JPH05195223A - Coated sintered body and its production - Google Patents
Coated sintered body and its productionInfo
- Publication number
- JPH05195223A JPH05195223A JP866792A JP866792A JPH05195223A JP H05195223 A JPH05195223 A JP H05195223A JP 866792 A JP866792 A JP 866792A JP 866792 A JP866792 A JP 866792A JP H05195223 A JPH05195223 A JP H05195223A
- Authority
- JP
- Japan
- Prior art keywords
- cobalt
- sintered body
- film
- diamond
- tungsten carbide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000010941 cobalt Substances 0.000 claims abstract description 45
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 45
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910003460 diamond Inorganic materials 0.000 claims abstract description 34
- 239000010432 diamond Substances 0.000 claims abstract description 34
- 238000010438 heat treatment Methods 0.000 claims abstract description 18
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000012298 atmosphere Substances 0.000 claims abstract description 5
- 229910021385 hard carbon Inorganic materials 0.000 claims description 17
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 239000011230 binding agent Substances 0.000 claims description 5
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052799 carbon Inorganic materials 0.000 abstract description 12
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 abstract description 10
- 239000010937 tungsten Substances 0.000 abstract description 10
- 229910052721 tungsten Inorganic materials 0.000 abstract description 10
- 238000005245 sintering Methods 0.000 abstract description 6
- 239000006104 solid solution Substances 0.000 abstract description 5
- 230000005496 eutectics Effects 0.000 abstract description 4
- 238000000227 grinding Methods 0.000 abstract description 4
- 238000005498 polishing Methods 0.000 abstract description 4
- 239000000853 adhesive Substances 0.000 abstract 1
- 230000001070 adhesive effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 229910009043 WC-Co Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 238000004050 hot filament vapor deposition Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】切削工具、耐摩耗工具、金型、耐
摩耗部品や装飾品などに用いられる被覆焼結体に関す
る。TECHNICAL FIELD The present invention relates to a coated sintered body used for cutting tools, wear resistant tools, dies, wear resistant parts, ornaments and the like.
【0002】[0002]
【従来の技術】高性能、高耐摩耗性工具等や耐摩耗性部
品等には、炭化タングステンや炭化チタン等を主成分と
する、いわゆる超硬合金やサーメットと呼ばれる焼結体
材料やアルミナや窒化珪素等のセラミック焼結体も広く
用いられていた。また、近年、化学気相析出法(CVD
法)や物理蒸着法(PVD法)の進歩に伴い、上記材料
の性能をさらに向上するために炭化チタン、窒化チタ
ン、アルミナといったセラミックス被膜やダイヤモンド
あるいは硬質炭素膜のコーティングがなされた被覆焼結
体が広く使われるようになった。2. Description of the Related Art High-performance, highly wear-resistant tools, wear-resistant parts, etc. are mainly composed of tungsten carbide, titanium carbide, etc., so-called cemented carbide, sintered material called cermet, alumina, etc. Ceramic sintered bodies such as silicon nitride were also widely used. In recent years, chemical vapor deposition (CVD
Method) or physical vapor deposition method (PVD method), and a sintered ceramic body coated with a ceramic film such as titanium carbide, titanium nitride, or alumina, or a diamond or hard carbon film in order to further improve the performance of the above materials. Became widely used.
【0003】[0003]
【発明が解決しようとする課題】近年、上述のコーティ
ング物質のうち、物質中で最も硬いダイヤモンドあるい
はダイヤモンドに近い硬さを有する硬質炭素膜(多くの
場合、微細結晶質のダイヤモンドを含有する)を被覆し
た被覆焼結体が注目を浴びている。このダイヤモンドや
硬質炭素膜の製造方法としては、水素ガスと炭素含有物
質を原料とし、マイクロ波を利用したプラズマCVD法
または熱フィラメントCVD法により合成されるのが一
般的である。これらの方法を用いて、切削工具等の材料
として最も広く用いられている炭化タングステンをバイ
ンダーとしてコバルトを用いて焼結した基体上にダイヤ
モンドまたは硬質炭素膜を合成・形成する場合、基体は
約800℃の温度となるため析出した炭素成分はバイン
ダーであるコバルト中に固溶し、目的とするダイヤモン
ドや硬質炭素膜を形成することができなかった。In recent years, among the above-mentioned coating materials, a hard carbon film having the hardest diamond in the materials or a hardness close to that of diamond (in many cases, containing fine crystalline diamond) is used. Attention has been focused on the coated sintered body. As a method for producing this diamond or hard carbon film, hydrogen gas and a carbon-containing substance are generally used as raw materials and synthesized by a plasma CVD method using microwaves or a hot filament CVD method. When these methods are used to synthesize and form a diamond or hard carbon film on a substrate obtained by sintering tungsten carbide, which is most widely used as a material for cutting tools, etc., with cobalt as a binder, the substrate is about 800 Since the temperature was ℃, the precipitated carbon component dissolved in cobalt as a binder to form a desired diamond or hard carbon film.
【0004】この問題を解決する方法として、バインダ
ーであるコバルトの含有量を少なくすることが考えられ
るが、極端にコバルト含有量を少なくすると焼結後の焼
結体の強度が極度に低下するため好ましくない。また、
適切な強度の含有量(たとえば、Co4wt%)ものに
おいても焼結後における研削、研磨等の加工により、炭
化タングステンに比べ硬さの低いコバルトが、いわゆる
ダレを起こして最表面を覆うため、コバルトの占める面
積が大きくなり、この方法では、この問題の十分な解決
策とはなりえなかった。さらにコバルトに固溶せずにダ
イヤモンドや硬質炭素膜として析出しても、基体と析出
した膜の熱膨張係数に大きな違いがあるため、膜厚が厚
くなると剥離を生じてしまうという課題があった。As a method for solving this problem, it is conceivable to reduce the content of cobalt as a binder. However, if the content of cobalt is extremely reduced, the strength of the sintered body after sintering is extremely lowered. Not preferable. Also,
Even with a content of appropriate strength (for example, Co4 wt%), cobalt having a lower hardness than tungsten carbide causes so-called sagging and covers the outermost surface by processing such as grinding and polishing after sintering. Occupies a large area, and this method could not be a sufficient solution to this problem. Furthermore, even if it was deposited as a diamond or hard carbon film without forming a solid solution in cobalt, there was a large difference in the coefficient of thermal expansion between the substrate and the deposited film, so there was a problem that peeling would occur when the film thickness increased. ..
【0005】[0005]
【課題を解決するための手段】かかる課題を解決するた
めに、本発明では基体である炭化タングステン−コバル
ト焼結体上にダイヤモンドまたは硬質炭素膜を上記CV
D法により合成・形成するにあたり、焼結体表面のコバ
ルトが占める面、換言すれば焼結体がダイヤモンドまた
は硬質炭素膜と密着する面のコバルトが占める面積の比
率を10%以下にする。この場合、コバルトが表面で占
める面積の比率を10%以下にする方法としてはバイン
ダーであるコバルトの含有量をできる限り少なくし、焼
結後、所望の形状に研削、研磨等の加工を行い、W−C
−Co系の共晶温度付近の温度である1250℃〜13
10℃の範囲で真空またはアルゴン雰囲気中で熱処理を
行う。In order to solve such a problem, in the present invention, a diamond or hard carbon film is provided on the tungsten carbide-cobalt sintered body which is the base body, by the above CV.
In synthesizing and forming by the D method, the ratio of the area occupied by cobalt on the surface of the sintered body, in other words, the area occupied by cobalt on the surface where the sintered body adheres to the diamond or hard carbon film is set to 10% or less. In this case, as a method for reducing the area ratio of cobalt on the surface to 10% or less, the content of cobalt as a binder is reduced as much as possible, and after sintering, processing such as grinding and polishing into a desired shape is performed. WC
1250 ° C. to 13 which is a temperature near the eutectic temperature of the Co type
Heat treatment is performed in a vacuum or argon atmosphere in the range of 10 ° C.
【0006】[0006]
【作用】ダイヤモンドまたは硬質炭素膜を炭化タングス
テン−コバルト系焼結体上に合成・形成するにあたり、
焼結体表面のコバルトが占める面積比を10%以下にす
ることにより、これらの膜の形成時に起こるコバルト中
への炭素の固溶を極力抑えることができるため、CVD
法により結晶性の良いダイヤモンド膜や高硬質炭素膜と
することができる。また、表面におけるコバルト量が少
なくなるため、表面によりダイヤモンドの熱膨張係数に
近い炭化タングステン表面の占める比率が大きくなり、
熱膨張率の違いによる剥離が生じにくく、密着性の向上
が達成される。[Function] When synthesizing and forming a diamond or hard carbon film on a tungsten carbide-cobalt-based sintered body,
By setting the area ratio of cobalt on the surface of the sintered body to 10% or less, it is possible to suppress the solid solution of carbon in cobalt that occurs during the formation of these films.
By the method, a diamond film or a highly hard carbon film having good crystallinity can be obtained. In addition, since the amount of cobalt on the surface is reduced, the ratio of the tungsten carbide surface close to the thermal expansion coefficient of diamond is increased due to the surface,
Peeling is less likely to occur due to the difference in coefficient of thermal expansion, and improvement in adhesion is achieved.
【0007】また、この焼結体表面のコバルトが占める
比率を10%以下にする方法として、焼結、研削・研磨
等の加工後、真空またはアルゴン等の不活性雰囲気中で
W−C−Co系における共晶温度付近である1250℃
〜1310℃の範囲で熱処理を行うことにより、表面付
近のコバルトは焼結体内部に浸入し、一部は蒸発を起こ
し、表面付近、とくに表面部では、ほとんどその存在が
なくなる。このとき、炭化タングステンは粒子状である
ため、熱処理後には最外層の炭化タングステン粒子の焼
結体内側面ではコバルトにより強固に結合し、焼結体と
しての強度を低下させない。また、外側面では炭化タン
グステン面の凸凹が現れる。Further, as a method for making the ratio of cobalt on the surface of the sintered body 10% or less, after processing such as sintering, grinding and polishing, WC-Co in vacuum or an inert atmosphere such as argon. 1250 ℃, which is near the eutectic temperature in the system
By performing the heat treatment in the range of up to 1310 ° C., cobalt near the surface infiltrates into the inside of the sintered body, a part of it evaporates, and it almost disappears near the surface, especially at the surface part. At this time, since the tungsten carbide is in the form of particles, after the heat treatment, the outermost layer of the tungsten carbide particles is firmly bonded to cobalt on the inner surface of the sintered body, and the strength of the sintered body is not reduced. In addition, irregularities on the tungsten carbide surface appear on the outer surface.
【0008】さらに、この上面にCVD法により、炭素
のコバルトへの固溶がなく、熱膨張の差を抑えるだけで
なく、炭化タングステン面の微細な凸凹による、いわゆ
るアンカー効果も出現するため、密着性に優れ、結晶性
の良いダイヤモンドまたは高硬質炭素膜を容易に形成す
ることができるのである。ここで、熱処理温度を125
0℃より低くするとコバルトの焼結体内部への移動や表
面からの蒸発が不十分となり、焼結体最表面のコバルト
の占める比率が高くなるため優れた特性を有する被覆焼
結体が得られず、また、1310℃より高くすると逆に
コバルトの焼結体内部への移動や表面からの蒸発が多く
なりすぎ、最表面におけいる炭化タングステン粒子の結
合強度が弱まるため熱処理後脱落を生じたり、ダイヤモ
ンドあるいは硬質炭素膜を形成したときに炭化タングス
テン粒子や膜の脱落、剥離を生じやすくなる。このた
め、熱処理温度としてW−C−Co系の共晶温度付近で
ある1250℃〜1310℃の範囲が優れた被覆焼結体
を提供するのである。Further, by the CVD method on this upper surface, there is no solid solution of carbon in cobalt, not only the difference in thermal expansion is suppressed, but also the so-called anchor effect due to the fine unevenness of the tungsten carbide surface appears, so that adhesion is improved. A diamond or highly hard carbon film having excellent properties and good crystallinity can be easily formed. Here, the heat treatment temperature is set to 125
If the temperature is lower than 0 ° C, migration of cobalt into the inside of the sintered body and evaporation from the surface will be insufficient, and the ratio of cobalt on the outermost surface of the sintered body will be high, resulting in a coated sintered body having excellent properties. On the other hand, if the temperature is higher than 1310 ° C, on the contrary, the migration of cobalt into the sintered body and the evaporation from the surface become too much, and the bond strength of the tungsten carbide particles on the outermost surface weakens, causing dropout after heat treatment. When the diamond or hard carbon film is formed, the tungsten carbide particles and the film are likely to come off or peel. Therefore, the heat treatment temperature is in the vicinity of the W—C—Co eutectic temperature, that is, in the range of 1250 ° C. to 1310 ° C., and the coated sintered body is excellent.
【0009】[0009]
【実施例】以下に、本発明を耐摩耗部品として最も過酷
な条件下で使用される炭化タングステン−コバルト焼結
体スローアウェイチップに適用した実施例に基づいて説
明する。炭化タングステン−コバルト系焼結体(重量比
Co4% JIS規格K−10相当品)からなる表面を
研削した、超硬製スローアウェイチップを真空熱処理炉
を用いて1290℃で15分間熱処理を行った。このと
きの真空度は10-6TOrrとした。この熱処理を行っ
た超硬製スローアウェイチップと未処理品についてマイ
クロ波(2.45MHz)によるプラズマCVD装置を
用い、メタン、水素を原料とし、全ガス流量300CC
/min、メタン流量比0.3%、ガス圧30Tor
r、マイクロ波出力500Wとし、ダイヤモンドを主成
分とする膜を形成した。EXAMPLES The present invention will be described below based on examples in which the present invention is applied to a tungsten carbide-cobalt sintered body throw-away tip which is used as a wear resistant component under the most severe conditions. A cemented carbide throw-away tip, the surface of which was made of a tungsten carbide-cobalt-based sintered body (weight ratio Co4% JIS standard K-10 equivalent product) was ground, was heat-treated at 1290 ° C. for 15 minutes using a vacuum heat-treatment furnace. .. The degree of vacuum at this time was 10 −6 TOrr. Using the microwave CVD (2.45MHz) plasma CVD device for the carbide hard throw-away tip and the untreated article, the total gas flow rate was 300CC.
/ Min, methane flow rate ratio 0.3%, gas pressure 30 Tor
r, microwave output was 500 W, and a film containing diamond as a main component was formed.
【0010】ダイヤモンド膜合成中、基材であるスロー
アウェイチップはマイクロ波により、約800℃に加熱
されており、膜合成・冷却後、試料をCVD装置より取
り出したところ、熱処理を行なった試料では、表1に示
した全範囲で膜厚剥離等の欠陥は全く見られなっかたの
に対し、熱処理を行なわなかった試料については、3μ
m以上の膜厚で剥離を生じた。During the diamond film synthesis, the throw-away tip, which is the base material, was heated to about 800 ° C. by microwaves. After the film synthesis and cooling, the sample was taken out from the CVD apparatus. In the entire range shown in Table 1, no defects such as film thickness peeling were observed, whereas 3 μm was obtained for the sample not subjected to the heat treatment.
Peeling occurred at a film thickness of m or more.
【0011】次に、表1に挙げた剥離を生じなかった試
料のうち代表的なものについて、NC旋盤により、表2
に示した切削条件でAl−Si(12%)合金の切削を
行い、その逃げ面摩耗に関する結果を図1に示したが、
熱処理を行なわなかった試料1では、全試料について初
期の段階でチッピング、剥離を起こし、ダイヤモンド膜
被覆の効果はなく、基材のみの試料2とほぼ同じ結果を
示したのに対し、熱処理を施した試料3ではチッピング
や剥離といった現象は現われず、きわめて高い切削性を
示した。この切削性の良かった試料について、ダイヤモ
ンド膜を形成せずにその最表面の元素分布状態を知るた
めに、オージェ電子分光分析法による面分析を行なった
ところコバルトの占める面積比率は約5%となってい
た。Next, of the representative samples listed in Table 1 which did not cause peeling, a typical sample was prepared using an NC lathe.
The Al-Si (12%) alloy was cut under the cutting conditions shown in Fig. 1 and the results of flank wear are shown in Fig. 1.
In the sample 1 which was not heat-treated, chipping and peeling occurred in all the samples at the initial stage, there was no effect of the diamond film coating, and the result was almost the same as that of the sample 2 having only the base material. In the sample 3 thus produced, phenomena such as chipping and peeling did not appear, and extremely high machinability was exhibited. For this sample with good machinability, in order to know the element distribution state of the outermost surface without forming a diamond film, surface analysis by Auger electron spectroscopy was performed, and the area ratio of cobalt was about 5%. Was becoming.
【0012】[0012]
【表1】 [Table 1]
【0013】[0013]
【表2】 [Table 2]
【0014】次に、熱処理の条件と効果を知るために、
熱処理条件を変えたときの最表面のコバルトの占める面
積比率をオージェ電子分光分析より求めた結果と密着
性、切削性の結果を表3に示す。この結果から、炭化タ
ングステン−コバルト焼結体のコバルトの占める面積比
率を10%以下にすることが優れた被覆焼結体を与える
ことが確認できた。この条件を与える熱処理の温度範囲
としては、1250℃〜1310℃が良いことがわかっ
た。また、熱処理の雰囲気としては酸化を防ぐため真空
またはアルゴン等の雰囲気が好ましく、熱処理時間は焼
結材料の組成、粒子(特に炭化タングステン粒子)の大
きさ、さらに処理物の形状にもよるが、数分〜数十分が
適当であり、長すぎると表面の炭化タングステン粒子の
脱落やダイヤモンド膜の残留内部応力による脱落・剥離
が生じ、短すぎると、コバルトの占める比率が大きすぎ
ることが実験より確認できている。Next, in order to know the conditions and effects of heat treatment,
Table 3 shows the results of the area ratio of cobalt on the outermost surface obtained by Auger electron spectroscopy analysis and the results of adhesion and machinability when the heat treatment conditions were changed. From these results, it was confirmed that setting the area ratio of cobalt in the tungsten carbide-cobalt sintered body to 10% or less gives an excellent coated sintered body. It was found that the temperature range of the heat treatment that gives this condition is preferably 1250 ° C to 1310 ° C. The atmosphere for heat treatment is preferably vacuum or an atmosphere such as argon in order to prevent oxidation, and the heat treatment time depends on the composition of the sintered material, the size of particles (particularly tungsten carbide particles), and the shape of the processed material. A few minutes to a few tens of minutes are appropriate, and if it is too long, the surface tungsten carbide particles will fall off or the diamond film will be removed / peeled off due to residual internal stress, and if it is too short, the proportion of cobalt will be too large. I have confirmed.
【0015】[0015]
【表3】 [Table 3]
【0016】最後に、表1及び表3に示した試料のダイ
ヤモンド膜合成は上記の条件で行なったが、ガス流量、
流量比、圧力、マイクロ波出力さらに炭素源となるガス
源を他の炭化水素ガスや含酸素有機物、一酸化炭素に変
えても同様な結果が得られた。また、高硬度炭素膜の成
分がダイヤモンド膜またはダイヤモンドを主成分とする
硬質膜さらにダイヤモンドを含まない硬質炭素膜として
も同様であった。Finally, the diamond film synthesis of the samples shown in Tables 1 and 3 was carried out under the above conditions.
Similar results were obtained by changing the flow rate, the pressure, the microwave output, and the gas source serving as the carbon source to another hydrocarbon gas, oxygen-containing organic matter, or carbon monoxide. The same applies to a high hardness carbon film having a diamond film, a hard film containing diamond as a main component, or a hard carbon film containing no diamond.
【0017】さらに、K−10相当の焼結体だけでな
く、他の炭化タングステン−コバルト系焼結体において
も同様な結果が得られている。Further, similar results are obtained not only for the sintered body corresponding to K-10 but also for other tungsten carbide-cobalt based sintered bodies.
【0018】[0018]
【発明の効果】以上、この発明によれば、工具、耐摩耗
工具、金型、耐摩耗部品や装飾品等について汎用性の高
い炭化タングステン−コバルト焼結体に対して、優れた
ダイヤモンドまたは硬質炭素膜が形成された被覆焼結体
とその製造方法を提供できる。すなわち、炭化タングス
テン−コバルト焼結体の表面におけるコバルトが占める
面積を10%以下にすることにより、ダイヤモンド、ダ
イヤモンド含有炭素膜、または硬質炭素膜形成時に炭素
を基材中のコバルト中への拡散・固溶といった現象を防
ぎ、形成された膜そのものの特性を優れたものとするこ
とができ、かつ、膜と基材との熱膨張差を小さくできる
と共に、アンカー効果と呼ばれる密着性を高める効果も
同時に発生するため、性能の高い被覆焼結体を製造する
ことができ、ダイヤモンド焼結体では成形が困難な形状
を有する切削工具をはじめとする耐摩耗製品に対して、
幅広い適用が可能となる。As described above, according to the present invention, an excellent diamond or hard diamond is obtained for a tungsten carbide-cobalt sintered body having high versatility in tools, wear-resistant tools, dies, wear-resistant parts and ornaments. A coated sintered body on which a carbon film is formed and a method for manufacturing the same can be provided. That is, by making the area occupied by cobalt on the surface of the tungsten carbide-cobalt sintered body 10% or less, diffusion of carbon into cobalt in the substrate during formation of diamond, a diamond-containing carbon film, or a hard carbon film. It is possible to prevent the phenomenon of solid solution and to improve the characteristics of the formed film itself, and to reduce the difference in thermal expansion between the film and the base material, and also to improve the adhesion called the anchor effect. Since it occurs at the same time, it is possible to manufacture a high-performance coated sintered body, and for a wear resistant product such as a cutting tool having a shape that is difficult to form with a diamond sintered body,
Wide application is possible.
【0019】なお、実施例ではスローアウェイチップに
ついて取りあげたが、炭化タングステン−コバルト焼結
体よりなる処理物、たとえば、ドリル、エンドミル等の
切削工具、ダイス、パンチ、金型等の耐摩耗工具・部品
であれば、本発明が適用できることは明らかである。ま
た、ダイヤモンドまたは硬質炭素膜を形成するにあた
り、実施例ではマイクロ波CVD法を使用したが、この
ほかの方法、たとえば熱フィラメントを用いたCVD
法、プラズマジェットを用いた方法等にも適用できるこ
とは明白である。In the examples, the throw-away tip was taken up, but a processed object made of a tungsten carbide-cobalt sintered body, for example, a cutting tool such as a drill or an end mill, a wear-resistant tool such as a die, a punch, a die, Obviously, the present invention can be applied to any component. Further, in forming the diamond or hard carbon film, the microwave CVD method was used in the embodiment, but other methods such as CVD using a hot filament are used.
It is obvious that the method can be applied to the method, a method using a plasma jet, and the like.
【図1】本発明による切削テスト結果を示す説明図であ
る。FIG. 1 is an explanatory diagram showing a cutting test result according to the present invention.
1 熱処理を施さなかった試料 2 基材のみの試料 3 熱処理を施した試料 1 sample without heat treatment 2 sample with base material 3 sample with heat treatment
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 健一 東京都江東区亀戸6丁目31番1号 セイコ ー電子工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kenichi Ogawa 6-31-1, Kameido, Koto-ku, Tokyo Seiko Denshi Kogyo Co., Ltd.
Claims (3)
成分とするバインダーとして用いて焼結した超硬合金工
具、耐摩耗工具、金型、耐摩耗部品や装飾品等におい
て、焼結表面のコバルトが占める比率が面積比で10%
以下であり、かつ、この表面上にダイヤモンド膜または
硬質炭素膜を有することを特徴とする被覆焼結体。1. In a cemented carbide tool, wear-resistant tool, mold, wear-resistant component, decorative article, etc. sintered using tungsten carbide or cobalt as a main component of binder, cobalt on the sintered surface occupies Ratio is 10% in area ratio
A coated sintered body which is the following and has a diamond film or a hard carbon film on the surface thereof.
望の形状に加工した後、熱処理により、焼結体表面のコ
バルトが占める面積比率を10%以下にし、ついでダイ
ヤモンド膜または硬質炭素膜を形成することを特徴する
請求項1記載の被覆焼結体の製造方法。2. A tungsten carbide and cobalt sintered body is processed into a desired shape and then heat treated to reduce the area ratio of cobalt on the surface of the sintered body to 10% or less, and then a diamond film or a hard carbon film is formed. The method for producing a coated sintered body according to claim 1, wherein.
雰囲気中で行い、かつ、熱処理温度を1250℃〜13
10℃とすることを特徴とする請求項2記載の被覆焼結
体の製造方法。3. The heat treatment is performed in vacuum or in an inert atmosphere such as argon, and the heat treatment temperature is 1250 ° C. to 13 ° C.
The method for producing a coated sintered body according to claim 2, wherein the temperature is 10 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP866792A JPH05195223A (en) | 1992-01-21 | 1992-01-21 | Coated sintered body and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP866792A JPH05195223A (en) | 1992-01-21 | 1992-01-21 | Coated sintered body and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05195223A true JPH05195223A (en) | 1993-08-03 |
Family
ID=11699289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP866792A Pending JPH05195223A (en) | 1992-01-21 | 1992-01-21 | Coated sintered body and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05195223A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0731751A4 (en) * | 1993-11-30 | 1999-11-03 | Kennametal Inc | Diamond-coated tools and process for making |
WO2010068168A1 (en) * | 2008-12-10 | 2010-06-17 | Seco Tools Ab | Method of making cutting tool inserts with high demands on dimensional accuracy |
-
1992
- 1992-01-21 JP JP866792A patent/JPH05195223A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0731751A4 (en) * | 1993-11-30 | 1999-11-03 | Kennametal Inc | Diamond-coated tools and process for making |
US6287682B1 (en) | 1993-11-30 | 2001-09-11 | Kennametal Pc Inc. | Diamond coated tools and process for making |
WO2010068168A1 (en) * | 2008-12-10 | 2010-06-17 | Seco Tools Ab | Method of making cutting tool inserts with high demands on dimensional accuracy |
US8512807B2 (en) | 2008-12-10 | 2013-08-20 | Seco Tools Ab | Method of making cutting tool inserts with high demands on dimensional accuracy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5618625A (en) | CVD diamond coated cutting tools and method of manufacture | |
EP0365218B1 (en) | A polycrystal diamond fluted tool and a process for the production of the same | |
JPWO2008026700A1 (en) | Cutting tool, manufacturing method thereof and cutting method | |
JP2004100004A (en) | Coated cemented carbide and production method therefor | |
JPH03115571A (en) | Diamond-coated sintered alloy excellent in adhesive strength and its production | |
KR100305315B1 (en) | Diamond coated cutting tools and manufacturing method thereof | |
US8512807B2 (en) | Method of making cutting tool inserts with high demands on dimensional accuracy | |
JPH0621360B2 (en) | Diamond-coated sintered bond excellent in peel resistance and method for producing the same | |
JPS61109628A (en) | Diamond coated tool | |
JPH05195223A (en) | Coated sintered body and its production | |
JPH11335870A (en) | Titanium carbonitride-aluminum oxide-coated tool | |
JPH068009A (en) | Cutting tool made of surface coating tungsten carbide group super hard alloy excellent in chipping resistance property | |
JPH04280974A (en) | Boron nitride coated hard material | |
JP3134378B2 (en) | Diamond coated hard material | |
JP3109272B2 (en) | Surface coated titanium carbonitride based cermet cutting tool with excellent fracture and wear resistance | |
JPH0623431B2 (en) | Hard coating coated cutting tool parts | |
KR100576318B1 (en) | Method for Improving Surface Roughness of Diamond Coating Film for Cutting Tools | |
JPH06248422A (en) | Coated sintered compact and its production | |
JPH0663092B2 (en) | Diamond-coated sintered body excellent in peeling resistance and method for producing the same | |
JPH01225774A (en) | High-hardness polycrystalline diamond tool | |
JPH0657427A (en) | Hard carbon film coated sintered hard alloy tool and its production | |
JP2779531B2 (en) | Diamond coated tungsten carbide based sintered body | |
JPH04297507A (en) | Manufacture of cutting tool made of hard layer-coated tungsten carbide base-sintered hard alloy | |
JPH0320467A (en) | Diamond-coated sintered compact excellent in adhesion and its production | |
JPH0790321A (en) | Ceramic base material for diamond coating and production of base material for coating |