JPH05180772A - Laser gasifying/inductively coupled plasma analysis and plasma torch - Google Patents
Laser gasifying/inductively coupled plasma analysis and plasma torchInfo
- Publication number
- JPH05180772A JPH05180772A JP34652191A JP34652191A JPH05180772A JP H05180772 A JPH05180772 A JP H05180772A JP 34652191 A JP34652191 A JP 34652191A JP 34652191 A JP34652191 A JP 34652191A JP H05180772 A JPH05180772 A JP H05180772A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- plasma
- solvent
- passage
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、導電体、絶縁物を問
わずに固体物質の直接分析技術に関連し、特に適切な標
準試料が得られ難い試料の分析に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct analysis technique for solid substances regardless of conductors and insulators, and more particularly to analysis of a sample in which an appropriate standard sample is difficult to obtain.
【0002】[0002]
【従来の技術】材料業界では、製品品質の維持向上に際
して、結果が速やかに得られる迅速分析、或いは材料の
開発に際して材料内部の成分変動を捉えることができる
局部分析が切に嘱望される。この要求に応える技術とし
て、レーザー気化/誘導結合プラズマ分析は研究されて
いる。2. Description of the Related Art In the materials industry, there is a strong demand for a rapid analysis that can quickly obtain results when maintaining and improving the product quality, or a local analysis that can grasp the variation of the components inside the material when developing the material. Laser vaporization / inductively coupled plasma analysis is being researched as a technique to meet this demand.
【0003】この方法は、先ず、固体物質に高密度エネ
ルギーであるレーザー光を照射し、試料の狙った部分を
溶融飛散或いは気化させ、不活性ガスをキャリアーとし
て試料採取を行う(以下、レーザー気化法と称す)。次
に、採取した試料をプラズマに導入して高温で励起(イ
オン化を含む)し、最後に元素種とその量が測定され
る。この測定には、種々の方法が用いられるが、代表的
な方法に分光法と質量分析法とがある。According to this method, first, a solid substance is irradiated with a laser beam having high-density energy to melt or scatter a target portion of a sample, and a sample is taken with an inert gas as a carrier (hereinafter, laser vaporization). Called the law). Next, the collected sample is introduced into plasma and excited (including ionization) at high temperature, and finally the element species and the amount thereof are measured. Although various methods are used for this measurement, typical methods include spectroscopy and mass spectrometry.
【0004】分光法では、プラズマで励起された元素の
発するスペクトルを測定し解析する。質量分析法ではプ
ラズマでイオン化されたイオンを測定し解析する。解析
では、測定情報から成分元素の毎に固体物質中の成分、
濃度を算出するが、これには検量線が用いられる。この
検量線は成分、濃度が共に既知である標準試料と測定値
とから求められる。標準試料としては、固体物質と同種
の成分から成り且つ濃度の異なる複数個の固体試料を用
いるのが通例である。In the spectroscopic method, a spectrum emitted from an element excited by plasma is measured and analyzed. In mass spectrometry, the ions ionized in plasma are measured and analyzed. In the analysis, from the measurement information, the component in the solid substance for each component element,
The concentration is calculated, and a calibration curve is used for this. This calibration curve is obtained from a standard sample whose components and concentrations are known and measured values. As the standard sample, it is customary to use a plurality of solid samples which are composed of the same kind of components as the solid substance and have different concentrations.
【0005】従って、この標準試料の作成は最も肝心な
技術要素であり、この成否は定量結果に重大な影響をも
たらす。このため、作成には多くの時間と労力を費やし
ている。更に、新規の材料や天然物では標準試料が存在
しないこともあり、又標準試料がある場合でも成分濃度
範囲がずれていたりすると、良い検量線が得られず分析
精度が低下することもある。溶液試料は成分、濃度共に
きめ細かく正確に作ることが可能であり、溶液試料を標
準試料として用いることが出来れば、上記の問題は解消
する。Therefore, the preparation of this standard sample is the most important technical element, and its success or failure has a significant influence on the quantitative result. Therefore, it takes a lot of time and effort to create it. Furthermore, a standard sample may not exist for a new material or a natural product, and even if there is a standard sample, if the component concentration range is deviated, a good calibration curve may not be obtained and the analysis accuracy may deteriorate. A solution sample can be prepared with fine components and concentrations, and if the solution sample can be used as a standard sample, the above problems can be solved.
【0006】この観点から、固体試料に代えて水溶液試
料を用いる試みがある。「RelativeElemental Response
s for Laser Ablation-Indudtively Coupled Plasma Ma
ssSpectrometry」Anal.Chem.1989,61,p1243〜1248は、
レーザー気化法の選択的試料採取を補正するため、成分
元素の気化熱及び固体物質の熱伝導を用いて採取試料と
固体試料との濃度の偏りを補正する方法を報告してい
る。From this viewpoint, there is an attempt to use an aqueous solution sample instead of the solid sample. "Relative Elemental Response
s for Laser Ablation-Indudtively Coupled Plasma Ma
ss Spectrometry ”Anal. Chem. 1989, 61, p1243-1248,
In order to correct the selective sampling of the laser vaporization method, we have reported a method of correcting the concentration deviation between the collected sample and the solid sample by using the heat of vaporization of the constituent elements and the heat conduction of the solid substance.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、上記の
補正法を用いて試料採取に伴う誤差を補正することは出
来るが、プラズマで励起するときの誤差を無くすことは
できない。溶液試料は溶媒を含むが、採取試料は溶媒を
含まない。この溶媒が存在するかしないかの違いが、プ
ラズマでの励起状況を変え測定値に差を与える。これが
標準試料として溶液試料を用いた場合の誤差となり、こ
れを無くすことが課題として残されていた。However, although the above-mentioned correction method can be used to correct the error associated with sampling, it is not possible to eliminate the error when excited by plasma. Solution samples contain solvent, while harvested samples contain no solvent. The presence or absence of this solvent changes the excitation state in the plasma and gives a difference in the measured value. This is an error when a solution sample is used as a standard sample, and it has been left as an issue to eliminate this error.
【0008】この問題を解決するためにこの発明は行わ
れたもので、プラズマ励起時に溶媒存在の有無を考慮す
ることによって、溶液標準試料を用いる精度の良い分析
技術を提供しようとするものである。The present invention has been made in order to solve this problem, and aims to provide an accurate analysis technique using a solution standard sample by considering the presence or absence of a solvent at the time of plasma excitation. ..
【0009】[0009]
【課題を解決するための手段】この目的を達成するため
の手段は、固体物質にレーザー光を照射して採取した試
料を誘導結合プラズマに導入して分析するにあたり、標
準試料として溶液試料を用い且つ測定時にプラズマに溶
媒を導入するレーザー気化/誘導結合プラズマ分析方
法、及び、溶媒の導入を可能ならしめる同心円状の四重
管構造のプラズマトーチである。Means for achieving this object is to use a solution sample as a standard sample for introducing a sample obtained by irradiating a solid material with laser light into inductively coupled plasma for analysis. A laser vaporization / inductively coupled plasma analysis method in which a solvent is introduced into plasma at the time of measurement, and a concentric quadruple tube structure plasma torch that enables introduction of the solvent.
【0010】[0010]
【作用】一般に用いられている誘導結合プラズマトーチ
の例を図4に示す。プラズマトーチは同心円状の三重管
になっており、採取試料はキャリアーによって運ばれ試
料通路1から導入される。プラズマガス通路3にはアル
ゴンガスが導入され、冷却ガス通路4には冷却用のガス
が導入される。三重管の出口には高周波コイルが5があ
って、プラズマ炎6を発生させる。FIG. 4 shows an example of a commonly used inductively coupled plasma torch. The plasma torch is a concentric triple tube, and the sample to be collected is carried by the carrier and introduced from the sample passage 1. Argon gas is introduced into the plasma gas passage 3 and cooling gas is introduced into the cooling gas passage 4. There is a high frequency coil 5 at the exit of the triple tube, and a plasma flame 6 is generated.
【0011】従来の溶液標準試料を用いる分析法では、
先ず試料通路1に溶液標準試料を導入し、各種濃度にお
ける測定値と溶液標準試料に含まれる成分量との関係を
求める。これが検量線である。次に、溶液標準試料に代
えて固体物質からのレーザー気化採取試料を試料通路1
に導入して成分測定を行う。測定値は、先に得た検量線
による換算量に気化熱と熱伝導による補正を施されて含
有量に換算される。In the conventional analytical method using the solution standard sample,
First, the solution standard sample is introduced into the sample passage 1, and the relationship between the measured values at various concentrations and the amounts of components contained in the solution standard sample is obtained. This is the calibration curve. Next, instead of the solution standard sample, a laser vaporization sampling sample from a solid substance is used as the sample passage 1.
Introduce to measure the components. The measured value is converted into the content by correcting the conversion amount obtained by the previously obtained calibration curve with heat of vaporization and heat conduction.
【0012】発明者らの研究によると、同じ量の成分を
プラズマに導入しても、レーザー気化採取試料と溶液試
料とでは、感度に相違が現れる。しかし、レーザー気化
採取試料であっても溶媒を存在させることにより、感度
は溶液試料の場合に一致することが判明した。これは、
プラズマ炎の電子密度や温度が溶媒の存在不存在により
相違し、測定感度に影響するものと考えられる。According to the research conducted by the inventors, even if the same amount of the component is introduced into the plasma, the difference appears in the sensitivity between the laser vaporization sample and the solution sample. However, it was found that even in the case of the laser vaporization sample, the sensitivity was in agreement with that of the solution sample in the presence of the solvent. this is,
It is considered that the electron density and temperature of the plasma flame differ depending on the presence or absence of the solvent, which affects the measurement sensitivity.
【0013】図1に、これらの場合の感度を比較して示
す。鉄鋼標準試料について調べたものである。図の横軸
はこの標準試料を酸で溶解し溶液試料とした場合(以
下、溶液法と称す)の感度で、縦軸はレーザー気化法に
よって採取した場合の感度である。レーザー気化法によ
って採取した場合では、従来通り、溶媒が存在しない場
合と、後に述べる四重管を用いて溶媒を存在させた場合
とについて調べた。溶媒が存在しない場合を〇印で表示
し、溶媒を存在させた場合を△印で表示してある。プラ
ズマに導入する試料の形態が変わっても、感度が同じな
らば感度曲線は45°の直線になる。FIG. 1 shows a comparison of the sensitivities in these cases. This is an examination of a steel standard sample. The horizontal axis of the figure is the sensitivity when this standard sample is dissolved in an acid to form a solution sample (hereinafter referred to as the solution method), and the vertical axis is the sensitivity when sampled by the laser vaporization method. When the sample was collected by the laser vaporization method, as in the conventional case, the case where the solvent did not exist and the case where the solvent existed using the quadruple tube described later were examined. The case where the solvent does not exist is indicated by a circle, and the case where the solvent exists is indicated by a triangle. Even if the shape of the sample introduced into the plasma is changed, if the sensitivity is the same, the sensitivity curve becomes a straight line of 45 °.
【0014】調査の結果は、Mn、Ni、Cu、Cr、
V等の成分で、〇印は45°直線から隔たって分布して
いるが、△印は直線上或いは極めて接近して分布してい
る。溶媒が存在しないレーザー気化法と溶液法とでは感
度に差があるが、溶媒を存在させることによってこの差
は明らかに解消する。The results of the investigation are Mn, Ni, Cu, Cr,
In the components such as V, the circles are distributed apart from the 45 ° straight line, while the triangles are distributed on the straight line or extremely close to each other. Although there is a difference in sensitivity between the laser vaporization method in which no solvent is present and the solution method, this difference is clearly resolved by the presence of the solvent.
【0015】即ち、レーザー気化法で試料採取を行う誘
導結合プラズマ分析では、プラズマに溶媒を導入するこ
とによって、溶液試料を標準試料として用い高い精度の
分析を行うことができる。That is, in the inductively coupled plasma analysis in which the sample is collected by the laser vaporization method, the solvent sample is introduced into the plasma, so that the solution sample can be used as a standard sample and highly accurate analysis can be performed.
【0016】溶媒を導入するためには、プラズマトーチ
が三重管では困難であり、四重管構造にするとよい。こ
の構造を図2に示す。同心円状の四重管で、試料通路
1、プラズマガス通路3、冷却ガス通路4以外に溶媒通
路2が設けられている。溶媒通路2は試料通路1に隣接
し、且つプラズマガス通路3よりも内側にある。試料通
路1と溶媒通路2とは入替えてもよい。In order to introduce the solvent, it is difficult to use a plasma torch with a triple tube, and a quadruple tube structure is preferable. This structure is shown in FIG. The concentric quadruple tube is provided with a solvent passage 2 in addition to the sample passage 1, the plasma gas passage 3, and the cooling gas passage 4. The solvent passage 2 is adjacent to the sample passage 1 and inside the plasma gas passage 3. The sample passage 1 and the solvent passage 2 may be replaced with each other.
【0017】検量線作成時には、試料通路1にはキャリ
ヤーガスのみを導入し、溶媒通路2に溶液標準試料が導
入される。溶媒に関しては、標準成分を溶解するもので
あれば、何でも使用が可能である。例えば、有機溶媒、
水、酸水溶液、アルカリ水溶液等であり、溶液試料溶媒
に近い溶媒ほど好ましい。When preparing the calibration curve, only the carrier gas is introduced into the sample passage 1 and the solution standard sample is introduced into the solvent passage 2. Any solvent can be used as long as it can dissolve the standard components. For example, an organic solvent,
Water, an acid aqueous solution, an alkaline aqueous solution and the like, and a solvent closer to the solution sample solvent is more preferable.
【0018】又、内標準法は、一般に装置の変動や試料
導入量を補正する方法としてよく用いられるが、これは
同時に測定される目的成分の測定値と主成分の測定値と
の比を測定強度として解析する手法で、この発明におい
ても有効である。更に、固体物質について熱伝導度等の
情報が得られている場合は、熱伝導度及び気化熱による
補正を併用してもよい。Further, the internal standard method is generally used as a method for correcting the fluctuation of the apparatus and the sample introduction amount, but this measures the ratio of the measured value of the target component and the measured value of the main component which are simultaneously measured. It is a method of analyzing as strength, and is also effective in the present invention. Furthermore, when information such as thermal conductivity is obtained for a solid substance, corrections by thermal conductivity and heat of vaporization may be used together.
【0019】[0019]
【実施例】低合金鋼、アルミニウム合金、チタン合金及
び窒化珪素の固体物質を分析し、化学分析値と対比して
正確度を調べた。[Examples] The solid substances of low alloy steel, aluminum alloy, titanium alloy and silicon nitride were analyzed, and their accuracy was examined by comparing with the chemical analysis values.
【0020】測定に用いた装置を図3に示す。固体物質
10にレーザー発振器11から発せられるレーザー光を
照射してレーザー気化を行い、アルコンガスボンベ12
に溜められた高純度アルゴンガスをキャリヤーとして試
料採取を行った。採取試料をプラズマトーチ13に導入
してプラズマで励起し、分析器14で同定定量した。The apparatus used for the measurement is shown in FIG. The solid substance 10 is irradiated with a laser beam emitted from a laser oscillator 11 to perform laser vaporization, and an Alcon gas cylinder 12
The high-purity argon gas stored in the sample was used as a carrier for sampling. The collected sample was introduced into the plasma torch 13, excited by plasma, and identified and quantified by the analyzer 14.
【0021】レーザー発振器11には、Qスイッチ付き
ルビーレーザーを使用し、プラズマトーチ13は、図2
に示した四重管構造である。分析器14には、低合金鋼
及びアルミニウム合金の分析では分光分析器を用い、チ
タン合金及び窒化珪素では質量分析器を用いた。A ruby laser with a Q switch is used as the laser oscillator 11, and the plasma torch 13 is shown in FIG.
It is the quadruple tube structure shown in. As the analyzer 14, a spectroscopic analyzer was used for analysis of low alloy steel and aluminum alloy, and a mass analyzer was used for titanium alloy and silicon nitride.
【0022】検量線の作成及び装置の校正に用いた溶液
標準試料15は、純金属を酸溶解して混合作製した水溶
液試料である。測定時に導入する溶媒としては、低合金
鋼及びチタン合金の分析では標準試料と同じ酸溶液を用
い、アルミニウム合金及び窒化珪素の分析では蒸留水を
用いた。The solution standard sample 15 used for preparing the calibration curve and calibrating the apparatus is an aqueous solution sample prepared by mixing pure metals with an acid. As the solvent introduced at the time of measurement, the same acid solution as the standard sample was used in the analysis of low alloy steel and titanium alloy, and distilled water was used in the analysis of aluminum alloy and silicon nitride.
【0023】なお、調査は、従来の方法についても行
い、この発明の実施例と比較した。低合金鋼、アルミニ
ウム合金、チタン合金、セラミックスを対象にした調査
の結果を各々表1、表2、表3及び表4に示す。The investigation was also carried out by the conventional method and compared with the embodiment of the present invention. The results of the investigations targeting low alloy steel, aluminum alloy, titanium alloy and ceramics are shown in Table 1, Table 2, Table 3 and Table 4, respectively.
【0024】[0024]
【表1】 [Table 1]
【0025】[0025]
【表2】 [Table 2]
【0026】[0026]
【表3】 [Table 3]
【0027】[0027]
【表4】 [Table 4]
【0028】この発明の実施例では、真値との偏差は、
−12%〜15%であり、これに対して従来の方法で
は、偏差は−89%〜82%と6倍以上も大きかった。In the embodiment of the present invention, the deviation from the true value is
-12% to 15%, whereas in the conventional method, the deviation was -89% to 82%, which was six times larger.
【0029】[0029]
【発明の効果】以上述べてきたように、この発明では、
プラズマに溶媒を導入することによって、レーザー気化
/誘導結合プラズマ分析において、溶液標準試料を用い
て正確な分析を行うことを可能にした。この技術は、材
料製造過程での直接分析及び固体標準試料が得られがた
い新規材料等の分析に大きく貢献するもので、その効果
は大きい。As described above, according to the present invention,
Introducing a solvent into the plasma made it possible to perform accurate analysis using a solution standard sample in laser vaporization / inductively coupled plasma analysis. This technique greatly contributes to the direct analysis in the material manufacturing process and the analysis of a new material or the like for which a solid standard sample is hard to be obtained, and its effect is great.
【図1】この発明の原理を説明するための感度の改善を
示す図である。FIG. 1 is a diagram showing an improvement in sensitivity for explaining the principle of the present invention.
【図2】四重管構造のプラズマトーチの概要を示す図で
ある。FIG. 2 is a diagram showing an outline of a plasma torch having a quadruple tube structure.
【図3】実施例に用いた分析装置の概要を示す図であ
る。FIG. 3 is a diagram showing an outline of an analyzer used in Examples.
【図4】従来の三重管構造のプラズマトーチの概要を示
す図である。FIG. 4 is a diagram showing an outline of a conventional plasma torch having a triple-tube structure.
1 試料通路 2 溶媒通路 3 プラズマガス通路 4 冷却ガス通路 10 固体物質 13 プラズマトーチ 14 分析器 1 Sample Passage 2 Solvent Passage 3 Plasma Gas Passage 4 Cooling Gas Passage 10 Solid Material 13 Plasma Torch 14 Analyzer
Claims (2)
た試料を誘導結合プラズマに導入して分析するにあた
り、標準試料として溶液試料を用いて検量線を作成し、
測定時にはプラズマに溶媒を導入することを特徴とする
レーザー気化/誘導結合プラズマ分析方法。1. A calibration curve is prepared by using a solution sample as a standard sample when introducing a sample obtained by irradiating a solid substance with laser light into an inductively coupled plasma for analysis.
A laser vaporization / inductively coupled plasma analysis method, which comprises introducing a solvent into plasma during measurement.
用いるトーチが同心円状の四重管構造であることを特徴
とするプラズマトーチ。2. A plasma torch, wherein the torch used for laser vaporization / inductively coupled plasma analysis has a concentric quadruple tube structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34652191A JPH05180772A (en) | 1991-12-27 | 1991-12-27 | Laser gasifying/inductively coupled plasma analysis and plasma torch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34652191A JPH05180772A (en) | 1991-12-27 | 1991-12-27 | Laser gasifying/inductively coupled plasma analysis and plasma torch |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05180772A true JPH05180772A (en) | 1993-07-23 |
Family
ID=18383990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34652191A Pending JPH05180772A (en) | 1991-12-27 | 1991-12-27 | Laser gasifying/inductively coupled plasma analysis and plasma torch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05180772A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2773300A1 (en) * | 1997-12-29 | 1999-07-02 | Air Liquide | Plasma torch with adjustable injector for gas analysis |
EP0930810A1 (en) * | 1997-12-29 | 1999-07-21 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Plasma torch with adjustable distributor and gas analysis system using such a torch |
-
1991
- 1991-12-27 JP JP34652191A patent/JPH05180772A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2773300A1 (en) * | 1997-12-29 | 1999-07-02 | Air Liquide | Plasma torch with adjustable injector for gas analysis |
EP0930810A1 (en) * | 1997-12-29 | 1999-07-21 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Plasma torch with adjustable distributor and gas analysis system using such a torch |
US6236012B1 (en) | 1997-12-29 | 2001-05-22 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Plasma torch with an adjustable injector and gas analyzer using such a torch |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Greenfield et al. | Automatic multi-sample simultaneous multi-element analysis with a hf plasma torch and direct reading spectrometer | |
Kirkbright | The application of non-flame atom cells in atomic-absorption and atomic-fluorescence spectroscopy. A review | |
Matusiewicz | Thermal vaporisation for inductively coupled plasma optical emission spectrometry. A review | |
Kawaguchi et al. | Microwave excitation emission spectrometry. Determination of picogram quantities of metals in metalloenzymes | |
JP4237803B2 (en) | Direct ICP emission spectroscopy analysis of solid samples | |
Schickling et al. | Optimization of electrochemical hydride generation coupled to microwave-induced plasma atomic emission spectrometry for the determination of arsenic and its use for the analysis of biological tissue samples | |
Shan et al. | X-ray photoelectron spectroscopic study of the mechanism of palladium matrix modification in the electrothermal atomic absorption spectrometric determination of lead and bismuth | |
Rippetoe et al. | Characterization of the plume of a direct current plasma arc for emission spectrometric analysis | |
Leite et al. | Determination of major, minor and trace elements in rock samples by laser ablation inductively coupled plasma mass spectrometry: Progress in the utilization of borate glasses as targets | |
Petrelli et al. | Graphite electrode lithium tetraborate fusion for trace element determination in bulk geological samples by laser ablation ICP-MS | |
Harville et al. | Line selection and evaluation of radio frequency glow discharge atomic emission spectrometry for the analysis of copper and aluminum alloys | |
Tölg | Extreme trace analysis of the elements—the state of the art today and tomorrow. Plenary lecture | |
Shelpakova et al. | Spectral methods for analysis of high-purity gallium with excitation of spectra in the two-jet arc plasmatron | |
Deng et al. | Portable photochemical vapor generation-microwave plasma optical emission spectrometer | |
US6236012B1 (en) | Plasma torch with an adjustable injector and gas analyzer using such a torch | |
JPH05180772A (en) | Laser gasifying/inductively coupled plasma analysis and plasma torch | |
Oliveira Junior et al. | Determination of impurities in uranium oxide by inductively coupled plasma mass spectrometry (ICPMS) by the matrix matching method | |
Cope et al. | Use of inductively coupled plasma optical emission spectrometry (ICP–OES) for the analysis of doped cadmium mercury telluride employing a graphite rod electrothermal vaporisation device for sample introduction | |
Marshall et al. | Myers-Tracy signal compensation in inductively coupled plasma atomic emission spectrometry with high dissolved solids solutions | |
Coedo et al. | Spark ablation as sampling device for inductively coupled plasma mass spectrometric analysis of low-alloyed steels | |
Hoffmann et al. | Studies on the quantitative analysis of trace elements in single SiC crystals using laser ablation-ICP-MS | |
Brenner et al. | Direct trace element analysis of tungsten powders, alloys and related materials by inductively coupled plasma atomic emission spectrometry (ICP-AES) | |
Kuptsov et al. | Steel analysis by atomic emission spectrometry using a two-jet arc plasmatron with spark ablation | |
Majidi et al. | Determination of trace metals using an electrothermal atomizer by laser-induced plasma atomic emission spectrometry | |
Dos Santos et al. | Determination of the isotopic composition of enriched materials using laser ablation molecular isotopic spectrometry: partial least squares and multivariate curve resolution for the determination of 15 N content in enriched urea |