JPH0521388A - Method for manufacturing semiconductor device - Google Patents
Method for manufacturing semiconductor deviceInfo
- Publication number
- JPH0521388A JPH0521388A JP17203491A JP17203491A JPH0521388A JP H0521388 A JPH0521388 A JP H0521388A JP 17203491 A JP17203491 A JP 17203491A JP 17203491 A JP17203491 A JP 17203491A JP H0521388 A JPH0521388 A JP H0521388A
- Authority
- JP
- Japan
- Prior art keywords
- film
- forming
- layer
- semiconductor
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 239000004065 semiconductor Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims 6
- 239000004020 conductor Substances 0.000 claims abstract description 19
- 229910052751 metal Inorganic materials 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 11
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 238000005468 ion implantation Methods 0.000 claims abstract description 5
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 3
- 239000010410 layer Substances 0.000 claims description 58
- 238000009792 diffusion process Methods 0.000 claims description 10
- 239000011229 interlayer Substances 0.000 claims description 7
- 229910021332 silicide Inorganic materials 0.000 claims description 7
- 238000005229 chemical vapour deposition Methods 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims 2
- 239000012212 insulator Substances 0.000 claims 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 claims 1
- 239000000956 alloy Substances 0.000 claims 1
- 229910052750 molybdenum Inorganic materials 0.000 claims 1
- 239000011733 molybdenum Substances 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 229910052763 palladium Inorganic materials 0.000 claims 1
- 229920005591 polysilicon Polymers 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 4
- 230000005669 field effect Effects 0.000 abstract description 2
- 150000002500 ions Chemical class 0.000 description 11
- 229910004298 SiO 2 Inorganic materials 0.000 description 8
- 229910008484 TiSi Inorganic materials 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 6
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 5
- 239000000758 substrate Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910021341 titanium silicide Inorganic materials 0.000 description 2
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000005360 phosphosilicate glass Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
(57)【要約】
【目的】 微細 MOS型電界効果トランジスタ(MOSFET)の
ソース/ ドレイン(S/D)電極形成の改良方法に関し,素子
の微細化に適し, しかも良好な特性を有する半導体への
コンタクトを形成する方法を提供することを目的として
いる。
【構成】 コンタクト孔を開口した後, ポリSi等半導体
膜又はメタルを含む導電体膜を形成する工程と, その後
イオン注入により該導電体膜の中に,S/D 領域と導電型
の同じ不純物をドーピングする工程と, その後コンタク
ト部の抵抗を減少させるための熱処理を行う工程とから
構成する。
(57) [Abstract] [Purpose] A method for improving the formation of source / drain (S / D) electrodes of a fine MOS field effect transistor (MOSFET), which is suitable for the miniaturization of the device and has excellent characteristics. It is intended to provide a method of forming a contact. [Composition] A step of forming a semiconductor film such as poly-Si or a conductor film containing a metal after opening the contact hole, and then performing ion implantation in the conductor film to form an impurity of the same conductivity type as that of the S / D region. And a heat treatment for reducing the resistance of the contact portion.
Description
【0001】[0001]
【産業上の利用分野】本発明は,半導体素子の電極形成
方法に関し,特に,微細 MOS型電界効果トランジスタ(M
OSFET)のソース/ ドレイン(S/D)電極形成の改良方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming electrodes of a semiconductor device, and more particularly to a fine MOS field effect transistor (M
OSFET) source / drain (S / D) electrode formation method.
【0002】近年, 素子の微細化傾向に伴い, MOSFETの
S/D領域のshallow 化が進んでいる。その結果, S/D 抵
抗が増大し, これが素子特性に及ぼす影響が無視できな
くなってきている。In recent years, along with the trend of miniaturization of devices,
The shallowization of the S / D area is progressing. As a result, the S / D resistance increases, and the effect of this on the device characteristics cannot be ignored.
【0003】[0003]
【従来の技術】S/D抵抗増大の対策として, 従来, S/D
表面に低抵抗層を設けることにより,S/D 抵抗の低減を
諮っている。この低抵抗層は, 良く知られている Silic
ideS/D 技術, 或いはSalicide (Self Aligned Silicid
e)S/D 技術を用いて形成される。 図4 は, 従来の方法
により, MOSFETの S/Dに電極配線を形成するステップを
説明する図である。[Prior Art] As a measure for increasing S / D resistance, the conventional S / D
We are trying to reduce the S / D resistance by providing a low resistance layer on the surface. This low resistance layer is based on the well-known Silic
ideS / D technology, or Salicide (Self Aligned Silicid
e) Formed using S / D technology. Figure 4 is a diagram explaining the steps of forming electrode wiring in the S / D of a MOSFET by the conventional method.
【0004】図4(a)に示されるように, p 型Si基板31の
表面に厚さ500nm のフィールド酸化膜32を形成し, S/D
領域33に燐(P) イオンをエネルギーが30KeV,ドーズ量が
1x1013cm-2 で注入してN - 層を形成し,厚さ10nmのゲ
ート酸化膜(SiO2 膜)34,その上に厚さ300nm のゲート電
極( ポリSi膜)35, 更にその上に厚さ30nmの酸化膜(CVD
SiO2 膜)36 を形成する。次に, 図4(b)に示されるよう
に, 従来の方法によりゲート電極 35 の側面にSiO2 よ
り成る幅0.1 μm のサイドウォール37を形成し, その
後, S/D 領域33に砒素(As)をエネルギーが30KeV, ドー
ズ量4 x1015cm-2でイオン注入し,N + 層(S/D拡散層)38
を形成する。次に, 図4(c)に示されるように, N + 層38
の表面から深さ約60nmのチタニウムシリサイド(TiSi2)
層39を通常のTiスパッタデポじしょんと2回のRTA(rapi
d thermal annealing)処理方法により形成する。次に,
図4(d)に示されるように, 全面に厚さ400nm のBPSG(bor
o-phospho silicate glass)膜を層間絶縁膜40として堆
積し, BPSG膜40とTiSi2 層39を貫通するS/D 領域開口(
コンタクト孔)41, 42を形成してN + 層38を露出させ
る。次に, 図4(e)に示されるように, 再び全面に厚さ20
nmのBPSG膜43を堆積し, S/D 領域開口41, 42へ選択的に
P イオンをエネルギーが30KeV, ドーズ量1x1015cm-2
で注入して S/D領域開口41, 42の底に接するN +層38を
更に高濃度化する。そして, 最後に図4(f)に示されるよ
うに, BPSG膜43を除去して後, S/D 領域開口41, 42の底
に接するN +層38へ, 厚さ0.5 μm のSiを数パーセント
含むアルミニウムを配線用として形成する。As shown in FIG. 4A, a field oxide film 32 having a thickness of 500 nm is formed on the surface of a p-type Si substrate 31, and S / D
The region 33 contains phosphorus (P) ions with an energy of 30 KeV and a dose of
An N - layer is formed by implanting at 1x10 13 cm -2 , a gate oxide film (SiO 2 film) 34 with a thickness of 10 nm, a gate electrode (poly Si film) 35 with a thickness of 300 nm, and further on that. 30 nm thick oxide film (CVD
A SiO 2 film) 36 is formed. Next, as shown in Fig. 4 (b), a sidewall 37 of SiO 2 with a width of 0.1 μm is formed on the side surface of the gate electrode 35 by the conventional method, and then arsenic (As) is formed in the S / D region 33. ) With an energy of 30 KeV and a dose of 4 x 10 15 cm -2 , and the N + layer (S / D diffusion layer) 38
To form. Next, as shown in Fig. 4 (c), the N + layer 38
Titanium silicide (TiSi 2 ) about 60 nm deep from the surface of
Layer 39 is a normal Ti sputter deposit and two RTA (rapi
d thermal annealing) processing method. next,
As shown in Fig. 4 (d), 400 nm thick BPSG (bor
o-phospho silicate glass) film is deposited as the interlayer insulating film 40, and the BPSG film 40 and TiSi 2 S / D area opening through layer 39 (
Contact holes) 41, 42 are formed to expose the N + layer 38. Next, as shown in Fig. 4 (e), the thickness 20
nm BPSG film 43 is deposited, and S / D area openings 41 and 42 are selectively
Energy of P ion is 30 KeV, Dose amount 1x10 15 cm -2
To further increase the concentration of the N + layer 38 in contact with the bottoms of the S / D region openings 41 and 42. Finally, as shown in Fig. 4 (f), after removing the BPSG film 43, a 0.5 μm-thick Si film is applied to the N + layer 38 in contact with the bottoms of the S / D region openings 41 and 42. Aluminum containing a percentage is formed for wiring.
【0005】[0005]
【発明が解決しようとする課題】上記の方法において,
図4(d)に示される層間絶縁膜40にS/D 領域開口41, 42を
形成するために, 反応性イオンエッチング(RIE) 法によ
りエッチングを行うが,その際 TiSi2層39が除去されて
しまい, 場合によってはN + 層38の一部も除去されるこ
とが起こる。又, RIE によるエッチングの後, レジスト
を除去し, 弗酸の希釈溶液により表面処理を行う工程に
おいて, 同様にTiSi2層39が除去されることが起こる。SUMMARY OF THE INVENTION In the above method,
Etching is performed by reactive ion etching (RIE) to form S / D region openings 41 and 42 in the interlayer insulating film 40 shown in Fig. 4 (d), but the TiSi 2 layer 39 is removed at that time. In some cases, part of the N + layer 38 is also removed. Also, after the etching by RIE, the resist is removed, and the TiSi 2 layer 39 is similarly removed in the step of performing the surface treatment with a dilute solution of hydrofluoric acid.
【0006】このようなことは, 当然ながらコンタクト
抵抗の増大, 或いは, 非オーミックなコンタクト特性を
引き起こす。これらの対策として, 図4(e)に示されるよ
うに, S/D 領域開口41, 42を形成した後, BPSG等の絶縁
膜43を介して, N + 層38と同導電型の, 即ちn 型不純物
をS/D 領域開口41, 42へ選択的にイオン注入していた。As a matter of course, this causes an increase in contact resistance or non-ohmic contact characteristics. As a countermeasure against these, as shown in Fig. 4 (e), after forming the S / D region openings 41 and 42, through the insulating film 43 such as BPSG, the same conductivity type as the N + layer 38, that is, The n-type impurities were selectively ion-implanted into the S / D region openings 41 and 42.
【0007】しかし, このような補償イオン注入方法に
おいては,イオンのエネルギーを大きくすることにより
イオンが絶縁膜43を貫通してN + 層38へ注入されるか,
又は注入イオン分布の一部が絶縁膜43からN + 層38の中
へはみ出る形になることが必要である。これら何れの場
合においてもイオン注入層の活性化後の深さは大きくな
り, 素子の微細化を妨げる要因になる。 又, ドーズ量
が大きくなるためにスループットが悪くなるという問題
もあった。更に, エネルギーが大きいために注入に伴う
ダメージが熱処理によって完全に回復しない, 従ってコ
ンタクト抵抗の増大がもたらされるという問題もあっ
た。However, in such a compensation ion implantation method, whether the ions are implanted into the N + layer 38 by penetrating the insulating film 43 by increasing the energy of the ions,
Alternatively, it is necessary that a part of the distribution of the implanted ions be in a form of protruding from the insulating film 43 into the N + layer 38. In any of these cases, the depth after activation of the ion-implanted layer becomes large, which becomes a factor that hinders the miniaturization of the device. There is also a problem that the throughput is deteriorated due to the large dose amount. Furthermore, since the energy is large, the damage due to the implantation is not completely recovered by the heat treatment, and thus the contact resistance is increased.
【0008】そこで, 本発明は, 素子の微細化に適し,
しかも良好な特性を持つ半導体へのコンタクトを形成す
る方法を提供することを目的としている。Therefore, the present invention is suitable for miniaturization of devices,
Moreover, it is an object of the present invention to provide a method for forming a contact with a semiconductor having good characteristics.
【0009】[0009]
【課題を解決するための手段】上記問題は, コンタクト
孔を開口した後, ポリSi等半導体膜又はメタルを含む導
電体膜を形成する工程と,その後イオン注入により該導
電体膜の中に,S/D 領域と導電型の同じ不純物をドーピ
ングする工程と, その後コンタクト部の抵抗を減少させ
るための熱処理を行う工程を有する半導体へのコンタク
ト形成方法によって総て解決される。[Means for Solving the Problems] The above problem is caused by the step of forming a conductor film including a semiconductor film such as poly-Si or a metal after opening a contact hole, and then ion implantation into the conductor film. This is all solved by a method for forming a contact on a semiconductor, which includes a step of doping an impurity of the same conductivity type as that of the S / D region and a step of performing a heat treatment to reduce the resistance of the contact portion thereafter.
【0010】図1 は本発明の原理説明図である。1 はSi
基板, 2 はフィールド酸化膜, 13はBPSGより成る層間絶
縁膜, 16はポリSiまたはシリサイド等より成る導電体
膜, 9,10はN + 層, 11はシリサイド層である。本発明
における補償イオン注入は, 従来の方法と異なり, 導電
体膜16に注入される。その後の熱処理工程により, 導電
体膜16に注入された不純物原子はN + 層9, 10 へ固相拡
散し,浅いコンタクト拡散層が形成される。FIG. 1 is a diagram illustrating the principle of the present invention. 1 is Si
Substrate, 2 is a field oxide film, 13 is an interlayer insulating film made of BPSG, 16 is a conductor film made of poly-Si or silicide, 9 and 10 are N + layers, and 11 is a silicide layer. Unlike the conventional method, the compensation ion implantation in the present invention is performed in the conductor film 16. By the subsequent heat treatment step, the impurity atoms injected into the conductor film 16 are solid-phase diffused into the N + layers 9 and 10, and a shallow contact diffusion layer is formed.
【0011】[0011]
【作用】図1 において, 導電体膜16自体はコンタクト層
の役割を持つために, 注入されたイオンは全部がコンタ
クト抵抗の低減に寄与している。即ち, 従来法に比べ,S
/D 領域のSi拡散層表面に達するイオンは少なくなり,
ダメージの発生も防止できる。このためアニール温度が
低くとも活性化後のリーク電流やコンタクト抵抗の増大
を防止できる。又, コンタクト孔の底部には導電体膜16
が堆積しているから, 導電体膜16が無い場合に比較し
て, 配線用Alを堆積する場合のAlのカバーレッジ率が向
上する。従って, Al配線の断線の発生は無く, 信頼性は
向上する。[Operation] In FIG. 1, since the conductor film 16 itself has a role of a contact layer, all the implanted ions contribute to the reduction of the contact resistance. That is, compared to the conventional method, S
Less ions reach the surface of the Si diffusion layer in the / D region,
The occurrence of damage can also be prevented. Therefore, even if the annealing temperature is low, it is possible to prevent an increase in leak current and contact resistance after activation. Also, a conductor film 16 is formed on the bottom of the contact hole.
Since Al is deposited, the coverage ratio of Al in the case of depositing Al for wiring is improved as compared with the case without the conductor film 16. Therefore, no breakage of Al wiring occurs and reliability is improved.
【0012】図1 における導電体膜16の代わりに, タン
グステン(W)の選択成長層を設けることもある。この
場合には, 導電体膜16のパターニングに相当する工程が
不要であるから, 微細なレイアウトの場合には特に効果
がある。又, コンタクト孔を開口してシリサイド層11が
除去されて, N + 層9, 10 が露出している場合, タング
ステン(W)の選択成長方法は有効である。Instead of the conductor film 16 shown in FIG. 1, a selective growth layer of tungsten (W) may be provided. In this case, the step corresponding to the patterning of the conductor film 16 is not necessary, which is particularly effective in the case of a fine layout. When the contact hole is opened to remove the silicide layer 11 and expose the N + layers 9 and 10, the selective growth method of tungsten (W) is effective.
【0013】[0013]
【実施例】本発明をMOS FET のS/D のコンタクトに適用
した, 二つの実施例について図を参照しながら説明す
る。EXAMPLE Two examples in which the present invention is applied to an S / D contact of a MOS FET will be described with reference to the drawings.
【0014】第1の実施例図2 は, 本発明によるコンタ
クト形成方法を各ステップに従って説明するための図で
ある。First Embodiment FIG. 2 is a diagram for explaining a contact forming method according to the present invention in accordance with each step.
【0015】図2(a), 2(b), 2(c), 2(d)に示される各工
程は, 図4 に示された従来例における工程の図4(a), 4
(b), 4(c), 4(d)とそれぞれ同一である。図2(a)に示さ
れるように, 通常のMOSFET製造プロセスに従い, p 型Si
基板1の表面に厚さ500nm のフィールド酸化膜2を形成
し, S/D 領域3,4に燐(P) イオンをエネルギーが30KeV,
ドーズ量が1x1013cm-2 で注入してN - を形成し,厚
さ10nmのゲート酸化膜(SiO2 膜)5, その上に厚さ300nm
のゲート電極( ポリSi膜)6, 更にその上に厚さ30nmの酸
化膜(CVD SiO2 膜)7を形成する。次に, 図2(b)に示され
るように, 従来の方法によりゲート電極 6の側面にSiO2
より成る幅0.1 μm のサイドウォール8を形成し, そ
の後, S/D 領域3,4 に砒素(As)をエネルギーが30KeV,
ドーズ量4 x1015 cm-2でイオン注入し,N + 層9, 10を
形成する。次に,図2(c)に示されるように, N + 層9, 10
の表面から深さ約60nmのチタニウムシリサイド(TiSi2)
層11, 12を通常の方法により形成する。この時,図2(a)
のゲート電極上のSiO2膜7 を形成しなければ, ゲート電
極6 の上にもTiSi2 層が形成されてサリサイドゲートと
なる。次に, 図2(d)に示されるように, 全面に厚さ400n
m のBPSG膜を層間絶縁膜13として堆積し, BPSG膜13とTi
Si2 層14, 15を貫通するS/D 領域開口( コンタクト孔)1
4, 15を形成してN + 層9, 10を露出させる。この時, エ
ッチング条件により開口部14, 15にTiSi層の一部が残っ
ていても良い。次に, 図2(e)に示されるように, 再び全
面に厚さ20nmのタングステンシリサイド膜( WSi)16を堆
積し, このWSi膜16へ選択的にP イオンを, エネルギー
が15KeV, ドーズ量1x1015cm-2 で注入し, その後800
℃, 20分のアニーリングを行い,S/D領域開口14, 15の底
に接するN +層9, 10を更に高濃度化する。そして,最後
に図2(f)に示されるように, WSi膜16を除去して後, S/D
領域開口14, 15の底に接するN +層9, 10へ, 厚さ0.5
μm のアルミニウム(Al)又はSi, Ti, 銅 (Cu)を含むAl
膜17, 18を配線用として形成する。又,メタル配線17,
18を形成する前にTi/TiN, Ti/TiWなどのバリヤメタルを
形成することも可能である。The steps shown in FIGS. 2 (a), 2 (b), 2 (c), and 2 (d) are the same as those in the conventional example shown in FIG.
It is the same as (b), 4 (c) and 4 (d). As shown in Fig. 2 (a), p-type Si
A field oxide film 2 with a thickness of 500 nm is formed on the surface of the substrate 1, and phosphorus (P) ions with an energy of 30 KeV are added to the S / D regions 3 and 4.
Dose was injected with 1x10 13 cm -2 N - to form a gate oxide film (SiO 2 film) having a thickness of 10 nm 5, thickness of 300nm thereon
A gate electrode (poly Si film) 6 is formed, and an oxide film (CVD SiO 2 film) 7 having a thickness of 30 nm is further formed thereon. Next, as shown in Fig. 2 (b), SiO 2 is formed on the side surface of the gate electrode 6 by the conventional method.
To form a sidewall 8 with a width of 0.1 μm, and then arsenic (As) is applied to the S / D regions 3 and 4 with an energy of 30 KeV,
Ions are implanted at a dose of 4 x 10 15 cm -2 to form N + layers 9 and 10. Next, as shown in Fig. 2 (c), N + layers 9, 10
Titanium silicide (TiSi 2 ) about 60 nm deep from the surface of
Layers 11 and 12 are formed by conventional methods. At this time, Fig. 2 (a)
If the SiO 2 film 7 on the gate electrode of 1 is not formed, a TiSi 2 layer is also formed on the gate electrode 6 to form a salicide gate. Next, as shown in Fig. 2 (d), the total thickness of 400n
A BPSG film of m was deposited as the interlayer insulating film 13, and the BPSG film 13 and Ti
S / D area opening (contact hole) that penetrates Si 2 layers 14 and 15 1
4 and 15 are formed to expose the N + layers 9 and 10. At this time, part of the TiSi layer may remain in the openings 14 and 15 depending on the etching conditions. Next, as shown in Fig. 2 (e), a tungsten silicide film (WSi) 16 with a thickness of 20 nm is again deposited on the entire surface, and P ions are selectively applied to this WSi film 16 with an energy of 15 KeV and a dose amount. Inject 1x10 15 cm -2 , then 800
Annealing is performed at 20 ° C. for 20 minutes to further increase the concentration of the N + layers 9 and 10 in contact with the bottoms of the S / D region openings 14 and 15. Finally, as shown in Fig. 2 (f), after removing the WSi film 16, the S / D
To N + layers 9, 10 contacting the bottoms of the region openings 14, 15, thickness 0.5
μm aluminum (Al) or Al containing Si, Ti, copper (Cu)
The films 17 and 18 are formed for wiring. Also, metal wiring 17,
It is also possible to form a barrier metal such as Ti / TiN or Ti / TiW before forming 18.
【0016】尚, 上記WSi膜16は他のシリサイド膜,ポリ
Si膜, アモルファスSi膜, メタル等の導電体層で置き換
えることもできる。第2の実施例図3 は, 本発明の第2
の実施例によるコンタクト形成方法を各ステップに従っ
て説明するための図である。The WSi film 16 is formed of another silicide film or poly.
It can be replaced with a conductor layer such as a Si film, an amorphous Si film, or a metal. Second Embodiment FIG. 3 shows a second embodiment of the present invention.
FIG. 8 is a diagram for explaining a contact forming method according to the embodiment of the present invention following each step.
【0017】図3(a), 3(b), 3(c), 3(d)に示される各工
程は, 図2 に示された第1 の実施例における工程の図2
(a), 2(b), 2(c), 2(d)とそれぞれ同一であるから説明
は省略する。The steps shown in FIGS. 3 (a), 3 (b), 3 (c) and 3 (d) are the same as those of the steps in the first embodiment shown in FIG.
Since it is the same as (a), 2 (b), 2 (c), and 2 (d), the description is omitted.
【0018】図3(e)に示されるように, コンタクト孔 1
4,15の底部に露出しているN + 層9, 10の面上にW の選
択CVD(chemical vapor deposition)を行って, 厚さ20 n
m のW層19, 20を形成する。これらW層19, 20の中にはP
が 1x1019乃至 1x1020 cm -3含まれる。As shown in FIG. 3 (e), the contact hole 1
A selective CVD (chemical vapor deposition) of W is performed on the surfaces of the N + layers 9 and 10 exposed at the bottom of the layers 4 and 15 to obtain a thickness of 20 n.
Form W layers 19 and 20 of m 2. Among these W layers 19 and 20, P
1x10 19 to 1x10 20 cm -3 .
【0019】最後に, 図3(f)に示されるように, W層19,
20の上にそれぞれアルミニウム配線層17, 18を形成す
る。本発明は, p チャネルMOSFETに対しても, 注入する
イオン種を置き換えることにより, 本実施例と同様に成
り立つ。従ってCMOSFET 回路にも適用することが可能で
ある。Finally, as shown in FIG. 3 (f), the W layer 19,
Aluminum wiring layers 17 and 18 are formed on 20 respectively. The present invention also holds true for the p-channel MOSFET by replacing the implanted ion species with the present embodiment. Therefore, it can also be applied to CMOSFET circuits.
【0020】[0020]
【発明の効果】本発明によれば, 浅く且つシリサイドS/
D を用いたMOS FET においても良好な特性を有し, しか
もスループットも低下しないようなコンタクトの形成方
法が提供される。その結果, 半導体素子の微細化に寄与
するところが大きい。According to the present invention, a shallow and silicide S /
A contact forming method is provided which has good characteristics even in a MOS FET using D and does not reduce the throughput. As a result, it greatly contributes to the miniaturization of semiconductor devices.
【図1】 本発明の原理説明図FIG. 1 is an explanatory view of the principle of the present invention.
【図2】 第1の実施例を示す図FIG. 2 is a diagram showing a first embodiment.
【図3】 第2の実施例を示す図FIG. 3 is a diagram showing a second embodiment.
【図4】 従来の例を示す図FIG. 4 is a diagram showing a conventional example.
1, Si基板 2, フィールド酸化膜 3, 4, 33, 34 S/D 拡散層 5, ゲート酸化膜 6, ゲート電極 7, CVD SiO2膜 8, サイドウォール 9, 10, 38 N +層 11, 12, 39 TiSi2 層 13 層間絶縁膜 14, 15, 41, 42 S/D領域開口 16, 43 BPSG膜 17, 18 AlSi 膜1, Si substrate 2, field oxide film 3, 4, 33, 34 S / D diffusion layer 5, gate oxide film 6, gate electrode 7, CVD SiO 2 film 8, sidewall 9, 10, 38 N + layer 11, 12, 39 TiSi 2 layer 13 Interlayer insulation film 14, 15, 41, 42 S / D area opening 16, 43 BPSG film 17, 18 AlSi film
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/336 29/784 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location H01L 21/336 29/784
Claims (4)
にコンタクトを形成する製造方法において, 該拡散層よりも低抵抗の主としてメタルを成分として含
む第1の導電体層を形成する工程と, 該第1の導電体層の上に層間絶縁体膜を堆積し,該層間
絶縁体膜と該第1の導電体層の少なくとも一部を貫通
し, 該拡散層を露出するコンタクト用開口部を形成する
工程と, 該コンタクト用開口部に露出した該拡散層の上に第2の
導電体層を形成する工程とを有することを特徴とする半
導体装置の製造方法。1. A manufacturing method for forming a contact on the surface of a source / drain diffusion layer of a MOSFET, the method comprising: forming a first conductor layer mainly containing metal having a lower resistance than the diffusion layer; An interlayer insulator film is deposited on the first conductor layer, and a contact opening is formed to penetrate the interlayer insulator film and at least a part of the first conductor layer and expose the diffusion layer. And a step of forming a second conductor layer on the diffusion layer exposed in the contact opening, the method for manufacturing a semiconductor device.
及びメタルの中の一つを主成分とする膜を形成し,次
に,該半導体及びメタルの中の一つを主成分とする膜中
に,該拡散層と同じ導電型の不純物をイオン注入法によ
り導入して行なわれることを特徴とする請求項1記載の
半導体装置の製造方法。2. The second conductor layer is formed by forming a film containing one of a semiconductor and a metal as a main component, and then forming one of the semiconductor and a metal as a main component. 2. The method of manufacturing a semiconductor device according to claim 1, wherein an impurity having the same conductivity type as that of the diffusion layer is introduced into the film by the ion implantation method.
クト用開口部に露出した該拡散層の上に,半導体及びメ
タルの中の一つを主成分とする膜を選択化学気相成長法
により行われることを特徴とする請求項1記載の半導体
装置の製造方法。3. The formation of the second conductor layer is performed by forming a film mainly containing one of a semiconductor and a metal on the diffusion layer exposed in the contact opening by selective chemical vapor deposition. The method of manufacturing a semiconductor device according to claim 1, wherein the method is performed by a growth method.
成分とする膜において,該半導体はポリシリコン,アモ
ルファスシリコンの中より選択され,該メタルはタング
ステン(W),モリブデン(Mo), チタニウム(Ti),ニッケ
ル(Ni), パラジウム(Pa),及びこれらの合金, これらの
シリサイドの中より選択されることを特徴とする請求項
2及び3記載の半導体装置の製造方法。4. In the film containing one of a semiconductor and a metal as a main component, the semiconductor is selected from polysilicon and amorphous silicon, and the metal is tungsten (W), molybdenum (Mo), 4. The method of manufacturing a semiconductor device according to claim 2, wherein the semiconductor device is selected from titanium (Ti), nickel (Ni), palladium (Pa), alloys thereof, and silicides thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17203491A JPH0521388A (en) | 1991-07-12 | 1991-07-12 | Method for manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17203491A JPH0521388A (en) | 1991-07-12 | 1991-07-12 | Method for manufacturing semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0521388A true JPH0521388A (en) | 1993-01-29 |
Family
ID=15934304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17203491A Withdrawn JPH0521388A (en) | 1991-07-12 | 1991-07-12 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0521388A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6375738B1 (en) | 1999-03-26 | 2002-04-23 | Canon Kabushiki Kaisha | Process of producing semiconductor article |
KR100345624B1 (en) * | 1996-12-27 | 2002-09-18 | 캐논 가부시끼가이샤 | Method of Producing Semiconductor Member and Method of Producing Solar Cell |
-
1991
- 1991-07-12 JP JP17203491A patent/JPH0521388A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100345624B1 (en) * | 1996-12-27 | 2002-09-18 | 캐논 가부시끼가이샤 | Method of Producing Semiconductor Member and Method of Producing Solar Cell |
US6375738B1 (en) | 1999-03-26 | 2002-04-23 | Canon Kabushiki Kaisha | Process of producing semiconductor article |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4384301A (en) | High performance submicron metal-oxide-semiconductor field effect transistor device structure | |
US4551908A (en) | Process of forming electrodes and interconnections on silicon semiconductor devices | |
US5346836A (en) | Process for forming low resistance contacts between silicide areas and upper level polysilicon interconnects | |
KR100425147B1 (en) | Method for manufacturing semiconductor device | |
US5268590A (en) | CMOS device and process | |
US5103272A (en) | Semiconductor device and a method for manufacturing the same | |
US4663825A (en) | Method of manufacturing semiconductor device | |
US5744845A (en) | Complementary MOS field effect transistor with tunnel effect means | |
US6391750B1 (en) | Method of selectively controlling contact resistance by controlling impurity concentration and silicide thickness | |
KR0162673B1 (en) | Manufacture of conducting layer and semiconductor device | |
JPH0750276A (en) | Method for manufacture of low-resistance contact in junction between regions of different conductivity types | |
US6495408B1 (en) | Local interconnection process for preventing dopant cross diffusion in shared gate electrodes | |
US5654241A (en) | Method for manufacturing a semiconductor device having reduced resistance of diffusion layers and gate electrodes | |
US6200862B1 (en) | Mask for asymmetrical transistor formation with paired transistors | |
US6255181B1 (en) | Method for fabricating MOS semiconductor device having salicide region and LDD structure | |
KR100255134B1 (en) | Semiconductor device and method for manufacturing the same | |
KR100749373B1 (en) | Method for manufacturing shallow junction semiconductor device | |
EP0209654B1 (en) | Semiconductor device having wiring electrodes | |
US6117773A (en) | Methods of fabricating microelectronic devices having increased impurity concentration between a metal silicide contact surface | |
JPH0521388A (en) | Method for manufacturing semiconductor device | |
JPS6165470A (en) | Semiconductor integrated circuit device | |
US6197672B1 (en) | Method for forming polycide dual gate | |
JPH065696B2 (en) | Method for manufacturing semiconductor device | |
CN1067804C (en) | Semiconductor device and manufacturing method thereof | |
JPH0521736A (en) | Semiconductor device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19981008 |