JPH05175710A - Temperature compensation type magnetostatic surface wave filter - Google Patents
Temperature compensation type magnetostatic surface wave filterInfo
- Publication number
- JPH05175710A JPH05175710A JP3084724A JP8472491A JPH05175710A JP H05175710 A JPH05175710 A JP H05175710A JP 3084724 A JP3084724 A JP 3084724A JP 8472491 A JP8472491 A JP 8472491A JP H05175710 A JPH05175710 A JP H05175710A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- thin film
- magnetic field
- crystal thin
- surface wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 claims abstract description 34
- 230000005291 magnetic effect Effects 0.000 claims abstract description 33
- 239000013078 crystal Substances 0.000 claims abstract description 29
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 25
- 230000005415 magnetization Effects 0.000 claims abstract description 17
- 239000000758 substrate Substances 0.000 claims description 10
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000002223 garnet Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
- Non-Reversible Transmitting Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、マイクロ波無線装置に
用いる静磁表面波フィルタに関し、特に温度特性を改良
した温度補償型静磁表面波フィルタに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetostatic surface wave filter used in microwave radio equipment, and more particularly to a temperature compensation type magnetostatic surface wave filter having improved temperature characteristics.
【0002】[0002]
【従来の技術】従来の静磁表面波フィルタの構成例を図
2に示す。誘電体基板1はアルミナセラミックから作ら
れ、この誘電体基板上に、例えばフォトエッチング法を
用いて金属薄膜パターン3、入力側ストリップ(この従
来例ではパラレルストリップ)トランスデューサ4、出
力側ストリップ(この従来例ではパラレルストリップ)
トランスデューサ5が形成されている。また、誘電体基
板1には強磁性体単結晶薄膜を片面に形成した単結晶基
板(以下試料を呼ぶ)2が取付けられている。この試料
2は、例えば、ガドリニウム・ガリウム・ガーネット
(G.G.G)基板上にイットリウム・鉄・ガーネット
(Y.I.G)薄膜を形成したものであり、薄膜側が誘
電体基板1に対向するように配置される。断面U字型ヨ
ーク10の両方の脚部の内側には直流外部磁界印加用の
永久磁石、例えばフェライト磁石6が取付けられてお
り、このフェライト磁石6は、試料2の強磁性体薄膜
に、その面に平行で、パラレルストリップトランスデュ
ーサの長手方向に平行に、直流磁界を印加する。なお、
矢印は永久磁石の着磁方向を示す。2. Description of the Related Art FIG. 2 shows a configuration example of a conventional magnetostatic surface wave filter. The dielectric substrate 1 is made of alumina ceramic, and a metal thin film pattern 3, an input side strip (parallel strip in this conventional example) transducer 4, and an output side strip (this conventional substrate) are formed on the dielectric substrate by using, for example, a photoetching method. (Parallel strip in the example)
The transducer 5 is formed. Further, a single crystal substrate (hereinafter referred to as a sample) 2 having a ferromagnetic single crystal thin film formed on one surface is attached to the dielectric substrate 1. This sample 2 is, for example, a yttrium / iron / garnet (YIG) thin film formed on a gadolinium / gallium / garnet (GG) substrate, and the thin film side faces the dielectric substrate 1. Arranged to do. A permanent magnet for applying a DC external magnetic field, for example, a ferrite magnet 6 is attached to the inside of both legs of the U-shaped yoke 10 in section, and the ferrite magnet 6 is attached to the ferromagnetic thin film of the sample 2. A DC magnetic field is applied parallel to the plane and parallel to the longitudinal direction of the parallel strip transducer. In addition,
The arrow indicates the magnetization direction of the permanent magnet.
【0003】このように構成した静磁表面波フィルタの
動作を次に説明すると、A点から入力された高周波信号
は金属薄膜パターン3に沿って伝送され、次で、入力側
パラレルストリップトランスデューサ4に沿って伝送さ
れる。入力側パラレルストリップトランスデューサ4か
ら生じる高周波磁界により試料2の強磁性体薄膜上で静
磁表面波が励振され、静磁波は出力側パラレルストリッ
プトランスデューサ5の方向に伝搬される。次に、出力
側パラレルストリップトランスデューサ5で静磁波のエ
ネルギーは高周波磁界に変換されマイクロストリップ線
路に沿ってB点に伝送される。したがって、A点からB
点への伝送特性は印加した磁界の大きさ、強磁性体薄膜
の磁化の大きさ及び入出力パラレルストリップトランス
デューサの形状により決まる周波数帯域のみが通過する
帯域通過特性を示す。The operation of the magnetostatic surface wave filter thus constructed will be described below. A high frequency signal input from the point A is transmitted along the metal thin film pattern 3 and then to the input side parallel strip transducer 4. Transmitted along. A magnetostatic surface wave is excited on the ferromagnetic thin film of the sample 2 by the high frequency magnetic field generated from the input side parallel strip transducer 4, and the magnetostatic wave is propagated in the direction of the output side parallel strip transducer 5. Next, the output side parallel strip transducer 5 converts the energy of the magnetostatic wave into a high frequency magnetic field and transmits it to point B along the microstrip line. Therefore, from point A to B
The transmission characteristic to the point is a bandpass characteristic in which only the frequency band determined by the magnitude of the applied magnetic field, the magnitude of the magnetization of the ferromagnetic thin film and the shape of the input / output parallel strip transducer passes.
【0004】[0004]
【発明が解決しようとする課題】前述の従来の構成のフ
ィルタでは、フィルタの周囲温度が上昇すると、それに
つれて、強磁性体単結晶薄膜の磁化の大きさが小さくな
る。また、フェライト磁石である永久磁石6の磁化の大
きさも小さくなり、したがって、直流外部磁界の大きさ
も小さくなる。一般に、静磁表面波フィルタの中心周波
数は、静磁表面波の伝搬速度とパラレルストリップトラ
ンスデューサの電極周期長によって決まる。そして前述
の静磁表面波の伝搬速度は、強磁性体単結晶薄膜の磁化
の大きさまたは直流外部磁界の大きさが大きくなると、
大きくなり、小さくなると小さくなるように変動する。In the above-described conventional filter, the magnitude of the magnetization of the ferromagnetic single crystal thin film becomes smaller as the ambient temperature of the filter rises. Further, the magnitude of magnetization of the permanent magnet 6 which is a ferrite magnet is also reduced, and thus the magnitude of the DC external magnetic field is also reduced. Generally, the center frequency of the magnetostatic surface wave filter is determined by the propagation velocity of the magnetostatic surface wave and the electrode period length of the parallel strip transducer. And the propagation velocity of the magnetostatic surface wave described above, when the magnitude of the magnetization of the ferromagnetic single crystal thin film or the magnitude of the DC external magnetic field increases,
It fluctuates such that it becomes larger and becomes smaller as it becomes smaller.
【0005】ここで、パラレルストリップトランスデュ
ーサの電極周期長は静磁表面波の伝搬速度に比べ、温度
に対する変動が小さいので無視することができる。した
がって、静磁表面波の中心周波数の温度に対する変動
は、専ら強磁性体単結晶薄膜の磁化の大きさと直流外部
磁界の大きさによるものであり、いずれも温度の上昇に
つれて小さくなるときには相乗作用的に伝送速度を小さ
くするように作用し、この結果、フィルタの中心周波数
は大幅に高くなる欠点がある。Here, the electrode period length of the parallel strip transducer has a small variation with respect to temperature as compared with the propagation velocity of the magnetostatic surface wave and can be ignored. Therefore, the fluctuation of the center frequency of the magnetostatic surface wave with respect to the temperature is due mainly to the magnitude of the magnetization of the ferromagnetic single crystal thin film and the magnitude of the DC external magnetic field. Has a drawback that the transmission speed is reduced, and as a result, the center frequency of the filter is significantly increased.
【0006】したがって、本発明の目的は、温度上昇に
よる静磁表面波フィルタの中心周波数が高くなることを
防止する温度補償型静磁表面波フィルタを提供すること
にある。Therefore, an object of the present invention is to provide a temperature-compensated magnetostatic surface wave filter which prevents the center frequency of the magnetostatic surface wave filter from increasing due to temperature rise.
【0007】[0007]
【課題を解決するための手段】前述の目的を達成するた
めに、本発明は、強磁性体単結晶薄膜を面上に形成した
単結晶基板と、該強磁性体単結晶薄膜に直流外部磁界を
印加する永久磁石とから成る静磁表面波フィルタであっ
て、着磁方向の異なるように少なくとも2つ以上の永久
磁石を組み合わせて、組み合わせた永久磁石の磁界の大
きさの温度特性を前記強磁性体単結晶薄膜の磁化の大き
さの温度特性に対して反対の極性となるように構成する
ことを特徴とする温度補償型静磁表面波フィルタを採用
するものである。In order to achieve the above-mentioned object, the present invention provides a single crystal substrate on which a ferromagnetic single crystal thin film is formed, and a DC external magnetic field on the ferromagnetic single crystal thin film. A magnetostatic surface wave filter comprising a permanent magnet for applying a magnetic field, wherein at least two or more permanent magnets are combined so as to have different magnetizing directions, and the temperature characteristic of the magnitude of the magnetic field of the combined permanent magnets is increased by the strong magnetic field. A temperature-compensated magnetostatic surface wave filter is adopted which is configured so as to have a polarity opposite to the temperature characteristic of the magnitude of magnetization of the magnetic single crystal thin film.
【0008】[0008]
【作用】本発明の静磁表面波フィルタは、このフィルタ
の中心周波数が主に強磁性体単結晶薄膜の磁化の大きさ
と直流外部磁界の大きさに依存していることを利用する
ものである。The magnetostatic surface wave filter of the present invention utilizes that the center frequency of this filter mainly depends on the magnitude of the magnetization of the ferromagnetic single crystal thin film and the magnitude of the DC external magnetic field. ..
【0009】一般に、強磁性体単結晶薄膜の磁化の大き
さが大きくなると、静磁表面波の伝搬速度は大きくな
り、また直流外部磁界の大きさが大きくなると、やはり
静磁表面波の伝搬速度も大きくなる。したがって、強磁
性体単結晶薄膜の磁化の大きさと直流外部磁界の大きさ
が温度特性として反対の極性を持つようにすると、周囲
温度の変化に対して静磁表面波の伝搬速度が一定とな
り、この結果、フィルタの中心周波数も変動しないこと
になる。本発明では、強磁性体単結晶薄膜の磁化の大き
さは、温度の上昇に伴って小さくなること、即ち負極性
の温度特性を持つことを考慮して、直流外部磁界の大き
さが温度の上昇に伴って大きくなる、即ち正極性の温度
特性を持つように構成するものである。具体的には、直
流外部磁界を与える永久磁石を着磁方向が異なるように
少なくとも2つ以上の永久磁石を組み合わせて作り、合
成磁界が正極性の温度特性を持つように構成する。Generally, when the magnitude of the magnetization of the ferromagnetic single crystal thin film increases, the propagation velocity of the magnetostatic surface wave increases, and when the magnitude of the DC external magnetic field increases, the propagation velocity of the magnetostatic surface wave also increases. Also grows. Therefore, if the magnitude of the magnetization of the ferromagnetic single crystal thin film and the magnitude of the DC external magnetic field have opposite polarities as the temperature characteristics, the propagation velocity of the magnetostatic surface wave becomes constant with respect to the change of the ambient temperature, As a result, the center frequency of the filter does not change. In the present invention, the magnitude of the magnetization of the ferromagnetic single crystal thin film becomes smaller as the temperature rises, that is, the magnitude of the DC external magnetic field changes with the temperature in consideration of having the negative temperature characteristic. It is configured such that it becomes larger as the temperature rises, that is, it has a positive temperature characteristic. Specifically, a permanent magnet that applies a DC external magnetic field is made by combining at least two permanent magnets so that the magnetization directions are different, and the combined magnetic field is configured to have a positive temperature characteristic.
【0010】[0010]
【実施例】次に図面を参照して本発明の好ましい実施例
を説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described with reference to the drawings.
【0011】本発明の実施例を示す図1を参照すると、
本発明の静磁表面波フィルタが示されている。このフィ
ルタは、従来のフィルタと比べて、永久磁石6に代え
て、2つの永久磁石7及び8を用いる点を除いては同一
であるので、同一の構成部分の詳細な説明は省略する。Referring to FIG. 1, which illustrates an embodiment of the present invention,
A magnetostatic surface wave filter of the present invention is shown. This filter is the same as the conventional filter except that two permanent magnets 7 and 8 are used instead of the permanent magnet 6, and therefore detailed description of the same components will be omitted.
【0012】前述の永久磁石7及び8は、例えばフェラ
イト磁石を用いる。例えば、永久磁石7の強磁性体単結
晶薄膜上に作る磁界が1000Oeで、その温度係数が
0.1%/°Cであり、永久磁石8の強磁性体単結晶薄
膜上に作る磁界が300Oeで、その温度係数が0.4
%/°Cであるような2つの永久磁石を用い、図2の矢
印の着磁方向に示すように、永久磁石8の強磁性体単結
晶薄膜上に作る磁界が永久磁石7の強磁性体単結晶薄膜
上に作る磁界とは逆向きであるように接続する。する
と、強磁性体単結晶薄膜上に形成される合成磁界の大き
さは700(1000−300)Oeとなり、またその
合成温度係数は−0.029%〔(0.1X1000−
0.4X300)/700〕となる。Ferrite magnets, for example, are used as the above-mentioned permanent magnets 7 and 8. For example, the magnetic field produced on the ferromagnetic single crystal thin film of the permanent magnet 7 is 1000 Oe, its temperature coefficient is 0.1% / ° C, and the magnetic field produced on the ferromagnetic single crystal thin film of the permanent magnet 8 is 300 Oe. And its temperature coefficient is 0.4
% Of the permanent magnet 7 is used, the magnetic field created on the ferromagnetic single crystal thin film of the permanent magnet 8 is the ferromagnetic material of the permanent magnet 7 as shown in the magnetization direction of the arrow in FIG. The connection is made in the direction opposite to the magnetic field created on the single crystal thin film. Then, the magnitude of the synthetic magnetic field formed on the ferromagnetic single crystal thin film is 700 (1000-300) Oe, and the synthetic temperature coefficient is -0.029% [(0.1X1000-
0.4 × 300) / 700].
【0013】[0013]
【実験例】次に、このように構成した永久磁石を用いた
実験例について説明する。この実験例では、Y.I.G
薄膜に、飽和磁化1750ガウス、膜厚20μmの材料
を用い、前述の磁石で試料2に780エルステッドの磁
界を印加した。通過帯域は3.8GHzであり、その中
心周波数の温度係数は約100ppm/°Cであった。
この値は従来の静磁表面波フィルタの中心周波数の温度
係数が1000ppm/°C〜3000ppm/°Cと
比べると、大幅に改善されている。[Experimental Example] Next, an experimental example using the permanent magnet configured as described above will be described. In this experimental example, Y. I. G
A material having a saturation magnetization of 1750 gauss and a film thickness of 20 μm was used for the thin film, and a magnetic field of 780 oersted was applied to the sample 2 by the magnet described above. The pass band was 3.8 GHz, and the temperature coefficient of its center frequency was about 100 ppm / ° C.
This value is significantly improved as compared with the temperature coefficient of the center frequency of the conventional magnetostatic surface wave filter of 1000 ppm / ° C to 3000 ppm / ° C.
【0014】[0014]
【発明の効果】以上詳細に説明した通り、本発明は、周
囲温度の変動に対して、静磁表面波フィルタの中心周波
数の変動を抑える直流外部磁界の温度特性を持つ温度補
償型静磁表面波フィルタを提供できる。As described in detail above, the present invention provides a temperature-compensated magnetostatic surface having a temperature characteristic of a DC external magnetic field that suppresses fluctuations in the center frequency of a magnetostatic surface wave filter against fluctuations in ambient temperature. A wave filter can be provided.
【図1】図1は、本発明の実施例の静磁表面波フィルタ
の平面図である。FIG. 1 is a plan view of a magnetostatic surface wave filter according to an embodiment of the present invention.
【図2】図2は、従来の静磁表面波フィルタの平面図で
ある。FIG. 2 is a plan view of a conventional magnetostatic surface wave filter.
1 誘電体基板 2 試料 3 金属薄膜パターン 4 入力側パラレルストリップトランスデューサ 5 出力側パラレルストリップトランスデューサ 6 永久磁石 7 永久磁石 8 永久磁石 10 ヨーク 1 Dielectric Substrate 2 Sample 3 Metal Thin Film Pattern 4 Input Side Parallel Strip Transducer 5 Output Side Parallel Strip Transducer 6 Permanent Magnet 7 Permanent Magnet 8 Permanent Magnet 10 Yoke
Claims (1)
結晶基板と、該強磁性体単結晶薄膜に直流外部磁界を印
加する永久磁石とから成る静磁表面波フィルタであっ
て、着磁方向の異なるように少なくとも2つ以上の永久
磁石を組み合わせて、組み合わせた永久磁石の磁界の大
きさの温度特性を前記強磁性体単結晶薄膜の磁化の大き
さの温度特性に対して反対の極性となるように構成する
ことを特徴とする温度補償型静磁表面波フィルタ。1. A magnetostatic surface wave filter comprising a single crystal substrate on which a ferromagnetic single crystal thin film is formed, and a permanent magnet for applying a DC external magnetic field to the ferromagnetic single crystal thin film, By combining at least two permanent magnets with different magnetization directions, the temperature characteristics of the magnetic field magnitude of the combined permanent magnets are opposite to the temperature characteristics of the magnetization magnitude of the ferromagnetic single crystal thin film. A temperature-compensated magnetostatic surface wave filter, which is configured so as to have a polarity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3084724A JPH05175710A (en) | 1991-03-25 | 1991-03-25 | Temperature compensation type magnetostatic surface wave filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3084724A JPH05175710A (en) | 1991-03-25 | 1991-03-25 | Temperature compensation type magnetostatic surface wave filter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05175710A true JPH05175710A (en) | 1993-07-13 |
Family
ID=13838636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3084724A Pending JPH05175710A (en) | 1991-03-25 | 1991-03-25 | Temperature compensation type magnetostatic surface wave filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05175710A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000065613A1 (en) * | 1999-04-22 | 2000-11-02 | Tdk Corporation | Magnetostatic wave device |
US9379685B2 (en) | 2012-09-19 | 2016-06-28 | Murata Manufacturing Co., Ltd. | Built-in-circuit substrate and composite module |
-
1991
- 1991-03-25 JP JP3084724A patent/JPH05175710A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000065613A1 (en) * | 1999-04-22 | 2000-11-02 | Tdk Corporation | Magnetostatic wave device |
US6353375B2 (en) | 1999-04-22 | 2002-03-05 | Tdk Corporation | Magnetostatic wave device |
US9379685B2 (en) | 2012-09-19 | 2016-06-28 | Murata Manufacturing Co., Ltd. | Built-in-circuit substrate and composite module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2594382C1 (en) | Adjustable microwave delay line on surface magnetostatic waves | |
JPH05175710A (en) | Temperature compensation type magnetostatic surface wave filter | |
US2958055A (en) | Nonreciprocal wave transmission | |
JP2779057B2 (en) | Magnetostatic wave device chip and magnetostatic wave device | |
US3648199A (en) | Temperature-independent yig filter | |
US5663698A (en) | Magnetostatic wave device having slanted end portions | |
JP2694440B2 (en) | Magnetic device | |
KR870001704A (en) | YIG Thin Film Microwave Devices | |
JPH05175709A (en) | Temperature compensation type magnetostatic surface wave filter | |
JP2522579B2 (en) | Magnetostatic microwave oscillator for PLL control | |
JPH0738528B2 (en) | YIG thin film microwave device | |
KR960006463B1 (en) | Ferromagnetic resonance device and filter device | |
JPS62224101A (en) | Magnetostatic wave filter bank | |
US4399415A (en) | Resonant isolator for maser amplifier | |
JP3272967B2 (en) | Magnetostatic wave device and voltage controlled oscillator using the same | |
Nilsen et al. | Microwave Properties of a Calcium‐Vanadium‐Bismuth Garnet | |
JP2672434B2 (en) | Magnetic device | |
JPH0758843B2 (en) | Magnetostatic wave device | |
JP2517913B2 (en) | Ferromagnetic resonance device | |
JPS588762B2 (en) | Circulator and isolator | |
JPS5963579A (en) | Magnetostatic wave magnetometer | |
JPS63125002A (en) | Static magnetic wave nonlinear device | |
JPH07170112A (en) | Magnetostatic wave device | |
JPS63127603A (en) | Magnetostatic wave nonlinear device | |
JPH01152802A (en) | Ferrimagnetic resonator |