JPH0518470B2 - - Google Patents
Info
- Publication number
- JPH0518470B2 JPH0518470B2 JP26725385A JP26725385A JPH0518470B2 JP H0518470 B2 JPH0518470 B2 JP H0518470B2 JP 26725385 A JP26725385 A JP 26725385A JP 26725385 A JP26725385 A JP 26725385A JP H0518470 B2 JPH0518470 B2 JP H0518470B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- mesa
- channel stopper
- semiconductor substrate
- mesa groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Weting (AREA)
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は、半導体装置の製造方法に関し、特に
チヤネルストツパーを有する高逆耐圧メサ型半導
体装置についての改良された製造方法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to an improved method for manufacturing a high reverse voltage mesa type semiconductor device having a channel stopper.
[発明の技術的背景]
メサ型半導体装置においては、素子の特性の安
定化や信頼性向上のため、その表面を保護膜で被
覆することが行われており、そのうちの一方法と
して熱酸化膜による表面保護方法がある。熱酸化
膜は、安定した表面が得られ、量産性もよいが、
酸化膜中には正の可動イオンが存在し、これが信
頼性、特に高温逆バイアス特性に悪影響を及ぼ
す。[Technical Background of the Invention] In mesa-type semiconductor devices, the surface of the device is coated with a protective film in order to stabilize the characteristics of the device and improve reliability. One of the methods is to coat the surface with a protective film. There are surface protection methods. Thermal oxide films provide a stable surface and are suitable for mass production, but
Positive mobile ions exist in the oxide film, which adversely affects reliability, especially high temperature reverse bias characteristics.
従来、例えばN+−N-−P構造のメサ型ダイオ
ードでは、第2図に示すように、チヤネルストツ
パー6としてはメサ溝底部付近に1019cm-3以上の
アクセプタ不純物濃度を有するP+領域を設け、
高温逆バイアス印加時に酸化膜9中の正電荷によ
りP領域2の表面に反転層が生ずるのを防ぐ構造
が採られている。なお、10は電極、5は電極取
出し用P+領域である。 Conventionally, for example, in a mesa diode with an N + -N - -P structure, as shown in Fig. 2, the channel stopper 6 is a P + having an acceptor impurity concentration of 10 19 cm -3 or more near the bottom of the mesa groove. Set up an area,
A structure is adopted to prevent the formation of an inversion layer on the surface of P region 2 due to positive charges in oxide film 9 when high temperature reverse bias is applied. Note that 10 is an electrode, and 5 is a P + region for taking out the electrode.
[背景技術の問題点]
従来、チヤネルストツパーP+領域6を設ける
方法としては、例えば第3図a〜d工程図に示す
方法と第4図a〜d工程図に示す方法が知られて
いる。[Problems in the Background Art] Conventionally, as a method for providing the channel stopper P + region 6, for example, the method shown in the process diagrams of FIGS. 3 a to d and the method shown in the process diagrams of FIGS. 4 a to d are known. There is.
第3図に示す方法は、メサ溝を設けた後に溝底
にチヤネルストツパーP+領域の拡散をする方法
である。すなわち、まず、第3図aのN-形シリ
コン基板11の図の下表面全面からアクセプタ不
純物を、図の上表面全面からドナー不純物を、と
もに表面濃度が1020cm-3になるように拡散し、そ
れぞれP領域12とN+領域13を設ける(第3
図b)。次に、N+領域13側表面から、P領域1
2に達する孔を掘り、N+領域13、N-領域14
及びP領域12に跨がるメサ溝15を設ける(第
3図c)。しかる後、メサ溝15の底部にアクセ
プタ不純物を1019cm-3以上導入して、チヤネルス
トツパーのP+領域16を形成する(第3図d)。 The method shown in FIG. 3 is a method in which a mesa groove is provided and then a channel stopper P + region is diffused at the bottom of the groove. That is, first, acceptor impurities are diffused from the entire lower surface of the N - type silicon substrate 11 shown in FIG. and provide a P region 12 and an N + region 13 respectively (third
Figure b). Next, from the N + region 13 side surface, P region 1
Dig holes reaching 2, N + area 13, N - area 14
and a mesa groove 15 spanning the P region 12 (FIG. 3c). Thereafter, an acceptor impurity of 10 19 cm -3 or more is introduced into the bottom of the mesa groove 15 to form the P + region 16 of the channel stopper (FIG. 3d).
第4図に示す方法は、深いP+領域を拡散させ
てからメサ溝を形成する方法である。すなわち、
まず、第4図aのN-形シリコン基板21をとり、
図の下面では全面から、図の上面ではメサ溝を設
ける位置から、アクセプタ不純物をそれぞれ表面
濃度が1020cm-3、1021cm-3になるように拡散し、
P領域22と、メサ溝底部となる位置で1019cm-3
以上の濃度を有するP+領域27を形成する(第
4図b)。次に、図の上面からドナー不純物を拡
散してN+領域23を設ける(第4図c)。しかる
後、メサ溝25を掘つて、P+領域27の底部を
チヤネルストツパー26として残し、第3図dと
同じ第4図dの構造を得る。 The method shown in FIG. 4 is a method in which a deep P + region is diffused and then a mesa groove is formed. That is,
First, take the N - type silicon substrate 21 shown in FIG. 4a,
The acceptor impurity is diffused from the entire surface on the bottom surface of the figure and from the position where the mesa groove is provided on the top surface of the figure, so that the surface concentration is 10 20 cm -3 and 10 21 cm -3 , respectively.
10 19 cm -3 at the P region 22 and the bottom of the mesa groove
A P + region 27 having the above concentration is formed (FIG. 4b). Next, a donor impurity is diffused from the upper surface of the figure to form an N + region 23 (FIG. 4c). Thereafter, a mesa groove 25 is dug, leaving the bottom of the P + region 27 as a channel stopper 26, resulting in the structure shown in FIG. 4d, which is the same as that shown in FIG. 3d.
そして、第3図dと第4図dの各領域を形成し
た基板からは、酸化膜及び電極を形成し、そのメ
サ溝25の中心線に沿つてペレツトに切断すれ
ば、第2図の構造のダイオードが得られる。 Then, an oxide film and an electrode are formed on the substrate on which the regions shown in FIG. 3 d and FIG. 4 d are formed, and the structure shown in FIG. diode is obtained.
しかしながら、第3図に示す従来方法では、メ
サ溝を設けた後にその底にP+領域の拡散をする
ので、拡散位置を正確に制御することがむずかし
く、一方、第4図に示す従来方法では、メサ溝の
深さ以上に深く拡散する必要があるので、拡散時
間が長くなるとともに、チヤネルストツパー26
のP+濃度も拡散表面濃度に比べて著しく低下す
るとともに、該P+濃度も制御しにくいというと
いう欠点がある。 However, in the conventional method shown in FIG. 3, the P + region is diffused at the bottom of the mesa groove after it is formed, so it is difficult to accurately control the diffusion position.On the other hand, in the conventional method shown in FIG. , it is necessary to diffuse deeper than the depth of the mesa groove, so the diffusion time becomes longer and the channel stopper 26
The disadvantage is that the P + concentration is significantly lower than the diffusion surface concentration, and the P + concentration is also difficult to control.
[発明の目的]
この発明の目的は、メサ溝底部のチヤネルスト
ツパーを、上記従来方法に比べて、より正確な位
置に、高濃度に、かつその濃度を制御して、高逆
耐圧などの特性をもつメサ型半導体装置の製造方
法を提供することである。また、この発明の別の
目的は、チヤネルストツパー領域の拡散時間を短
縮して、全工程時間の短縮に寄与するメサ型半導
体装置の製造方法を提供することである。[Object of the Invention] An object of the present invention is to place the channel stopper at the bottom of the mesa groove in a more accurate position, at a higher concentration, and to control the concentration, thereby achieving high reverse withstand voltage, etc. An object of the present invention is to provide a method for manufacturing a mesa-type semiconductor device having characteristics. Another object of the present invention is to provide a method for manufacturing a mesa-type semiconductor device that contributes to shortening the overall process time by shortening the diffusion time of the channel stopper region.
[発明の概要]
この発明は、2枚の半導体基板を、金属や有機
物などのろう材若しくは接着剤の介在なしに、直
接の熱圧着により接着する技術を利用して、チヤ
ネルストツパー領域を形成するものである。すな
わち、一方の半導体基体の主面には、メサ溝の底
部となる位置にチヤネルストツパー領域を設けて
おき、これに他方半導体基体を接着し、溝底に該
チヤネルストツパーが現れるようなメサ溝を、該
他方半導体基体に形成する方法である。この方法
の利点は、チヤネルストツパーをメサ溝の底の正
確な位置に、制御された高濃度で、かつ短時間に
形成できることである。[Summary of the Invention] The present invention forms a channel stopper region by using a technique of bonding two semiconductor substrates by direct thermocompression bonding without the intervention of a brazing material such as a metal or an organic material or an adhesive. It is something to do. That is, a channel stopper region is provided on the main surface of one semiconductor substrate at a position that will become the bottom of the mesa groove, and the other semiconductor substrate is adhered to this, forming a mesa such that the channel stopper appears at the bottom of the groove. A method of forming a groove in the other semiconductor substrate. The advantage of this method is that the channel stopper can be formed at a precise location at the bottom of the mesa groove, in a controlled high concentration, and in a short time.
[発明の実施例]
以下に、この発明を第1図のメサ型ダイオード
の工程図で具体的に説明する。第1図a1〜a2
は第1半導体基板にかかる工程、第1図b1〜b
2は第2半導体基板にチヤネルストツパー領域な
どを設ける工程、第1図c〜dは第1及び第2半
導体基板を接着してメサ溝を形成する工程であ
る。[Embodiments of the Invention] The present invention will be specifically explained below with reference to the process diagram of a mesa diode shown in FIG. Figure 1 a1-a2
are steps related to the first semiconductor substrate, FIG. 1 b1 to b
2 is a step of providing a channel stopper region etc. on the second semiconductor substrate, and FIGS. 1c to 1d are steps of bonding the first and second semiconductor substrates to form a mesa groove.
第1図a1における31は、不純物濃度が1014
cm-3のN-型シリコン基板である。次に、第1図
a2のように、このN-型シリコン基板31にお
ける図の上表面の全面から、表面濃度が1020cm-3
になるようにドナー不純物を拡散して、N+型の
高濃度層33を形成する。 31 in Figure 1 a1 has an impurity concentration of 10 14
cm -3 N - type silicon substrate. Next, as shown in FIG. 1 a2, the surface concentration is 10 20 cm -3 from the entire upper surface of this N - type silicon substrate 31 in the figure.
The donor impurity is diffused so as to form an N + type high concentration layer 33.
一方、第1図b1における32は、不純物濃度
が1018cm-3である別のP型シリコン基板である。
次に、第1図b2のように、このシリコン基板3
2における図の上表面のメサ溝の底部に相当する
部分に、選択的にアクセプタ不純物を表面濃度が
1020cm-3となるように拡散して、チヤネルストツ
パーP+領域36を設けると同時に、そのシリコ
ン基板32の図の下表面の全面からも、アクセプ
タ不純物を拡散してコンタクトP+領域38を設
ける。 On the other hand, 32 in FIG. 1b1 is another P-type silicon substrate with an impurity concentration of 10 18 cm -3 .
Next, as shown in FIG. 1 b2, this silicon substrate 3
The acceptor impurity was selectively added to the bottom of the mesa groove on the upper surface of Figure 2 to increase the surface concentration.
10 20 cm -3 to form a channel stopper P + region 36, and at the same time, acceptor impurities are diffused from the entire lower surface of the silicon substrate 32 to form a contact P + region 38. will be established.
しかる後、第1図cに示すように、第1図a2
の基板と、第1図b2の基板とを、第1図a2基
板のN-領域34と第1図b2基板のチヤネルス
トツパーP+領域36側とが、接着面37で接す
るように接着する。この接着には、両基板にミラ
ー面を形成した後、該ミラー面を清浄化し、金属
が有機物などのろう材若しくは接着剤を介在させ
ずに、清浄な雰囲気中でシリコン基板どうしを直
接圧着するとともに400℃以上好ましくは1100℃
で数時間熱処理をして接着を強化する。この接着
により、N-領域34とP領域32との間にダイ
オードPN接合が形成される。 After that, as shown in Figure 1 c, Figure 1 a2
and the substrate in FIG. 1b2 are bonded together so that the N - area 34 of the substrate a2 in FIG. 1 and the channel stopper P + area 36 side of the substrate b2 in FIG. . For this bonding, after forming mirror surfaces on both substrates, the mirror surfaces are cleaned, and the silicon substrates are directly pressed together in a clean atmosphere without intervening a metal or organic brazing material or adhesive. with 400℃ or more preferably 1100℃
heat treatment for several hours to strengthen the bond. This adhesion forms a diode PN junction between N - region 34 and P region 32.
そして最後に、第1図dに示すごとく、接着し
た基板のN+側表面からメサ溝35を掘り、P+領
域36がメサ溝35の底部に位置するようにすれ
ば、該P+領域36がチヤネルストツパーとなる
構造が形成される。 Finally, as shown in FIG . 1d, a mesa groove 35 is dug from the N + side surface of the bonded substrate so that the P + region 36 is located at the bottom of the mesa groove 35. A structure in which the channel stopper is formed is formed.
チヤネルストツパー付きメサ型ダイオードとし
ては、さらに第1図dの基板に酸化膜と電極を形
成した後、一点鎖線Lに沿つてペレツトカツトし
て、第2図の構造のものを得ることができる。第
2図において、酸化膜は9、電極は10である。 A mesa diode with a channel stopper having the structure shown in FIG. 2 can be obtained by forming an oxide film and an electrode on the substrate shown in FIG. In FIG. 2, 9 is the oxide film and 10 is the electrode.
[発明の効果]
本発明の製造方法によれば、チヤネルストツパ
ー領域は第2半導体基体の平面基板上で選択拡散
して形成されるので、メサ溝形成後溝底にチヤネ
ルストツパー領域を形成する従来方法(第3図の
方法)に比べて、チヤネルストツパー領域をより
正確な位置に設けることができる。[Effects of the Invention] According to the manufacturing method of the present invention, since the channel stopper region is formed by selective diffusion on the flat substrate of the second semiconductor substrate, the channel stopper region is formed at the bottom of the groove after forming the mesa groove. Compared to the conventional method (the method shown in FIG. 3), the channel stopper region can be provided at a more accurate position.
また、本発明の製造方法によれば、チヤネルス
トツパー領域のための拡散は第2半導体基体上で
浅く拡散すればよいから、メサ溝形成前にメサ溝
の深さにチヤネルストツパー領域の深さを加えた
深い拡散が必要であつた従来方法(第4図の方
法)に比べて、拡散時間が大幅に短縮でき、しか
もチヤネルストツパーとして必要な高濃度の領域
を極めて制御された状態で設けることができる。 Furthermore, according to the manufacturing method of the present invention, since the diffusion for the channel stopper region only needs to be performed shallowly on the second semiconductor substrate, the depth of the mesa groove is adjusted to the depth of the channel stopper region before forming the mesa groove. Compared to the conventional method (method shown in Figure 4), which required deep diffusion with added depth, the diffusion time can be significantly shortened, and the high concentration region required as a channel stopper can be controlled in an extremely controlled manner. can be provided.
そのように、チヤネルストツパー領域が、溝底
の正確な位置に、高濃度で、かつ制御された状態
で形成できると、高逆耐圧のメサ型半導体装置が
実現されるとともに、拡散時間が短時間ですみ、
全工程時間を大幅に短縮することができる。 If the channel stopper region can be formed in a controlled manner at a high concentration at the precise position of the trench bottom, a mesa-type semiconductor device with high reverse breakdown voltage can be realized, and the diffusion time can be shortened. It only takes time,
The entire process time can be significantly shortened.
第1図は本発明実施例のメサ型半導体装置製造
方法の主要工程を半導体基板断面で説明する工程
図、第2図は本発明が関連するメサ型半導体装置
の断面図、第3図及び第4図は従来製造方法の主
要工程を半導体基板断面で説明する工程図であ
る。
31……一導電型の第1半導体基体、32……
逆導電型の第2半導体基体、33……一導電型の
高濃度層、34……第1半導体基体の低濃度層、
35……メサ溝、36……逆導電型の高濃度層
(チヤネルストツパー)、37……接着面、9……
酸化膜。
1 is a process diagram illustrating the main steps of a method for manufacturing a mesa semiconductor device according to an embodiment of the present invention using a cross section of a semiconductor substrate, FIG. 2 is a sectional view of a mesa semiconductor device to which the present invention relates, and FIGS. FIG. 4 is a process diagram illustrating the main steps of the conventional manufacturing method using a cross section of a semiconductor substrate. 31... First semiconductor substrate of one conductivity type, 32...
a second semiconductor substrate of opposite conductivity type; 33...a high concentration layer of one conductivity type; 34...a low concentration layer of the first semiconductor substrate;
35...Mesa groove, 36...High concentration layer of opposite conductivity type (channel stopper), 37...Adhesive surface, 9...
Oxide film.
Claims (1)
に、同じ一導電型の高濃度層を設ける工程と、逆
導電型の第2半導体基体の一主面におけるメサ溝
の底部となる位置に、選択的に逆導電型の高濃度
層を設ける工程と、該第1半導体基体の低濃度層
の露出する他主面と該第2半導体基体の選択的に
高濃度層を設けた一主面とを熱圧着により接着す
る工程と、接着された基体においてメサ溝を、該
第2半導体基体の選択的に設けた高濃度層がメサ
溝底部に位置するように設ける工程とを含むメサ
型半導体装置の製造方法。1. A step of providing a high concentration layer of the same conductivity type on one main surface of a first semiconductor substrate of one conductivity type, and a step of providing a high concentration layer of the same conductivity type on one main surface of a second semiconductor substrate of an opposite conductivity type at a position that will be the bottom of the mesa groove, a step of selectively providing a high concentration layer of opposite conductivity type; and the other exposed main surface of the low concentration layer of the first semiconductor substrate and one main surface of the second semiconductor substrate on which the high concentration layer is selectively provided. A mesa-type semiconductor device comprising the steps of: adhering by thermocompression bonding; and providing a mesa groove in the adhered substrate such that the selectively provided high concentration layer of the second semiconductor substrate is located at the bottom of the mesa groove. manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26725385A JPS62128180A (en) | 1985-11-29 | 1985-11-29 | Manufacture of mesa type semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26725385A JPS62128180A (en) | 1985-11-29 | 1985-11-29 | Manufacture of mesa type semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62128180A JPS62128180A (en) | 1987-06-10 |
JPH0518470B2 true JPH0518470B2 (en) | 1993-03-12 |
Family
ID=17442263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26725385A Granted JPS62128180A (en) | 1985-11-29 | 1985-11-29 | Manufacture of mesa type semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62128180A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7384854B2 (en) * | 2002-03-08 | 2008-06-10 | International Business Machines Corporation | Method of forming low capacitance ESD robust diodes |
JP4901300B2 (en) * | 2006-05-19 | 2012-03-21 | 新電元工業株式会社 | Manufacturing method of semiconductor device |
US7888745B2 (en) * | 2006-06-21 | 2011-02-15 | International Business Machines Corporation | Bipolar transistor with dual shallow trench isolation and low base resistance |
-
1985
- 1985-11-29 JP JP26725385A patent/JPS62128180A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62128180A (en) | 1987-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2861018A (en) | Fabrication of semiconductive devices | |
US3202887A (en) | Mesa-transistor with impurity concentration in the base decreasing toward collector junction | |
JPH01135070A (en) | Manufacturing method of semiconductor substrate | |
US3351825A (en) | Semiconductor device having an anodized protective film thereon and method of manufacturing same | |
JPH04283914A (en) | Cladded semiconductor substrate and production method thereof | |
JPH023266A (en) | Bipolar semiconductor device with conductive recombination layer | |
JPH0518470B2 (en) | ||
JPH0462847A (en) | Semiconductor device and its manufacturing method | |
US5132770A (en) | Semiconductor device having improved multi-layered substrate structure | |
JP2969669B2 (en) | Method for manufacturing semiconductor device | |
JPS6243167A (en) | Mesa type semiconductor device | |
JPS62221122A (en) | Manufacture of semiconductor device | |
JPS613469A (en) | bidirectional zener diode | |
JP3465765B2 (en) | Method for manufacturing semiconductor substrate for IGBT | |
KR960015929B1 (en) | Method for manufacturing bipolar transistor | |
JPS63204649A (en) | Semiconductor device | |
JPS6126267A (en) | bidirectional zener diode | |
JPS5961191A (en) | Manufacturing method of semiconductor device | |
JP2708829B2 (en) | Method of forming electrode of silicon carbide | |
JPH0645429A (en) | Manufacture of semiconductor device | |
JPS6017961A (en) | Manufacturing method of semiconductor controlled rectifier | |
JPS62156820A (en) | Manufacture of semiconductor element | |
JPS58108772A (en) | Manufacture of transistor | |
JPH02177557A (en) | Manufacture of semiconductor device | |
JPH0689902A (en) | Manufacture of semiconductor device |