[go: up one dir, main page]

JPH05206500A - Photoelectric conversion module - Google Patents

Photoelectric conversion module

Info

Publication number
JPH05206500A
JPH05206500A JP4013353A JP1335392A JPH05206500A JP H05206500 A JPH05206500 A JP H05206500A JP 4013353 A JP4013353 A JP 4013353A JP 1335392 A JP1335392 A JP 1335392A JP H05206500 A JPH05206500 A JP H05206500A
Authority
JP
Japan
Prior art keywords
light receiving
light
photoelectric conversion
conversion module
receiving elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4013353A
Other languages
Japanese (ja)
Inventor
Shinako Iki
志成子 伊木
Hironari Kuno
裕也 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP4013353A priority Critical patent/JPH05206500A/en
Publication of JPH05206500A publication Critical patent/JPH05206500A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To provide a photoelectric conversion module which is capable of carrying out more efficient photoelectric conversion. CONSTITUTION:Four light receiving devices (light receiving device group 3) are installed in parallel to each other on a light receiving plate to receive light from an optical fiber 1 in a photoelectric conversion module 2. Each of the light receiving devices are made of silicon and the depth of p-n junction is different from each other. The light having a number of wavelength components reach each light receiving device from the optical fiber 1 and it is converted into electricity per wavelength component in each light receiving device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は光電変換モジュールに
係り、詳しくは多数の波長成分を有する光を電気信号に
変換する光電変換モジュールに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion module, and more particularly to a photoelectric conversion module for converting light having many wavelength components into an electric signal.

【0002】[0002]

【従来の技術】従来、半導体受光素子が、特開平2−5
0487号公報に開示されている。これは、複数のバン
ドギャップエネルギーの異なる層を受光面に対して垂直
方向(深さ方向)に積層して特定の波長光を選択的に光
電変換するものである。
2. Description of the Related Art Conventionally, a semiconductor light receiving element has been disclosed in Japanese Patent Laid-Open No. 2-5.
It is disclosed in Japanese Patent No. 0487. This is to stack a plurality of layers having different bandgap energies in a direction perpendicular to the light receiving surface (depth direction) to selectively photoelectrically convert light of a specific wavelength.

【0003】[0003]

【発明が解決しようとする課題】ところが、積層タイプ
であるために下層側は光量が少なく精度が低下するとい
う問題がある。
However, since it is a laminated type, there is a problem that the amount of light on the lower layer side is small and the accuracy is lowered.

【0004】そこで、この発明の目的は、より効率的に
光電変換することができる光電変換モジュールを提供す
ることにある。
Therefore, an object of the present invention is to provide a photoelectric conversion module that can perform photoelectric conversion more efficiently.

【0005】[0005]

【課題を解決するための手段】この発明は、pn接合深
さ又はバンドギャップエネルギーの異なる受光素子を、
多数の波長成分を有する光の受光面上に、複数並設した
光電変換モジュールをその要旨とするものである。
According to the present invention, there are provided light receiving elements having different pn junction depths or band gap energies.
The gist of the invention is a photoelectric conversion module in which a plurality of photoelectric conversion modules are arranged in parallel on the light receiving surface of light having a large number of wavelength components.

【0006】[0006]

【作用】多数の波長成分を有する光が、pn接合深さ又
はバンドギャップエネルギーの異なる複数の受光素子に
受光される。そして、各受光素子から波長成分毎の光が
光電変換され電気信号として取り出される。
The light having a large number of wavelength components is received by a plurality of light receiving elements having different pn junction depths or band gap energies. Then, the light of each wavelength component is photoelectrically converted from each light receiving element and extracted as an electric signal.

【0007】[0007]

【実施例】以下、この発明を具体化した一実施例を図面
に従って説明する。図1,2に本実施例を示す。尚、図
2は光電変換モジュールの各受光素子5,6,7,8の
平面図を示し、図1は図2のA−A断面を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to the drawings. This embodiment is shown in FIGS. 2 shows a plan view of each of the light receiving elements 5, 6, 7, and 8 of the photoelectric conversion module, and FIG. 1 shows a cross section taken along the line AA of FIG.

【0008】光電変換モジュール2の受光素子群3は4
つの受光素子5,6,7,8からなり、各受光素子5,
6,7,8が同一平面に並設されている。つまり、光電
変換モジュール2の受光素子群3は円形をなし、十字状
の絶縁層4にて4つの受光素子5,6,7,8が区画さ
れている。
The light receiving element group 3 of the photoelectric conversion module 2 has four
It consists of one light receiving element 5, 6, 7, 8 and each light receiving element 5,
6, 7, and 8 are arranged side by side on the same plane. That is, the light receiving element group 3 of the photoelectric conversion module 2 has a circular shape, and the four light receiving elements 5, 6, 7, and 8 are divided by the cross-shaped insulating layer 4.

【0009】各受光素子5,6,7,8はシリコンより
なり、pn接合を有する。そして、各受光素子5,6,
7,8でpn接合深さtが全て異なっている。つまり、
受光素子5,6,7,8の各接合深さをt1 ,t2 ,t
3 ,t4 とすると、t1 <t2 <t3 <t4 となってい
る。各受光素子5,6,7,8の裏面には裏面電極9が
それぞれ配置されるている。又、各受光素子5,6,
7,8の側面には絶縁層10を介して電極11がそれぞ
れ立設され、各受光素子5,6,7,8の表面に設けた
電極12とワイヤ13にて接続されている。この受光素
子5,6,7,8は光を受けると、光電変換されて、ワ
イヤ13を通して電極9と電極11から出力されるよう
になっている。
Each of the light receiving elements 5, 6, 7 and 8 is made of silicon and has a pn junction. Then, the light receiving elements 5, 6,
Nos. 7 and 8 have different pn junction depths t. That is,
The junction depths of the light receiving elements 5, 6, 7, and 8 are set to t1, t2, and t, respectively.
Letting t be 3 and t4, t1 <t2 <t3 <t4. A back surface electrode 9 is arranged on the back surface of each of the light receiving elements 5, 6, 7, and 8. In addition, each light receiving element 5, 6,
Electrodes 11 are erected on the side surfaces of 7 and 8 via an insulating layer 10, and are connected to electrodes 12 provided on the surfaces of the light receiving elements 5, 6, 7 and 8 by wires 13. When the light receiving elements 5, 6, 7 and 8 receive light, they are photoelectrically converted and output from the electrodes 9 and 11 through the wire 13.

【0010】そして、この受光素子群3が、図1に示す
ように、光ファイバ1の端面と対向配置されている。こ
のとき、受光素子群3の中心は、これら受光素子5,
6,7,8に光を与える媒体(光ファイバ1)の光軸の
中心になるよう配置されている。
The light receiving element group 3 is arranged so as to face the end face of the optical fiber 1 as shown in FIG. At this time, the center of the light receiving element group 3 is the light receiving elements 5,
It is arranged so as to be at the center of the optical axis of the medium (optical fiber 1) that gives light to 6, 7, and 8.

【0011】次に、このように構成した光電変換モジュ
ール2の作用を説明する。光ファイバ1を通して多数の
波長成分を有する光が送られ、その端面から光が光電変
換モジュール2の受光素子群3に送られる。そして、受
光素子5,6,7,8で光変換されて電気信号として取
り出される。このとき、受光素子5,6,7,8での光
の侵入深さは、短波長の光より長波長の光の方が深い。
従って、短波長の吸収領域は長波長の吸収領域と比較す
れば、浅い領域に集中し、長波長の吸収領域は短波長の
吸収領域と比較すれば深い領域となる。よって、短波長
λ1 の光は接合深さが浅い受光素子5でのみ光電変換さ
れ、波長λ2 (>λ1 )の光は受光素子5と受光素子6
で、波長λ3 (>λ2 )の光は受光素子5と受光素子6
と受光素子7で、波長λ4 (>λ3 )の光は受光素子5
と受光素子6と受光素子7と受光素子8とで光電変換さ
れ、電気信号として取り出される。
Next, the operation of the photoelectric conversion module 2 thus constructed will be described. Light having a large number of wavelength components is sent through the optical fiber 1, and the light is sent from the end face thereof to the light receiving element group 3 of the photoelectric conversion module 2. Then, the light is converted by the light receiving elements 5, 6, 7, and 8 and extracted as an electric signal. At this time, the penetration depth of the light in the light receiving elements 5, 6, 7, and 8 is deeper in the long-wavelength light than in the short-wavelength light.
Therefore, the short wavelength absorption region is concentrated in a shallow region as compared with the long wavelength absorption region, and the long wavelength absorption region is deep as compared with the short wavelength absorption region. Therefore, the light of the short wavelength λ 1 is photoelectrically converted only by the light receiving element 5 having a shallow junction depth, and the light of the wavelength λ 2 (> λ 1 ) is received by the light receiving elements 5 and 6.
And the light of wavelength λ 3 (> λ 2 ) is received by the light receiving element 5 and the light receiving element 6.
And the light receiving element 7, the light of wavelength λ 4 (> λ 3 ) is received by the light receiving element 5.
Is photoelectrically converted by the light receiving element 6, the light receiving element 7, and the light receiving element 8, and is taken out as an electric signal.

【0012】このように、pn接合深さtの異なる複数
の受光素子5,6,7,8を用いることにより複数の波
長光が入射してもその入射光の波長を特定(区別)する
ことが可能になる。
As described above, by using a plurality of light receiving elements 5, 6, 7, and 8 having different pn junction depths t, even if a plurality of wavelengths of light are incident, the wavelength of the incident light can be specified (distinguished). Will be possible.

【0013】尚、このときの受光素子5,6,7,8
は、pn型フォトダイオードでも、PIN型フォトダイ
オードでも、APDでもかまわない。又、上記受光素子
5,6,7,8は、接合深さtの異なるものだけでな
く、バンドギャップエネルギーの異なるものを用いても
かまわない。バンドギャップエネルギーの異なる受光素
子は、吸収感度波長が異なるために、入射光波長により
光電変換できる受光素子が異なる。従って、受光素子の
出力により入射光波長を区別することが可能である。
又、複数の受光素子5,6,7,8は、同一基板上にモ
ノリシックに形成しても、別の基板上に形成してもかま
わない。
At this time, the light receiving elements 5, 6, 7, 8
May be a pn-type photodiode, a PIN-type photodiode, or an APD. Further, as the light receiving elements 5, 6, 7, and 8, not only those having different junction depths t but also those having different band gap energies may be used. Since the light receiving elements having different bandgap energies have different absorption sensitivity wavelengths, the light receiving elements that can be photoelectrically converted are different depending on the incident light wavelength. Therefore, it is possible to distinguish the incident light wavelength by the output of the light receiving element.
Further, the plurality of light receiving elements 5, 6, 7 and 8 may be monolithically formed on the same substrate or may be formed on different substrates.

【0014】このように本実施例では、pn接合深さ又
はバンドギャップエネルギーの異なる受光素子5,6,
7,8を、多数の波長成分を有する光の受光面上に、4
つ並設したので、特開平2−50487号公報のように
下層側が光量が少なくなり精度が低下することなく、よ
り効率的に光電変換することができる。又、特開平2−
50487号公報は、複数のバンドギャップエネルギー
の異なる層を受光面に対して垂直方向に積層して特定の
波長光を選択的に光電変換しているので、素子の側面に
電極が存在し製造が困難であったが、本実施例では側面
には電極が存在せず、素子の表面の電極12と裏面の電
極9が存在するだけであるので、一般的な半導体製造技
術を用いて容易に素子形成できる。
As described above, in this embodiment, the light receiving elements 5, 6 having different pn junction depths or band gap energies are used.
7 and 8 on the light receiving surface of light having many wavelength components,
Since they are arranged in parallel, photoelectric conversion can be performed more efficiently without lowering the amount of light on the lower layer side and lowering the accuracy as in JP-A-2-50487. In addition, JP-A-2-
In the 50487 publication, a plurality of layers having different bandgap energies are laminated in the direction perpendicular to the light receiving surface to selectively photoelectrically convert light of a specific wavelength. Although difficult, in the present embodiment, there is no electrode on the side surface, only the electrode 12 on the front surface of the element and the electrode 9 on the back surface of the element are present. Therefore, the element can be easily formed by using a general semiconductor manufacturing technique. Can be formed.

【0015】尚、この発明は上記実施例に限定されるも
のではなく、例えば、図3に示すように、受光面に直線
的に受光素子14,15,16,17を並設してもよ
い。又、図4(素子平面配置図)に示すように実施して
もよい。即ち、円状の受光素子18と環状の受光素子1
9とが環状絶縁層20で分離され、受光素子19と環状
の受光素子21とが環状絶縁層22で分離され、受光素
子21と環状の受光素子23とが環状絶縁層24で分離
されている。そして、受光素子18,19,21,23
の受光量が同一となる様、4素子の受光面積を設定すれ
ばよい。又、受光素子18,19,21,23はpn接
合深さ又はバンドギャップエネルギーが異なるように設
計してあり、入射光の波長を分別することが可能であ
る。尚、図において35は電極である。
The present invention is not limited to the above embodiment, and for example, as shown in FIG. 3, the light receiving elements 14, 15, 16, 17 may be linearly arranged in parallel on the light receiving surface. .. Alternatively, it may be carried out as shown in FIG. 4 (plan view of the element). That is, the circular light receiving element 18 and the annular light receiving element 1
9 is separated by the annular insulating layer 20, the light receiving element 19 and the annular light receiving element 21 are separated by the annular insulating layer 22, and the light receiving element 21 and the annular light receiving element 23 are separated by the annular insulating layer 24. .. Then, the light receiving elements 18, 19, 21, 23
The light-receiving areas of the four elements may be set so that the light-receiving amounts of the same are the same. Further, the light receiving elements 18, 19, 21, 23 are designed to have different pn junction depths or band gap energies, so that the wavelength of incident light can be separated. In the figure, 35 is an electrode.

【0016】さらに、他の実施例として複数の受光素子
の平面配置を図5に示すとともに、図6には図5のB−
B断面を示す。基板25上には4つに分岐された光導波
路26が形成され、光導波路26の分岐後の端部には受
光素子27,28,29,30が形成されている。この
各受光素子27〜30は、バンドギャップエネルギーが
異なり、入射光の波長を分別することが可能である。そ
して、光ファイバからの光が光導波路26を通過して分
岐されて受光素子27〜30で受光される。そして、受
光素子27〜30で波長成分毎に光電変換されて電気信
号として出力される。このようにすることにより、同一
基板上に波長成分毎に検出可能な光電変換モジュールを
配置することができることとなる。尚、図中、31は各
素子を絶縁分離するための絶縁層であり、32は素子上
電極を、33は取出用電極を、34はワイヤを示す。
Further, as another embodiment, a plane arrangement of a plurality of light receiving elements is shown in FIG. 5, and FIG. 6 shows B- of FIG.
The B section is shown. An optical waveguide 26 branched into four is formed on the substrate 25, and light receiving elements 27, 28, 29, 30 are formed at the ends of the optical waveguide 26 after the branch. The light receiving elements 27 to 30 have different bandgap energies and can separate the wavelength of incident light. Then, the light from the optical fiber passes through the optical waveguide 26, is branched, and is received by the light receiving elements 27 to 30. Then, the light receiving elements 27 to 30 perform photoelectric conversion for each wavelength component and output as an electric signal. By doing so, it is possible to dispose the photoelectric conversion module capable of detecting each wavelength component on the same substrate. In the figure, 31 is an insulating layer for insulating and separating each element, 32 is an element upper electrode, 33 is an extraction electrode, and 34 is a wire.

【0017】[0017]

【発明の効果】以上詳述したようにこの発明によれば、
より効率的に光電変換することができる優れた効果を発
揮する。
As described in detail above, according to the present invention,
It exhibits an excellent effect of more efficient photoelectric conversion.

【図面の簡単な説明】[Brief description of drawings]

【図1】図2のA−A断面図である。1 is a cross-sectional view taken along the line AA of FIG.

【図2】実施例の光電変換モジュールの平面図である。FIG. 2 is a plan view of a photoelectric conversion module according to an embodiment.

【図3】別例の光電変換モジュールの断面図である。FIG. 3 is a cross-sectional view of a photoelectric conversion module of another example.

【図4】他の別例の光電変換モジュールの平面面であ
る。
FIG. 4 is a plane surface of another example of a photoelectric conversion module.

【図5】他の別例の光電変換モジュールの平面面であ
る。
FIG. 5 is a plane surface of another example of a photoelectric conversion module.

【図6】図5のB−B断面図である。6 is a sectional view taken along line BB of FIG.

【符号の説明】[Explanation of symbols]

5 受光素子 6 受光素子 7 受光素子 8 受光素子 5 Light receiving element 6 Light receiving element 7 Light receiving element 8 Light receiving element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 pn接合深さ又はバンドギャップエネル
ギーの異なる受光素子を、多数の波長成分を有する光の
受光面上に、複数並設したことを特徴とする光電変換モ
ジュール。
1. A photoelectric conversion module, wherein a plurality of light receiving elements having different pn junction depths or band gap energies are arranged in parallel on a light receiving surface for light having a large number of wavelength components.
JP4013353A 1992-01-28 1992-01-28 Photoelectric conversion module Pending JPH05206500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4013353A JPH05206500A (en) 1992-01-28 1992-01-28 Photoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4013353A JPH05206500A (en) 1992-01-28 1992-01-28 Photoelectric conversion module

Publications (1)

Publication Number Publication Date
JPH05206500A true JPH05206500A (en) 1993-08-13

Family

ID=11830742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4013353A Pending JPH05206500A (en) 1992-01-28 1992-01-28 Photoelectric conversion module

Country Status (1)

Country Link
JP (1) JPH05206500A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311084A (en) * 1994-05-20 1995-11-28 Nippondenso Co Ltd Solar radiation sensor
JPH0818093A (en) * 1994-06-30 1996-01-19 Sony Corp Semiconductor light-receiving element, semiconductor device, and methods for manufacturing the same
JP2009177101A (en) * 2008-01-28 2009-08-06 Panasonic Electric Works Co Ltd Light-emitting device
US11139326B2 (en) * 2017-09-15 2021-10-05 Kabushiki Kaisha Toshiba Photodetector, photodetection device, laser imaging detection and ranging apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311084A (en) * 1994-05-20 1995-11-28 Nippondenso Co Ltd Solar radiation sensor
JPH0818093A (en) * 1994-06-30 1996-01-19 Sony Corp Semiconductor light-receiving element, semiconductor device, and methods for manufacturing the same
JP2009177101A (en) * 2008-01-28 2009-08-06 Panasonic Electric Works Co Ltd Light-emitting device
US11139326B2 (en) * 2017-09-15 2021-10-05 Kabushiki Kaisha Toshiba Photodetector, photodetection device, laser imaging detection and ranging apparatus

Similar Documents

Publication Publication Date Title
US6342720B1 (en) Voltage-controlled wavelength-selective photodetector
CA1132693A (en) Demultiplexing photodetector
CN101236980A (en) Compound semiconductor image sensor
JP2002289904A (en) Semiconductor light receiving element and method of manufacturing the same
JP2009188316A (en) Light receiving element
CA2030008C (en) Light-receiving device
US6828541B2 (en) Light receiving element array having isolated pin photodiodes
US7276770B1 (en) Fast Si diodes and arrays with high quantum efficiency built on dielectrically isolated wafers
JPH05206500A (en) Photoelectric conversion module
JP2002314116A (en) Lateral semiconductor photodetector with PIN structure
Kwa et al. Backside-illuminated silicon photodiode array for an integrated spectrometer
RU2530458C1 (en) METHOD OF PRODUCING MULTIELEMENT PHOTODETECTOR BASED ON EPITAXIAL InGaAs/InP STRUCTURES
US20220005845A1 (en) Cmos-compatible short wavelength photodetectors
KR20020037050A (en) Light-receiving device and photodetector comprising light-receiving device
JPH03202732A (en) Color sensor
JPH05145051A (en) Optical semiconductor device
US6809391B1 (en) Short-wavelength photodiode of enhanced sensitivity with low leak current and method of manufacturing photodiode
CN110379827A (en) Imaging sensor and forming method thereof
JP2700262B2 (en) Light detection method
JPH04241458A (en) Semiconductor optical detector
JPH1117211A (en) Semiconductor planar photodiode and device therewith
JPS61220480A (en) Semiconductor photodetector
WO2004017428A1 (en) Wavelength-demultiplexer with integrated monolithic photodiodes
JPS6068676A (en) Wavelength selective photodetector device
JPH05251673A (en) Photodetector