010-10-28 | Tokyo Electron Ltd | Substrate processing apparatus, substrate processing method, and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05234899A (en) | Atomic layer epitaxy system | |
US10090153B2 (en) | Formation of heteroepitaxial layers with rapid thermal processing to remove lattice dislocations | |
JPH0650744B2 (en) | Method for producing cadmium mercury telluride | |
JPH05121329A (en) | Method and apparatus for manufacturing compound thin film | |
US6281099B1 (en) | Method for synthesizing single crystal AIN thin films of low resistivity n-type and low resistivity p-type | |
JPH08172055A (en) | Method and apparatus for growing nitride semiconductor crystal | |
Herman et al. | Molecular beam epitaxy | |
JPH0553759B2 (en) | ||
JP2821557B2 (en) | Method for growing compound semiconductor single crystal thin film | |
JPH0212814A (en) | Crystal growth method of compound semiconductor | |
JP2813711B2 (en) | (III)-(V) Method for diffusing zinc into compound semiconductor crystal | |
Kasper et al. | Molecular beam epitaxy of silicon, silicon alloys, and metals | |
JP3385228B2 (en) | Crystal growth apparatus and crystal growth method | |
JPH0744154B2 (en) | Light irradiation type low temperature MOCVD method and apparatus | |
JPH01215014A (en) | Growth of semiconductor crystal | |
Maung | Growth and Characterisation of II-VI Semiconductors | |
JP2620546B2 (en) | Method for producing compound semiconductor epitaxy layer | |
JPH0532482A (en) | Molecular beam epitaxy method and compound semiconductor film | |
JPS63174314A (en) | Method for doping iii-v compound semiconductor crystal | |
Sze et al. | Characteristics of MOCVD‐Grown High‐Quality CdTe Layers on GaAs Substrates | |
JPH02143419A (en) | Method and apparatus for forming thin film by vapor phase growth | |
JP2753832B2 (en) | III-V Vapor Phase Growth of Group V Compound Semiconductor | |
Woelk et al. | Large-Area Growth of InGaN/AlGaN Using In-Situ Monitoring | |
JPH05326412A (en) | Compound thin film forming method | |
JPH11106288A (en) | Crystal thin film manufacturing method |