[go: up one dir, main page]

JPH0522284B2 - - Google Patents

Info

Publication number
JPH0522284B2
JPH0522284B2 JP17343387A JP17343387A JPH0522284B2 JP H0522284 B2 JPH0522284 B2 JP H0522284B2 JP 17343387 A JP17343387 A JP 17343387A JP 17343387 A JP17343387 A JP 17343387A JP H0522284 B2 JPH0522284 B2 JP H0522284B2
Authority
JP
Japan
Prior art keywords
magnetic
film
alloy
ferromagnetic
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17343387A
Other languages
Japanese (ja)
Other versions
JPS6417212A (en
Inventor
Toshiaki Wada
Masateru Nose
Akio Murata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP17343387A priority Critical patent/JPS6417212A/en
Publication of JPS6417212A publication Critical patent/JPS6417212A/en
Publication of JPH0522284B2 publication Critical patent/JPH0522284B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 利用産業分野 この発明は、フエライト等の強磁性酸化物を主
体とし、作動ギヤツプ近傍に金属磁性体を用いた
複合型磁気ヘツドの改良に係り、金属磁性体との
接合部に生じた磁気的な疑似ギヤツプをなくし、
磁気特性、例えば、再生出力の周波数特性のうね
り等を防止してフラツトな出力特性を有し、ま
た、製造性の良い構成からなり、高保磁力を有す
る記録媒体を用いる各種の磁気記録再生装置に適
した複合型磁気ヘツドに関する。
[Detailed Description of the Invention] Field of Application This invention relates to the improvement of a composite magnetic head that is mainly composed of a ferromagnetic oxide such as ferrite and uses a magnetic metal material near the operating gap, and the invention relates to the improvement of a composite magnetic head that uses a magnetic metal material near the operating gap. Eliminate the magnetic pseudo gap that occurs in the
It has flat output characteristics by preventing magnetic characteristics such as undulations in the frequency characteristics of the reproduced output, and has a structure that is easy to manufacture, and is suitable for various magnetic recording and reproducing devices using recording media with high coercive force. Concerning a suitable composite magnetic head.

背景技術 近年、磁気記録分野では、記録信号の高密度化
の要望にともない、高保磁力を有する所謂メタル
系記録媒体が使用されてきている。例えば、
FDD,HDD,VTR、電算機用磁気テープ記憶装
置、S−DAT、スチルビデオフロツピー等多種
多様の記録形態の磁気記録再生装置に使用されつ
つある。
BACKGROUND ART In recent years, in the field of magnetic recording, so-called metal-based recording media having high coercive force have been used to meet the demand for higher density recording signals. for example,
It is being used in magnetic recording and reproducing devices for a wide variety of recording formats, such as FDDs, HDDs, VTRs, magnetic tape storage devices for computers, S-DATs, and still video floppies.

メタルテープのような高い残留磁束密度を持つ
磁気記録媒体に、磁気記録・再生する磁気ヘツド
は、その磁気ギヤツプに発生させる磁界強度を従
来より高くする必要があつた。
A magnetic head that magnetically records and reproduces information on a magnetic recording medium having a high residual magnetic flux density, such as a metal tape, has had to generate a magnetic field strength higher than before in its magnetic gap.

一方、単結晶フエライトの如き強磁性酸化物よ
りなる磁気コアを半割体として、その一対を突合
せ、突合せ部を磁気ギヤツプとした構成からなる
磁気ヘツドの場合、そのギヤツプを形成している
フエライトのBsがせいぜい6000Gと低いため、十
分な記録磁界強度が取れない問題があつた。
On the other hand, in the case of a magnetic head that consists of a magnetic core made of a ferromagnetic oxide such as single-crystal ferrite, which is split into halves, and a pair of halves are abutted against each other, with the abutting portion forming a magnetic gap, the ferrite forming the gap is Since Bs was as low as 6000G at most, there was a problem that sufficient recording magnetic field strength could not be obtained.

そこで、強磁性酸化物を主体とした磁気ヘツド
において、磁気ヘツドの磁気ギヤツプ近傍部を、
フエライトより飽和磁束密度Bsの高い金属磁性
薄膜にて構成した所謂複合型磁気ヘツドが種々提
案されている。
Therefore, in a magnetic head mainly made of ferromagnetic oxide, the area near the magnetic gap of the magnetic head is
Various so-called composite magnetic heads have been proposed that are constructed from metal magnetic thin films having a higher saturation magnetic flux density Bs than ferrite.

例えば、第5図a,bに示す従来の複合型磁気
ヘツドの媒体対向面の概略図にて説明すると、複
合型磁気ヘツドは、単結晶フエライトのような強
磁性酸化物よりなる一対の磁気コア半体片1,2
の各突合せ面1a,2aに、スパツタリング法の
如き真空薄膜形成技術を用いて金属磁性薄膜3,
4を形成したのち、該磁気コア半体片1,2を突
き合せて、磁気ギヤツプ5を形成する構成からな
る。
For example, referring to the schematic diagram of the medium facing surface of a conventional composite magnetic head shown in FIGS. Half piece 1, 2
A metal magnetic thin film 3, is formed on each abutting surface 1a, 2a using a vacuum thin film forming technique such as a sputtering method.
After the magnetic core halves 1 and 2 are formed, a magnetic gap 5 is formed by butting the magnetic core halves 1 and 2 together.

また、かかる構成からなる複合型磁気ヘツドの
金属磁性薄膜には、次のような特性が要求され、
下記要求を満たす材料として、Fe−Al−Si系の
金属磁性薄膜がある。
In addition, the metal magnetic thin film of the composite magnetic head with such a configuration is required to have the following characteristics:
An Fe-Al-Si metal magnetic thin film is a material that satisfies the following requirements.

フエライト材のBsより高いBsを有すること 耐摩耗性にすぐれていること 熱的安定性にすぐれていること 高い周波数(例えば、10MHz)での透磁率が
すぐれていること 従来技術の問題点 前述の金属磁性薄膜にFe−Al−Si系合金膜を
用いた複合型磁気ヘツドは、メタルテープの使用
に対応する諸条件を満足するすぐれた磁気ヘツド
として多用されている。しかし、以下の問題があ
つた。
Has a Bs higher than that of ferrite materials Has excellent wear resistance Has excellent thermal stability Has excellent magnetic permeability at high frequencies (e.g. 10MHz) Problems with conventional technology The above-mentioned A composite magnetic head using an Fe--Al--Si alloy film as a metal magnetic thin film is widely used as an excellent magnetic head that satisfies various conditions for the use of metal tapes. However, the following problems arose.

第6図の磁気ヘツドの模式図にて説明すると、
磁気コア1,2の突合せ面上に、金属磁性薄膜
3,4を被着形成し、ヘツド化する際に、薄膜形
成条件やコア1,2と薄膜3,4の熱膨張係数の
差等により、金属磁性薄膜の被着初期層の磁気特
性が劣化し、磁気コア1,2との接合部1b,2
bに磁気的な不連続が生じ、このような複合型磁
気ヘツドで再生した時、接合部1b,2bが疑似
ギヤツプとして働き、第7図に示すような疑似ピ
ークが現われ、再生出力の周波数特性にうねりを
生じる問題があつた。
To explain using the schematic diagram of the magnetic head in Fig. 6,
When forming the metal magnetic thin films 3 and 4 on the abutting surfaces of the magnetic cores 1 and 2 to form a head, depending on the thin film formation conditions and the difference in coefficient of thermal expansion between the cores 1 and 2 and the thin films 3 and 4, etc. , the magnetic properties of the initial adhesion layer of the metal magnetic thin film deteriorate, and the joints 1b, 2 with the magnetic cores 1, 2 deteriorate.
When a magnetic discontinuity occurs in b, and such a composite magnetic head is used for reproduction, the junctions 1b and 2b act as a pseudo gap, and a pseudo peak as shown in Fig. 7 appears, causing the frequency characteristics of the reproduction output to change. There was a problem that caused undulations.

また、磁気コア1,2の突合せ面の金属磁性薄
膜の被着予定面に加工歪層があると、接合部1b
に磁気的な不連続が生じて前記と同様に疑似ギヤ
ツプとして働くことが判明した。
Furthermore, if there is a processed strain layer on the abutting surface of the magnetic cores 1 and 2 on which the metal magnetic thin film is to be deposited, the joining portion 1b
It was found that a magnetic discontinuity occurs in the magnetic field, which acts as a pseudo gap in the same way as described above.

このような疑似ギヤツプ生成問題に対しては、
一般には、アジマスロスを利用し、疑似ギヤツプ
となる接合部1b,2bと磁気ギヤツプ5とが非
平行になるように、例えば、第5図に示す如く、
所定のアジマス角を設けることにより対処してい
た。
For this kind of pseudo-gap generation problem,
In general, azimuth loss is used to make the joints 1b and 2b, which form a pseudo gap, and the magnetic gap 5 non-parallel, for example, as shown in FIG.
This problem has been dealt with by providing a predetermined azimuth angle.

しかしながら、前記第5図に示すような構造で
は、該金属磁性薄膜を20μm程度に厚く被着形成
する必要があり、膜剥離による歩留低下、あるい
は被着形成に長時間を要して生産性が悪いなどの
問題があつた。
However, in the structure shown in FIG. 5, it is necessary to deposit the metal magnetic thin film to a thickness of about 20 μm, which reduces the yield due to film peeling or takes a long time to form the deposit, reducing productivity. There were problems such as poor quality.

発明の目的 この発明は、高抗磁力Hcを有する磁気記録媒
体に高密度記録再生するのに適した複合型磁気ヘ
ツドを目的とし、所謂疑似ギヤツプの生成を防止
し、量生産にすぐれかつ信頼性が高く、耐摩耗性
の良好な複合型磁気ヘツドを目的とする。
Purpose of the Invention The object of the present invention is to provide a composite magnetic head suitable for high-density recording and reproducing on a magnetic recording medium having a high coercive force Hc, which prevents the formation of so-called pseudo gaps, is suitable for mass production, and is highly reliable. The objective is to create a composite magnetic head with high wear resistance and good wear resistance.

発明の構成 この発明は、強磁性酸化物を主体とする磁気コ
アの少なくとも作動ギヤツプ近傍部が金属磁性体
からなる複合型磁気ヘツドにおいて、該金属磁性
体がNiを70wt%〜90wt%、Mnを5wt%〜25wt
%含有する強磁性のNi−Mn系合金薄膜とFe−
Al−Si系合金薄膜とからなり、無歪高平坦度面
となした強磁性酸化物表面とFe−Al−Si系合金
薄膜の間に前記強磁性のNi−Mn系合金薄膜が形
成されていることを特徴とする複合型磁気ヘツド
である。
Structure of the Invention The present invention provides a composite magnetic head in which a magnetic core mainly composed of a ferromagnetic oxide is made of a metal magnetic material at least in the vicinity of the operating gap, wherein the metal magnetic material contains 70 wt% to 90 wt% of Ni and Mn. 5wt%~25wt
% of ferromagnetic Ni-Mn alloy thin film and Fe-
The ferromagnetic Ni-Mn alloy thin film is formed between the ferromagnetic oxide surface, which has a strain-free high flatness surface, and the Fe-Al-Si alloy thin film. This is a composite magnetic head characterized by the following features:

すなわち、この発明の複合型磁気ヘツドは、例
えば、Ni−ZnフエライトやMn−Znフエライト
などの強磁性酸化物よりなる磁気コア半体片の突
合せ面となる表面を、メカノケミカル研摩、フロ
ートポリツシユ等の無歪加工により高精度平坦面
で無歪の面に加工した後、 該加工面上にNiを70wt%〜90wt%、Mnを5wt
%〜25wt%含有する強磁性のNi−Mn系合金膜を
被着形成し、 さらに、Fe−Al−Si系合金薄膜、所謂センダ
スト膜を被着形成し、所定形状に加工したのち、
該磁気コア半体片を突き合せて磁気ギヤツプを形
成した構成からなることを特徴とする。
That is, in the composite magnetic head of the present invention, for example, the abutting surfaces of the magnetic core halves made of ferromagnetic oxide such as Ni-Zn ferrite or Mn-Zn ferrite are subjected to mechanochemical polishing or float polishing. After processing a high-precision flat surface into a strain-free surface using stress-free processing such as
After depositing a ferromagnetic Ni-Mn alloy film containing % to 25wt%, and further depositing a Fe-Al-Si alloy thin film, a so-called sendust film, and processing it into a predetermined shape,
It is characterized by a structure in which the magnetic core halves are butted together to form a magnetic gap.

この発明による複合型磁気ヘツドは、磁気コア
半体の突き合わせ面上に所要順序に積層された積
層構造の金属磁性体を特徴とし、前記強磁性の
Ni−Mn系合金薄膜とFe−Al−Si系合金薄膜と
からなる2層構造はもちろん、磁気コア半体であ
る強磁性酸化物と前記強磁性のNi−Mn系合金
膜、及びNi−Mn系合金膜とFe−Si−Al系合金
膜のそれぞれの接合面の一方または両方の接合面
に生成した拡散層を有する積層構造の場合をも含
む。
The composite magnetic head according to the present invention is characterized by metal magnetic bodies having a laminated structure laminated in a predetermined order on the abutting surfaces of the magnetic core halves, and wherein the ferromagnetic
Not only does it have a two-layer structure consisting of a Ni-Mn alloy thin film and a Fe-Al-Si alloy thin film, but also a ferromagnetic oxide, which is the magnetic core half, the ferromagnetic Ni-Mn alloy film, and a Ni-Mn alloy film. This also includes the case of a laminated structure having a diffusion layer formed on one or both of the bonding surfaces of the alloy film and the Fe-Si-Al alloy film.

発明の効果 この発明の特徴であるFe−Al−Si系合金薄膜
と強磁性のNi−Mn系合金薄膜の2層構造の金属
磁性体を、強磁性酸化物磁気コア面に設けること
により、高抗磁力Hcを有する磁気記録媒体に高
密度記録再生するのに適した複合型磁気ヘツドが
得られ、所謂疑似ギヤツプを実質的になくし、周
波数特性のうねりが著しく減少し、また、金属磁
性体は比較的薄い膜でよく、その被着形成に時間
を要せず生産性にすぐれ、かつ信頼性が高く、耐
摩耗性の良好な複合型磁気ヘツドが得られる。
Effects of the Invention By providing a metal magnetic material with a two-layer structure of a Fe-Al-Si alloy thin film and a ferromagnetic Ni-Mn alloy thin film on the surface of a ferromagnetic oxide magnetic core, it is possible to A composite magnetic head suitable for high-density recording and reproducing on a magnetic recording medium having a coercive force Hc is obtained, the so-called pseudo gap is virtually eliminated, the waviness of the frequency characteristic is significantly reduced, and the metal magnetic material is A relatively thin film is required, and a composite magnetic head with excellent productivity, high reliability, and good wear resistance can be obtained since it does not require much time to form the film.

かかる効果が得られる理由を詳述する。 The reason why such an effect can be obtained will be explained in detail.

前述した疑似ギヤツプの原因の1つとして考え
られるFe−Al−Si合金薄膜の初期劣化層は、通
常のスパツタ法や真空蒸着法の成膜条件を種々変
更しても容易に除くことが出来ない。
The initial deterioration layer of the Fe-Al-Si alloy thin film, which is thought to be one of the causes of the pseudo-gap mentioned above, cannot be easily removed even if the film-forming conditions of the usual sputtering method or vacuum evaporation method are changed. .

この理由は明らかでないが、第8図に示す、ス
パツタ法によるセンダスト膜の磁気特性に及ぼす
膜厚の影響との関係を見れば明らかな如く、膜厚
が薄くなるに従つて、透磁率は著しく低下するこ
とがわかる。
The reason for this is not clear, but as shown in Figure 8, which shows the relationship between the influence of film thickness on the magnetic properties of the sendust film produced by the sputtering method, as the film thickness becomes thinner, the magnetic permeability decreases significantly. It can be seen that this decreases.

従つて、磁気コア半体との界面に近い側の数
100Å〜数1000Åの部分は、それより上の部分に
比べて透磁率が著しく低くなり、これが疑似ギヤ
ツプとして働いていると推察される。
Therefore, the number of sides close to the interface with the magnetic core half
The magnetic permeability of the 100 Å to several 1000 Å region is significantly lower than that of the upper region, and it is presumed that this acts as a pseudo gap.

本発明者らが種々検討の結果、Fe−Al−Si合
金薄膜の初期層の磁気特性が著しく劣化するの
は、磁気コア半対を構成する強磁性酸化物に直接
Fe−Al−Si膜を成膜した場合、その成膜初期に
おいて結晶配向が乱れ易くなり、熱処理を行なつ
ても強磁性酸化物との界面付近では再結晶及び粒
成長が十分起こり難いためであると考えられる。
As a result of various studies, the present inventors have found that the reason for the significant deterioration of the magnetic properties of the initial layer of the Fe-Al-Si alloy thin film is that the ferromagnetic oxide forming the magnetic core halves is directly affected.
When a Fe-Al-Si film is formed, the crystal orientation tends to be disordered in the initial stage of film formation, and recrystallization and grain growth are difficult to occur near the interface with the ferromagnetic oxide even after heat treatment. It is believed that there is.

そこで、疑似ギヤツプ防止を目的に金属磁性体
を種々検討したところ、Niを70wt%〜90wt%、
Mnを5wt%〜25wt%含有する強磁性のNi−Mn
系合金を、スパツタ法や蒸着法で薄膜化し、適当
な熱処理を施すことにより、Fe−Al−Si合金膜
とは異なり初期劣化層が実質的に出現せず、数百
Å〜数千Å程度の薄膜でもすぐれた軟磁気特性を
示すことを知見した。
Therefore, we investigated various metal magnetic materials for the purpose of preventing pseudo gaps, and found that Ni was 70wt% to 90wt%.
Ferromagnetic Ni-Mn containing 5wt% to 25wt% Mn
By making the alloy into a thin film using sputtering or vapor deposition and subjecting it to appropriate heat treatment, unlike Fe-Al-Si alloy films, an initial deterioration layer does not substantially appear, and the thickness is from several hundred Å to several thousand Å. It was discovered that even a thin film of this type exhibits excellent soft magnetic properties.

すなわち、前記強磁性のNi−Mn系合金膜を、
最初に強磁性酸化物等からなる基板上に成膜し、
次いで、Fe−Al−Si合金膜を成膜すれば、地下
のNi−Mn系合金膜とFe−Al−Si合金膜の磁気
的相互作用により、Fe−Al−Si合金膜の初期劣
化層の磁気特性が改善され、疑似ギヤツプが実質
的に消失することを知見した。
That is, the ferromagnetic Ni-Mn alloy film is
First, a film is formed on a substrate made of ferromagnetic oxide, etc.
Next, when a Fe-Al-Si alloy film is formed, the initial deterioration layer of the Fe-Al-Si alloy film is removed due to the magnetic interaction between the underground Ni-Mn alloy film and the Fe-Al-Si alloy film. It was found that the magnetic properties were improved and the pseudo gap virtually disappeared.

また、この発明は、Fe−Al−Si系合金膜とNi
−Mn系合金膜の2層構造にしたことにより、膜
の応力を緩和する効果があり、熱処理後の膜の剥
離を防止できる。
In addition, this invention provides an Fe-Al-Si alloy film and a Ni
The two-layer structure of the -Mn alloy film has the effect of relieving stress in the film, and can prevent peeling of the film after heat treatment.

発明の好ましい実施態様 この発明において、複合型磁気ヘツドの構成
は、金属磁性体が無歪高平坦度面となした強磁性
酸化物表面に被着されるNiを70wt%〜90wt%、
Mnを5wt%〜25wt%含有する強磁性のNi−Mn
系合金薄膜と、さらにその上に被着されるFe−
Al−Si系合金薄膜との積層構成であれば、公知
のいかなる構成も利用できる。
Preferred Embodiment of the Invention In the present invention, the composite magnetic head has a structure in which the metal magnetic material contains 70 wt% to 90 wt% of Ni, which is deposited on the ferromagnetic oxide surface which forms a strain-free and high flatness surface.
Ferromagnetic Ni-Mn containing 5wt% to 25wt% Mn
Fe- based alloy thin film and Fe-
Any known structure can be used as long as it has a laminated structure with an Al--Si alloy thin film.

また、この発明において、磁気コア主体となる
強磁性酸化物には、Ni−ZnフエライトやMn−
Znフエライトなどの単結晶フエライト、HIP処
理された焼結フエライトが利用できる。
In addition, in this invention, the ferromagnetic oxide that is the main component of the magnetic core includes Ni-Zn ferrite and Mn-
Single-crystal ferrite such as Zn ferrite and HIP-treated sintered ferrite can be used.

この発明の特徴であるNi−Mn系合金膜は、前
述の如く、Fe−Al−Si系合金膜の成膜初期層の
磁気特性を改善する目的のために、Niを70wt%
〜90wt%、Mnを5wt%〜25wt%含有すること、
そしてNi−Mn系合金膜自体が疑似ギヤツプとな
らないために強磁性であることが必要である。
As mentioned above, the Ni-Mn alloy film, which is a feature of this invention, contains 70wt% Ni for the purpose of improving the magnetic properties of the initial layer of the Fe-Al-Si alloy film.
~90wt%, containing 5wt% to 25wt% Mn,
The Ni--Mn alloy film itself needs to be ferromagnetic so as not to form a pseudo gap.

また、その飽和磁束密度Bsは、基体となる強
磁性酸化物のBsの約70%以上は必要で、基体と
なる強磁性酸化物のBsと同等以上が好ましい。
Further, the saturation magnetic flux density Bs needs to be approximately 70% or more of the Bs of the ferromagnetic oxide serving as the base, and is preferably equal to or higher than the Bs of the ferromagnetic oxide serving as the base.

保磁力は、数100e以下であれば使用可能である
が、望ましくは10Oe以下、さらに好ましくは数
Oe以下が良い。
A coercive force of several 100e or less can be used, but preferably 10Oe or less, more preferably a few
Oe or lower is better.

このNi−Mn系合金膜の組成は、少なくともNi
を70wt%〜90wt%、Mnを5wt%〜25wt%含有す
ればよく、 すなわち、Ni−Mn2元合金でもよく、さらに
は、副成分として、Sb15wt%以下、Ge15wt%以
下、Sn20wt%以下、Si5%wt以下、Al5wt%以
下、Co15wt%以下、Fe9wt%以下、Cu10wt%以
下、Cr10wt%以下、Mo10wt%以下、W10wt%
以下、V10wt%以下、Nb10wt%以下、Ta10wt
%以下の少なくとも1種以上を合計で20wt%以
下含有するNi−Mn系合金でも良い。
The composition of this Ni-Mn alloy film is at least Ni
It is sufficient to contain 70wt% to 90wt% of Mn and 5wt% to 25wt% of Mn, that is, a Ni-Mn binary alloy may be used.Furthermore, as subcomponents, Sb15wt% or less, Ge15wt% or less, Sn20wt% or less, Si5% wt or less, Al5wt% or less, Co15wt% or less, Fe9wt% or less, Cu10wt% or less, Cr10wt% or less, Mo10wt% or less, W10wt%
Below, V10wt% or less, Nb10wt% or less, Ta10wt
It may be a Ni-Mn alloy containing at least 20 wt % or less of at least one of the following.

しかし、このNi−Mn系合金膜の軟磁気特性
は、熱処理条件、特に冷却速度に依存し、しかも
合金組成によつて最適な熱処理条件が異なるた
め、合金組成に応じた最適の熱処理条件を適宜選
定する必要があり、成膜後の加工前後またはボン
デイング加工時の熱処理と併用するとよい。
However, the soft magnetic properties of this Ni-Mn alloy film depend on the heat treatment conditions, especially the cooling rate, and the optimal heat treatment conditions differ depending on the alloy composition. It is advisable to use it in combination with heat treatment before and after processing after film formation or during bonding processing.

また、最外層に設けるFe−Al−Si系合金薄膜
は、所謂センダスト合金であり、従来より複合型
磁気ヘツドに多用されており、磁気ヘツドの用途
等に応じて、公知の組成が適宜選定し得るが、3
〜10wt%Al,6〜15wt%Si,80〜90wt%Feの範
囲の合金が用いられることが多く、また、必要に
応じて、Cr,Ti,Ni,Co,Mo,Zr,希土類元
素などを添加するのもよい。
The Fe-Al-Si alloy thin film provided in the outermost layer is a so-called sendust alloy, which has been widely used in composite magnetic heads, and a known composition can be selected as appropriate depending on the purpose of the magnetic head. I get it, but 3
An alloy in the range of ~10wt%Al, 6~15wt%Si, 80~90wt%Fe is often used, and if necessary, Cr, Ti, Ni, Co, Mo, Zr, rare earth elements, etc. It is also good to add.

磁気コア半体を構成する強磁性酸化物の表面
に、前記強磁性のNi−Mn系合金薄膜とさらにそ
の上にFe−Al−Si系合金薄膜を成膜するが、そ
の被着方法としては、各種スパツタリング法、真
空蒸着、イオンプレーテイング、等の公知の気相
成膜方法が利用できる。
On the surface of the ferromagnetic oxide constituting the magnetic core half, the ferromagnetic Ni-Mn alloy thin film and the Fe-Al-Si alloy thin film are formed on top of the ferromagnetic Ni-Mn alloy thin film, but the deposition method is as follows. , various sputtering methods, vacuum evaporation, ion plating, and other known vapor phase film forming methods can be used.

好ましい被着方法、条件としては、いずれの方
法においても、到達真空度は高い程好ましく、少
なくとも10-6Torr台以下の高真空にする必要が
あり、望ましくは2×10-6Torr以下、さらに望
ましくは1×10-6Torr以下が良い。
As for preferred deposition methods and conditions, in any method, the higher the degree of vacuum achieved, the better, and it is necessary to maintain a high vacuum of at least 10 -6 Torr or less, preferably 2 × 10 -6 Torr or less, and more preferably Preferably it is 1×10 -6 Torr or less.

スパツタリング法を用いる場合には、アルゴン
ガス等の不活性ガスをスパツタリングガスとして
用いるが、この圧力はスパツタ装置の構造によつ
て適宜選定すれば良い。例えば、マグネトロン式
スパツタ装置の場合、ガス圧は1×10-3Torr〜
20×10-3Torrが好ましく、さらに好ましくは2
×10-3Torr〜8×10-3Torrがよい。
When using the sputtering method, an inert gas such as argon gas is used as the sputtering gas, and the pressure may be appropriately selected depending on the structure of the sputtering device. For example, in the case of a magnetron type sputtering device, the gas pressure is 1 × 10 -3 Torr ~
20×10 -3 Torr is preferred, more preferably 2
×10 -3 Torr to 8×10 -3 Torr is good.

また基板温度は300℃以下が良いが、望ましく
は200℃以下、さらに望ましくは100℃以下がよ
い。
Further, the substrate temperature is preferably 300°C or less, preferably 200°C or less, and more preferably 100°C or less.

さらに、この強磁性のNi−Mn系合金薄膜を被
着する強磁性酸化物表面の基板粗度は好ましくは
40Å以下にする。その理由は、被着形成する前記
強磁性のNi−Mn系合金薄膜の膜厚が数Å〜数千
Åと薄いために、強磁性酸化物の表面状態、例え
ば、残留歪応力や粗度等に強く影響され、磁気特
性が悪化する可能性があるためである。
Furthermore, the substrate roughness of the ferromagnetic oxide surface to which this ferromagnetic Ni-Mn alloy thin film is deposited is preferably
The thickness should be 40Å or less. The reason for this is that the thickness of the ferromagnetic Ni-Mn alloy thin film to be deposited is as thin as several Å to several thousand Å, so the surface condition of the ferromagnetic oxide, such as residual strain stress and roughness, etc. This is because there is a possibility that the magnetic properties will be deteriorated.

発明者の実験によれば、この発明の特徴である
強磁性のNi−Mn系合金薄膜の特性劣化は、強磁
性酸化物の表面粗度が該磁性膜厚の1/10を境に顕
著になるため、強磁性酸化物表面粗度は、好まし
くは100Å以下、さらに好ましくは40Å以下がよ
い。
According to the inventor's experiments, the characteristic deterioration of the ferromagnetic Ni-Mn alloy thin film, which is a feature of this invention, becomes noticeable when the surface roughness of the ferromagnetic oxide reaches 1/10 of the thickness of the magnetic film. Therefore, the surface roughness of the ferromagnetic oxide is preferably 100 Å or less, more preferably 40 Å or less.

かかる強磁性酸化物表面の無歪、高平坦度状態
を得る方法としては、メカノケミカル研摩、フロ
ートポリツシング、ダイヤモンド研摩の後メカノ
ケミカル研摩する方法、あるいはダイヤモンド研
摩の後メカノケミカル研摩し、さらにフロートポ
リツシングする方法が良い。
Methods for obtaining a strain-free, high flatness state of the ferromagnetic oxide surface include mechanochemical polishing, float polishing, mechanochemical polishing after diamond polishing, or mechanochemical polishing after diamond polishing, and Float polishing is a good method.

また、この発明において、メカノケミカル研摩
法としては、粒径0.1μm以下のMgO,ZrO2,Al2
O3,SiO2等の単独または混合微粉末を、純水中
に0.5wt%〜20wt%懸濁させた懸濁液を用い、該
懸濁液中において、例えば、硬質クロス、はん
だ、Sn等からなる円盤型ポリツシヤーを回転可
能に配設して、被加工材をこの懸濁液中でポリツ
シヤー表面に所定荷重で当接させ、両者を相対的
に回転させて研摩を行なうが好ましい。
In addition, in this invention, as a mechanochemical polishing method, MgO, ZrO 2 , Al 2 with a particle size of 0.1 μm or less
Using a suspension of 0.5wt% to 20wt% of O 3 , SiO 2 , etc. alone or mixed fine powder in pure water, for example, hard cloth, solder, Sn, etc. It is preferable that a disc-shaped polisher consisting of a polisher is rotatably disposed, the workpiece is brought into contact with the polisher surface in this suspension under a predetermined load, and the two are rotated relative to each other to perform polishing.

前記研摩方法において、ポリツシヤー材及び回
転速度、荷重圧力は微細粉末の粒径や純水中の懸
濁量、被加工材等の条件により適宜選定すればよ
いが、ラツプ圧力;0.01Kg/cm2〜1Kg/cm2、回転
速度;10m/min〜100m/min、の条件が好まし
い。また、前記単独または混合微細粉末粒径は
0.1μmを越えると、引つかき疵が生じるため、粒
径0.1μm以下が好ましい。
In the polishing method, the polisher material, rotation speed, and load pressure may be appropriately selected depending on conditions such as the particle size of the fine powder, the amount of suspension in pure water, and the workpiece material . Conditions of ~1 Kg/cm 2 and rotational speed of 10 m/min to 100 m/min are preferable. In addition, the particle size of the single or mixed fine powder is
If the particle size exceeds 0.1 μm, scratches will occur, so the particle size is preferably 0.1 μm or less.

この発明において、強磁性のNi−Mn系合金膜
とFe−Al−Si合金膜とからなる金属磁性体厚み
は、合金磁性膜の磁気特性、ヘツドの生産性、信
頼性より、0.3μm〜30μm、望ましくは、0.5μm〜
20μmである。
In this invention, the thickness of the metal magnetic material consisting of a ferromagnetic Ni-Mn alloy film and a Fe-Al-Si alloy film is 0.3 μm to 30 μm based on the magnetic properties of the alloy magnetic film, head productivity, and reliability. , preferably 0.5 μm ~
It is 20μm.

さらに、この発明の特徴であるNi−Mn系合金
膜の被着厚みは、Fe−Al−Si合金膜の軟磁気特
性を改善する目的のためには0.01μm以上必要で、
望ましくは0.05μm以上、さらに望ましくは0.1μm
以上が好ましい。しかし、Fe−Al−Si合金膜の
厚みの1/2を越える厚さになると金属磁性膜全体
の飽和磁化が劣化するので、Fe−Al−Si合金膜
の厚みの1/2以下、望ましくは1/3以下が良い。
Furthermore, the deposited thickness of the Ni-Mn alloy film, which is a feature of this invention, is required to be 0.01 μm or more for the purpose of improving the soft magnetic properties of the Fe-Al-Si alloy film.
Preferably 0.05μm or more, more preferably 0.1μm
The above is preferable. However, if the thickness exceeds 1/2 of the thickness of the Fe-Al-Si alloy film, the saturation magnetization of the entire metal magnetic film will deteriorate. 1/3 or less is good.

またFe−Al−Si系合金膜の厚みは、高保磁力
媒体に十分に飽和記録するためには、0.1μm以上
が必要であり、高い磁気特性(透磁率、保磁力)
を安定して確保でき、かつ優れた加工性を得るに
は、30μm以下、望ましくは20μm以下、さらに望
ましくは10μm以下である。
In addition, the thickness of the Fe-Al-Si alloy film needs to be 0.1 μm or more in order to perform saturation recording on high coercive force media, and has high magnetic properties (magnetic permeability, coercive force).
In order to stably ensure this and obtain excellent workability, the thickness is 30 μm or less, preferably 20 μm or less, and more preferably 10 μm or less.

また、上記金属磁性体は、強磁性酸化物からな
る磁気コア半体対のギヤツプ近傍部の一方の磁気
コア半体だけに形成されても良いし、両方に形成
されても良い。
Further, the metal magnetic material may be formed only on one of the magnetic core halves in the vicinity of the gap of the pair of magnetic core halves made of ferromagnetic oxide, or may be formed on both.

また、磁気コア半体対の両方に形成される場
合、それぞれの金属磁性体の膜厚構成は、上記し
た膜厚範囲内ならば良く、統一する必要はない。
Further, when formed on both of the pair of magnetic core halves, the film thickness structure of each metal magnetic material may be within the above-mentioned film thickness range, and does not need to be unified.

このようにして二層に被着された金属磁性膜の
磁気特性を向上させる目的で必要に応じて熱処理
を行うとよい。
In order to improve the magnetic properties of the metal magnetic film thus deposited in two layers, heat treatment may be performed as necessary.

熱処理は、成膜後加工前に行なつても良く、ま
た、磁気ヘツドの形状に加工してから行なつても
良いし、さらにまた磁気ヘツドの半体対のボンデ
イング加工を行なう際にガラス溶着のための加熱
を熱処理と併用しても良い。
Heat treatment may be performed after film formation and before processing, or may be performed after processing into the shape of the magnetic head, or may be performed during glass welding when bonding the magnetic head halves. Heating for this purpose may be used in combination with heat treatment.

熱処理の温度と時間は、金属磁性膜の磁気特性
を向上させるのに十分な温度と時間を適宜選定す
ると同時に、磁気コア半体を構成する強磁性酸化
物との熱膨張係数差、磁気コア半体を構成する強
磁性酸化物の耐熱性、強磁性酸化物とNi−Mn系
合金膜と、Fe−Al−Si系合金膜との3者間の相
互拡散を同時に考慮して選定すべきであつて、使
用した強磁性酸化物、及び金属磁性膜の組成によ
つて適宜選定する必要がある。
The temperature and time of the heat treatment should be selected appropriately to improve the magnetic properties of the metal magnetic film, and at the same time, the difference in thermal expansion coefficient between the magnetic core half and the ferromagnetic oxide, and the magnetic core half. The selection should be made by simultaneously considering the heat resistance of the ferromagnetic oxide that makes up the body, the mutual diffusion between the ferromagnetic oxide, the Ni-Mn alloy film, and the Fe-Al-Si alloy film. It is necessary to select it appropriately depending on the ferromagnetic oxide used and the composition of the metal magnetic film.

通常温度は300℃以上、900℃以下が好ましく、
さらに400℃以上、600℃以下がより好ましい。時
間は1分以上、1000時間以下が好ましく、さらに
は10分以上、100時間以下がより好ましい。
Normal temperature is preferably 300℃ or higher and 900℃ or lower.
More preferably, the temperature is 400°C or higher and 600°C or lower. The time is preferably 1 minute or more and 1000 hours or less, and more preferably 10 minutes or more and 100 hours or less.

冷却速度も熱処理温度、時間と同様に使用した
強磁性酸化物、及び金属磁性膜の組成によつて適
宜選定する必要があるが、 通常、1℃/hr以上、10000℃/hr以下が好ま
しいが、5℃/hr〜2000℃/hrの範囲がより好ま
しい。
As with the heat treatment temperature and time, the cooling rate also needs to be selected appropriately depending on the ferromagnetic oxide used and the composition of the metal magnetic film, but it is usually preferably 1°C/hr or more and 10,000°C/hr or less. , a range of 5°C/hr to 2000°C/hr is more preferable.

雰囲気は、金属磁性膜及び強磁性酸化物の磁気
特性を著しく劣化させるものでなければどのよう
な雰囲気でも良いが、真空または不活性ガスまた
は窒素ガス中が好ましい。
Any atmosphere may be used as long as it does not significantly deteriorate the magnetic properties of the metal magnetic film and the ferromagnetic oxide, but vacuum, inert gas, or nitrogen gas is preferable.

このようにして熱処理を行なつた場合、熱処理
温度及び時間との兼ね合いにより、分析機器で検
出し得る程度の相互拡散層が出来る場合がある。
When heat treatment is performed in this manner, depending on the heat treatment temperature and time, an interdiffusion layer may be formed to a degree that can be detected by an analytical instrument.

このような場合、この発明による磁気ヘツド
は、強磁性酸化物と強磁性のNi−Mn系合金膜及
びFe−Si−Al系合金膜のそれぞれの境界面の少
なくとも一方における拡散層を含む構成となる。
In such a case, the magnetic head according to the present invention has a structure including a diffusion layer on at least one of the interfaces between the ferromagnetic oxide and the ferromagnetic Ni-Mn alloy film and the Fe-Si-Al alloy film. Become.

図面に基づく発明の開示 第1図はこの発明による複合型磁気ヘツドの斜
視図説明図である。第2図、第3図及び第4図は
この発明による複合型磁気ヘツドの製造工程を示
す斜視説明図である。
DISCLOSURE OF THE INVENTION BASED ON THE DRAWINGS FIG. 1 is an explanatory perspective view of a composite magnetic head according to the present invention. FIGS. 2, 3, and 4 are perspective explanatory views showing the manufacturing process of the composite magnetic head according to the present invention.

この発明による複合磁気ヘツドは、第1図に示
す如く、例えば、Mn−Zn系フエライト等の強磁
性酸化物からなる磁気コア半体10,11の無歪
加工を施した磁気ギヤツプ12近傍部の面上に、
強磁性薄膜13,14と強磁性薄膜13′,1
4′がスパツタリング等の真空薄膜形成技術によ
つて、それぞれ被着形成され多層構造をなしてお
り、前記ギヤツプ12は、強磁性薄膜上に被着形
成されたSiO2等の非磁性材15により形成され
ており、また、コイル巻線用窓16を形成し、ガ
ラス17によつてコア10,11半体対が接合さ
れている。
As shown in FIG. 1, the composite magnetic head according to the present invention has magnetic core halves 10 and 11 made of a ferromagnetic oxide such as Mn-Zn ferrite, which are processed without strain, and a portion near a magnetic gap 12. on the surface,
Ferromagnetic thin films 13, 14 and ferromagnetic thin films 13', 1
4' are deposited using a vacuum thin film forming technique such as sputtering to form a multilayer structure, and the gap 12 is made of a non-magnetic material 15 such as SiO 2 deposited on a ferromagnetic thin film. It also forms a window 16 for coil winding, and the pair of core halves 10 and 11 are joined by a glass 17.

かかる複合ヘツドの作製工程を第2図、第3
図、第4図に基づいて説明する。
The manufacturing process of such a composite head is shown in FIGS. 2 and 3.
This will be explained based on FIG.

まず、Mn−Zn系フエライトのような強磁性酸
化物よりなる磁性基板20の後工程にて金属磁性
薄膜と接合する基板面に、メカノケミカル研摩を
施し、さらに必要に応じて、ポリツシユ定盤との
間に数μmのギヤツプを設けてフロートポリツシ
ユを施し、該基板面を高精度に無歪に研摩する。
この際、面粗度が100Åを越えないように行い、
好ましくは40Å以下にする。
First, mechanochemical polishing is applied to the surface of the magnetic substrate 20 made of a ferromagnetic oxide such as Mn-Zn ferrite, which will be bonded to the metal magnetic thin film in the subsequent process, and if necessary, a polishing surface plate is applied. Float polishing is performed with a gap of several μm between the two to polish the substrate surface with high precision and without distortion.
At this time, ensure that the surface roughness does not exceed 100 Å,
Preferably it is 40 Å or less.

次に、研摩された磁性基板20面上に、スパツ
タリング法などの真空薄膜形成技術により、強磁
性のNi−Mn系合金の第1磁性膜13を被着形成
し、真空薄膜形成装置の真空度を変えることなく
連続して、Fe−Al−Si系合金の第2磁性膜14
を被着形成する。
Next, a first magnetic film 13 of a ferromagnetic Ni-Mn alloy is deposited on the polished surface of the magnetic substrate 20 using a vacuum thin film forming technique such as sputtering, and the vacuum level of the vacuum thin film forming apparatus is Continuously without changing the second magnetic film 14 of Fe-Al-Si alloy
Form the adhesion.

またさらに、所定厚みの磁気ギヤツプ形成用の
非磁性材15膜を成膜する。
Furthermore, 15 films of non-magnetic material for forming a magnetic gap with a predetermined thickness are formed.

こうして得られた複合磁性基板20の磁性膜の
付着している面に、例えば、回転砥石等を用い
て、第3図に示す如く、上面部を横切るような断
面凹状の溝部22を複数形成する。
On the surface of the thus obtained composite magnetic substrate 20 to which the magnetic film is attached, a plurality of grooves 22 having a concave cross-section extending across the upper surface are formed using, for example, a rotary grindstone, as shown in FIG. .

さらに、断面凹状の溝部22と90°直行する同
一面上の方向に、凹船型形状の溝部21を複数形
成する。
Furthermore, a plurality of grooves 21 having a concave boat shape are formed in a direction on the same plane that is perpendicular to the groove 22 having a concave cross section by 90 degrees.

次に、第4図に示すように、該溝部21,22
が形成された複合磁性基板20と、断面凹状の溝
部31のみが形成され、2層の磁性膜を被着した
複合磁性基板30とを突き合せ、磁性基板20の
溝部22にガラス棒を挿入し、例えば、600℃で
溶融し、溝部22をガラスで埋め、基板20と基
板30を接着し、ブロツク40を得る。
Next, as shown in FIG.
The composite magnetic substrate 20 on which a groove 31 is formed and the composite magnetic substrate 30 on which only a groove 31 with a concave cross section is formed and two layers of magnetic films are adhered are brought together, and a glass rod is inserted into the groove 22 of the magnetic substrate 20. For example, the glass is melted at 600° C., the groove 22 is filled with glass, and the substrates 20 and 30 are bonded together to obtain the block 40.

このガラスボンデイングの際、所要の冷却速度
で室温まで冷却することにより、同時に、金属磁
性膜の磁気特性を向上させる。
During this glass bonding, by cooling to room temperature at a required cooling rate, the magnetic properties of the metal magnetic film are improved at the same time.

次に、このブロツク40をa−a線、b−b線
の位置でスライシング加工することで、複数個の
ヘツドチツプを得ることができる。
Next, a plurality of head chips can be obtained by slicing this block 40 along the a-a line and the bb-line.

その後、上記ヘツドチツプの記録媒体摺接面を
円筒研摩することにより、第1図に示した複合型
磁気ヘツドを得ることができる。
Thereafter, the recording medium sliding surface of the head chip is cylindrically polished to obtain the composite magnetic head shown in FIG. 1.

実施例 第2図と同様に、Mn−Zn単結晶フエライトか
らなる磁性基板の一主面を、アンプレツクス社製
の粒径0.1μm以下のMgOパウダーの懸濁液を用
いて、メカノケミカルポリツシユしたのち、ポリ
ツシユ定盤と一主面との間に5μmのギヤツプを保
持させながら、同様の懸濁液を用いてフロートポ
リツシユを施し、前記主面を高精度な無歪面に仕
上げた。
Example Similar to FIG. 2, one main surface of a magnetic substrate made of Mn-Zn single-crystal ferrite was coated with mechanochemical polyamide using a suspension of MgO powder with a particle size of 0.1 μm or less manufactured by Amplex. After polishing, float polishing was applied using the same suspension while maintaining a gap of 5 μm between the polishing surface plate and one main surface, and the main surface was finished into a highly accurate distortion-free surface. .

この際、タリステツプ(テーラーホブソン社
製)表面段差測定器による測定では、粗度40Å以
下であつた。また、表面歪層の除去状態は、エリ
プソメトリーによつて確認した。
At this time, the roughness was measured to be 40 Å or less using a Talystep (manufactured by Taylor Hobson) surface step measuring device. Further, the state of removal of the surface strain layer was confirmed by ellipsometry.

上記の無歪加工された磁性基板の主面上に、
RF2極マグネトロンスパツタリング装置によつ
て、20wt%Mn−1.2wt%Al−Ni合金膜を0.2μm
厚みで被着形成し、さらに薄膜層を大気に晒すこ
となく、連続してFe−Al−Si膜を5μm厚みに被
着形成した。
On the main surface of the above strain-free processed magnetic substrate,
A 20wt%Mn-1.2wt%Al-Ni alloy film with a thickness of 0.2μm was formed using an RF two-pole magnetron sputtering device.
A Fe-Al-Si film was continuously deposited to a thickness of 5 μm without exposing the thin film layer to the atmosphere.

さらに、磁気ギヤツプを形成するためのAl2O3
膜をRF2極マグネトロンスパツタリング装置に
て、0.1μm厚みに被着形成し、第2図の如き3層
の複合磁性基板を得る。
Additionally, Al 2 O 3 to form a magnetic gap
A film was deposited to a thickness of 0.1 μm using an RF two-pole magnetron sputtering device to obtain a three-layer composite magnetic substrate as shown in FIG.

次に、第3図に示すように、トラツクを形成す
るためのトラツク溝及び記録再生のための巻線用
巻線溝を多数形成した。
Next, as shown in FIG. 3, a large number of track grooves for forming tracks and winding grooves for winding wires for recording and reproduction were formed.

さらに、この複合磁性基板の一主面上に、後の
ガラスボンデイング時のガラス流れ性を向上させ
るために、Cr膜を0.05μm厚みに被着形成した。
Furthermore, a 0.05 μm thick Cr film was formed on one main surface of this composite magnetic substrate in order to improve glass flowability during glass bonding later.

次に、複合磁性基板所定寸法の複数の半体状態
に切り出し、第4図に示すように、この巻線溝を
有する半体と巻線溝を有しない半体を、490℃、
1Hrの真空熱処理によつて、ガラスボンデイング
し、かつ100℃/hrの冷却速度で室温まで冷却す
ることにより、同時に、金属磁性膜の磁気特性を
向上させた。
Next, the composite magnetic substrate is cut into a plurality of halves having predetermined dimensions, and as shown in FIG.
At the same time, the magnetic properties of the metal magnetic film were improved by glass bonding by vacuum heat treatment for 1 hour and cooling to room temperature at a cooling rate of 100°C/hr.

この時、ダミーとして同じ熱処理を施したシー
ト状膜の磁気特性を測定したところ、 Bs約11KG以上、Hc0.2Oe以下、10MHzにおけ
るμは2000以上であつた。
At this time, when the magnetic properties of a sheet-like film subjected to the same heat treatment as a dummy were measured, Bs was about 11 KG or more, Hc was less than 0.2 Oe, and μ at 10 MHz was more than 2000.

さらに、第4図と同様に、a−a線、b−b線
に沿つて、スライシングし、所定寸法、形状とな
るように外形加工を施し、チツプ化した。
Furthermore, in the same manner as in FIG. 4, the product was sliced along lines a-a and line bb-b, externally processed to have predetermined dimensions and shape, and made into chips.

次に、第9図に示すように、コンポジツトヘツ
ド化し、電磁変換特性を測定した。
Next, as shown in FIG. 9, a composite head was formed and the electromagnetic conversion characteristics were measured.

また、比較のために、従来法のFe−Al−Si膜
のみによるコンポジツトヘツドも作製し、電磁変
換特性を測定した。
For comparison, a composite head using only a conventional Fe--Al--Si film was also fabricated and its electromagnetic conversion characteristics were measured.

第10図は従来法、本発明によるコンポジツト
ヘツドの再生波形の模式図であり、aは磁気ギヤ
ツプからの出力で、bは金属磁性膜と磁気コア半
体の間の磁気的不連続による疑似ギヤツプによる
出力である。
FIG. 10 is a schematic diagram of reproduction waveforms of the composite head according to the conventional method and the present invention, where a is the output from the magnetic gap, and b is the pseudo waveform due to the magnetic discontinuity between the metal magnetic film and the magnetic core half. This is the output due to the gap.

出力比b/aの測定の結果、本発明のb/aは
0.02、従来法のb/aは0.2であり、本発明によ
るヘツドの場合の方は、疑似ギヤツプの効果は実
質的に問題とならない程度に著しく減少し、良好
な記録再生特性を有することが確認できた。
As a result of measuring the output ratio b/a, the b/a of the present invention is
0.02, b/a of the conventional method was 0.2, and it was confirmed that in the case of the head according to the present invention, the effect of the pseudo gap was significantly reduced to the extent that it was practically no problem, and it had good recording and reproducing characteristics. did it.

また、当然の結果として、本発明によるコンポ
ジツトヘツドの再生周波数特性のうねりは大幅に
改善され、1dB以下であつた。
Furthermore, as a natural result, the waviness of the reproduction frequency characteristics of the composite head according to the present invention was significantly improved and was less than 1 dB.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による複合型磁気ヘツドの斜
視説明図である。第2図、第3図及び第4図はこ
の発明による複合型磁気ヘツドの製造工程を示す
斜視説明図である。第5図a,b及び第6図は従
来の複合型磁気ヘツドの説明図である。第7図と
第10図は磁気ヘツドの再生出力波形の模式図で
ある。第8図はセンダスト膜の磁気特性に及ぼす
膜厚みの影響を説明する膜厚と透磁率との関係の
グラフである。第9図はコンポジツトヘツドの斜
視説明図である。 10,11……磁気コア半体、12……磁気ギ
ヤツプ、13……第1磁性膜、14……第2磁性
膜、15……非磁性体、16……コイル巻線用
窓、17……ガラス、20,30……磁性基板、
21,22,31……溝部、40……ブロツク。
FIG. 1 is a perspective view of a composite magnetic head according to the present invention. FIGS. 2, 3, and 4 are perspective explanatory views showing the manufacturing process of the composite magnetic head according to the present invention. FIGS. 5a and 5b and 6 are explanatory diagrams of a conventional composite magnetic head. FIGS. 7 and 10 are schematic diagrams of reproduction output waveforms of the magnetic head. FIG. 8 is a graph of the relationship between film thickness and magnetic permeability, illustrating the influence of film thickness on the magnetic properties of the Sendust film. FIG. 9 is a perspective explanatory view of the composite head. DESCRIPTION OF SYMBOLS 10, 11...Magnetic core half, 12...Magnetic gap, 13...First magnetic film, 14...Second magnetic film, 15...Nonmagnetic material, 16...Window for coil winding, 17... ...Glass, 20,30...Magnetic substrate,
21, 22, 31...Groove, 40...Block.

Claims (1)

【特許請求の範囲】 1 強磁性酸化物を主体とする磁気コアの少なく
とも作動ギヤツプ近傍部が金属磁性体からなる複
合型磁気ヘツドにおいて、 無歪高平坦度面となした強磁性酸化物表面に、
Niを70wt%〜90wt%、Mnを5wt%〜25wt%含
有する強磁性のNi−Mn系合金薄膜、Fe−Al−
Si系合金薄膜の順に積層された金属磁性体を有す
ることを特徴とする複合型磁気ヘツド。
[Scope of Claims] 1. In a composite magnetic head in which at least a portion near the operating gap of a magnetic core mainly composed of a ferromagnetic oxide is made of a metal magnetic material, the ferromagnetic oxide surface has a strain-free high flatness surface. ,
Ferromagnetic Ni-Mn alloy thin film containing 70wt% to 90wt% Ni and 5wt% to 25wt% Mn, Fe-Al-
A composite magnetic head characterized by having a metal magnetic material laminated in the order of Si-based alloy thin films.
JP17343387A 1987-07-10 1987-07-10 Composite type magnetic head Granted JPS6417212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17343387A JPS6417212A (en) 1987-07-10 1987-07-10 Composite type magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17343387A JPS6417212A (en) 1987-07-10 1987-07-10 Composite type magnetic head

Publications (2)

Publication Number Publication Date
JPS6417212A JPS6417212A (en) 1989-01-20
JPH0522284B2 true JPH0522284B2 (en) 1993-03-29

Family

ID=15960369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17343387A Granted JPS6417212A (en) 1987-07-10 1987-07-10 Composite type magnetic head

Country Status (1)

Country Link
JP (1) JPS6417212A (en)

Also Published As

Publication number Publication date
JPS6417212A (en) 1989-01-20

Similar Documents

Publication Publication Date Title
JPS63279404A (en) Composite type magnetic head
US5386332A (en) Magnetic head for high-frequency, high density recording
JPH0522284B2 (en)
JPH0522283B2 (en)
JP2775770B2 (en) Method for manufacturing soft magnetic thin film
JP2586041B2 (en) Composite magnetic head
JPS63302406A (en) Magnetic head
JP3452594B2 (en) Manufacturing method of magnetic head
JP2519554B2 (en) MIG type magnetic head
JPS61190702A (en) magnetic head
JP3147434B2 (en) Magnetic head
JPH045046Y2 (en)
JPH0254405A (en) Magnetic head
JPS6015807A (en) Magnetic head
JP2798315B2 (en) Composite magnetic head
JPH02185707A (en) Composite type magnetic head and production thereof
JPH03203008A (en) Production of laminated film of fe-si-al ferromagnetic alloy for magnetic head
JPH04341908A (en) Composite magnetic head
JPH03266207A (en) Production of mig type magnetic head
JPH0370283B2 (en)
JPH0254409A (en) Magnetic head
JPH08115505A (en) Magnetic head
JPH0668423A (en) Thin film magnetic head
JP2000011314A (en) Magnetic head and its production
JPH0765316A (en) Magnetic head