[go: up one dir, main page]

JPH05170403A - How to convert carbon dioxide with methane - Google Patents

How to convert carbon dioxide with methane

Info

Publication number
JPH05170403A
JPH05170403A JP3343338A JP34333891A JPH05170403A JP H05170403 A JPH05170403 A JP H05170403A JP 3343338 A JP3343338 A JP 3343338A JP 34333891 A JP34333891 A JP 34333891A JP H05170403 A JPH05170403 A JP H05170403A
Authority
JP
Japan
Prior art keywords
catalyst
carbon dioxide
oxide
methane
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3343338A
Other languages
Japanese (ja)
Inventor
Shoichi Nishiyama
正一 西山
Yoshifumi Sasaki
好文 佐々木
Hisanori Okada
久則 岡田
Tetsuo Asakawa
哲夫 淺川
Sotaro Nakamura
宗太郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI KANKYO GIJUTSU ITEN KENKYU CENTER
Tosoh Corp
Original Assignee
KOKUSAI KANKYO GIJUTSU ITEN KENKYU CENTER
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI KANKYO GIJUTSU ITEN KENKYU CENTER, Tosoh Corp filed Critical KOKUSAI KANKYO GIJUTSU ITEN KENKYU CENTER
Priority to JP3343338A priority Critical patent/JPH05170403A/en
Publication of JPH05170403A publication Critical patent/JPH05170403A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide the converting method of carbon dioxide being a cause material for making the earth warm and not evaluated up to the present as an useful industrial raw material to carbon monooxide and hydrogen which are useful for industries. CONSTITUTION:A gaseous mixture incorporating carbon dioxide and methane at a specified ratio is allowed to pass through a catalyst supporting an alkaline earth metal oxide and a metal or a metal oxide as effective components to recover carbon monooxide and hydrogen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はメタンを還元剤として地
球温暖化の主要な原因物質となっている二酸化炭素を、
工業的に有用な一酸化炭素と水素(以下「合成ガス」と
略す)に変換する方法に関する。
The present invention uses carbon dioxide, which is a major causative agent of global warming, by using methane as a reducing agent,
The present invention relates to a method for converting industrially useful carbon monoxide and hydrogen (hereinafter abbreviated as "synthesis gas").

【0002】[0002]

【従来技術】二酸化炭素は地球温暖化の主要原因物質と
して、排出の削減、有効利用が緊急の課題として求めら
れ、近年、二酸化炭素の化学的変換法が多方面(電気的
還元法、光合成法、接触水素還元法等)で検討されてい
る。
2. Description of the Related Art As carbon dioxide is a major causative agent of global warming, reduction of emission and effective use are urgently required, and in recent years, chemical conversion methods of carbon dioxide have been widely used (electric reduction method, photosynthesis method). , Catalytic hydrogen reduction method, etc.).

【0003】そのなかで、メタンを還元剤として二酸化
炭素をヒドロホルミル化により各種有機化合物を合成す
る際の原料等として有用な合成ガスに変換する報告例は
極めて少なく、アルミナ及びシリカ担持貴金属或いはV
III族遷移金属触媒を使用した接触法(React.
Kinet.catal.,24(3−4),253
(1984)、及び第68回触媒討論会(A)予稿集,
3H327(1991))があるにすぎない。
[0003] Among them, there are very few reports of converting carbon dioxide into a synthesis gas useful as a raw material when synthesizing various organic compounds by hydroformylation using methane as a reducing agent.
Catalytic method using Group III transition metal catalyst (React.
Kinet. catal. , 24 (3-4), 253
(1984), and 68th Catalytic Discussion Group (A) Proceedings,
3H327 (1991)).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、貴金属
を担持した触媒を使用する場合、貴金属は高価であり経
済的に不利となる。また貴金属と同等の触媒活性と寿命
を有し、より安価なVIII族遷移金属、中でもニッケ
ル触媒は、同等の活性を示すが一方で炭素析出傾向が強
く、そのため活性の劣化が起こり易いという間題があ
る。
However, when a catalyst supporting a noble metal is used, the noble metal is expensive and economically disadvantageous. In addition, a less expensive Group VIII transition metal having the same catalytic activity and life as a noble metal, especially a nickel catalyst, exhibits the same activity, but on the other hand, the tendency of carbon precipitation is strong, so that the activity tends to deteriorate. There is.

【0005】[0005]

【課題を解決するための手段】本発明者らは、触媒にお
いて各種の添加物効果を検討した結果、特にアルカリ土
類金属酸化物類を含有した触媒において、炭素析出が起
こらず安定した活性を示すことを見いだし本発明を完成
するに至った。
As a result of examining various additive effects in the catalyst, the present inventors have found that a catalyst containing an alkaline earth metal oxide has a stable activity without carbon deposition. The inventors have found what is shown and have completed the present invention.

【0006】即ち、本発明の特徴は、二酸化炭素及びメ
タンを含有するガスを触媒に接触させて一酸化炭素と水
素を製造するにあたり、触媒としてアルカリ土類金属酸
化物類を含む金属或いは金属酸化物触媒を用いることに
ある。
That is, a feature of the present invention is that when a gas containing carbon dioxide and methane is brought into contact with a catalyst to produce carbon monoxide and hydrogen, a metal containing an alkaline earth metal oxide as a catalyst or a metal oxide. It is to use a physical catalyst.

【0007】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0008】本発明において用いられる触媒は、アルカ
リ土類金属酸化物類と、金属あるいは金属酸化物からな
るものであってもよいし、またその両者をシリカ、アル
ミナ、ジルコニア、ニオビア、チタニア、血漿性アルミ
ノシリケートなどの酸化物に担持させたものであっても
よい。
The catalyst used in the present invention may be composed of an alkaline earth metal oxide and a metal or a metal oxide, or both of them may be silica, alumina, zirconia, niobia, titania, plasma. It may be supported on an oxide such as aluminosilicate.

【0009】アルカリ土類金属酸化物類としては、酸化
マグネシウム、酸化カルシウム、酸化バリウム、酸化ス
トロンチウムの中から少なくとも一つ以上の酸化物を含
むものを零時できる。アルカリ土類金属酸化物類が二つ
以上の酸化物からなる場合、それらの重量比は特に制限
されない。
As the alkaline earth metal oxides, those containing at least one oxide selected from magnesium oxide, calcium oxide, barium oxide and strontium oxide can be used at zero time. When the alkaline earth metal oxides are composed of two or more oxides, their weight ratio is not particularly limited.

【0010】アルカリ土類金属酸化物類の触媒中の含有
量は、0.01重量%以上であれば特に制限されない
が、より好ましくは0.1〜95重量%である。
The content of the alkaline earth metal oxides in the catalyst is not particularly limited as long as it is 0.01% by weight or more, but more preferably 0.1 to 95% by weight.

【0011】金属或いは金属酸化物は、貴金属、VII
I族遷移金属及びこれら金属の酸化物から選ばれる金属
あるいは金属酸化物を含むものであればよい。
Metals or metal oxides are noble metals, VII
Any metal or metal oxide selected from Group I transition metals and oxides of these metals may be used.

【0012】具体的には、ロジウム、イリジウム、ルテ
ニウム、コバルト、ニッケルあるいはそれらの酸化物が
挙げられる。中でも、コストの面からより安価なニッケ
ル或いはニッケル酸化物が経済的で有利である。
Specific examples thereof include rhodium, iridium, ruthenium, cobalt, nickel and oxides thereof. Among them, nickel or nickel oxide, which is cheaper in terms of cost, is economical and advantageous.

【0013】金属あるいは金属酸化物の触媒中の含有量
は、0.01〜70重量%が好ましい。含有量が0.0
1重量%未満では十分な二酸化炭素の転化率が得られな
いことがある。一方、70重量%を越える場合では期待
するほどの転化率の向上は認められない。
The content of metal or metal oxide in the catalyst is preferably 0.01 to 70% by weight. Content is 0.0
If it is less than 1% by weight, a sufficient carbon dioxide conversion rate may not be obtained. On the other hand, when it exceeds 70% by weight, the expected improvement in conversion is not observed.

【0014】アルカリ土類金属酸化物類を含む金属ある
いは金属酸化物の調製法としては特に制限はなく、通常
の含浸法、共沈法等の方法で製造できる。
The method for preparing the metal or metal oxide containing the alkaline earth metal oxides is not particularly limited, and it can be produced by a usual impregnation method, coprecipitation method or the like.

【0015】例えばアルカリ土類金属酸化物類を含むニ
ッケル或いはニッケル酸化物触媒について以下の方法が
挙げられる。
For example, the following method can be mentioned for nickel or nickel oxide catalysts containing alkaline earth metal oxides.

【0016】(1)シリカ成型物を、アルカリ土類金属
塩類に溶解した水溶液に含浸し乾燥・焼成の処理を行
い、その得られた酸化物をニッケル塩水溶液に含浸し活
性化処理を行なう。
(1) A silica molded product is impregnated with an aqueous solution of an alkaline earth metal salt, dried and fired, and the resulting oxide is impregnated with an aqueous nickel salt solution for activation.

【0017】(2)アルカリ土類金属塩類とアルミニウ
ム塩を混合した水溶液にアンモニアを加えて沈澱を形成
し、得られたゲルを乾燥後、ニッケル塩水溶液に含浸し
活性化処理を行う。
(2) Ammonia is added to an aqueous solution in which alkaline earth metal salts and aluminum salts are mixed to form a precipitate, and the resulting gel is dried and impregnated with an aqueous nickel salt solution for activation treatment.

【0018】(3)シリカアルコキサイドに、アルカリ
土類金属塩類及びニッケル塩を加え加水分解することで
沈澱を得、乾燥・焼成・還元の処理を行う。
(3) To silica alkoxide, an alkaline earth metal salt and a nickel salt are added and hydrolyzed to obtain a precipitate, which is dried, calcined and reduced.

【0019】(4)チタニア成型物を、アルカリ土類金
属塩類とニッケル塩の混合水溶液に同時含浸させ、乾燥
・焼成の処理を行なう。
(4) The titania molded product is simultaneously impregnated with a mixed aqueous solution of an alkaline earth metal salt and a nickel salt, and dried and fired.

【0020】(5)ニッケル酸化物と酸化マグネシウム
を物理混合し、活性化処理を行なう。なお、ニッケル以
外の金属についても同様にして製造することができる。
(5) The nickel oxide and magnesium oxide are physically mixed and an activation treatment is carried out. Note that metals other than nickel can be manufactured in the same manner.

【0021】該触媒にランタン、セリウム金属酸化物を
上記調製法により含有させることもできる。
The catalyst may contain lanthanum or cerium metal oxide by the above-mentioned preparation method.

【0022】本発明において触媒調製に使用するニッケ
ル塩及びアルカリ土類金属塩としては、特に制限はない
が、活性化処理時に分解し易い硝酸塩、炭酸塩、有機錯
体がより好ましい。
The nickel salt and alkaline earth metal salt used for preparing the catalyst in the present invention are not particularly limited, but nitrates, carbonates and organic complexes which are easily decomposed during the activation treatment are more preferable.

【0023】触媒の活性化処理とは、空気等による焼成
及び水素、硫化水素等による還元をいう。十分な二酸化
炭素の転化率を得るためには還元処理を行う方が好まし
い。触媒は成型して用いても或いは粉末のまま用いても
差し支えなく、反応方法によって所望の大きさに成型し
て用いればよい。
The catalyst activation treatment means calcination with air or the like and reduction with hydrogen, hydrogen sulfide or the like. In order to obtain a sufficient carbon dioxide conversion rate, it is preferable to carry out a reduction treatment. The catalyst may be used by molding or may be used as a powder, and may be molded into a desired size according to the reaction method.

【0024】本発明におけるメタンの量は、二酸化炭素
に対するメタンのモル比として規定することができる。
具体的には、メタン/二酸化炭素の比は0.05〜25
とすることができ、0.1〜20が好ましい。メタン/
二酸化炭素との比が0.05未満ではリサイクルする二
酸化炭素の量が多くなり、一方、メタン/二酸化炭素の
比が25を越えると十分な一酸化炭素生成速度が得られ
なくなり不経済となることがある。
The amount of methane in the present invention can be defined as the molar ratio of methane to carbon dioxide.
Specifically, the methane / carbon dioxide ratio is 0.05 to 25.
And 0.1 to 20 is preferable. methane/
If the ratio with carbon dioxide is less than 0.05, the amount of carbon dioxide to be recycled increases, while if the ratio of methane / carbon dioxide exceeds 25, a sufficient carbon monoxide generation rate cannot be obtained, which is uneconomical. There is.

【0025】なお、本発明において、系中に希釈ガスと
して窒素、空気または水蒸気を添加しても良い。
In the present invention, nitrogen, air or steam may be added to the system as a diluent gas.

【0026】本発明における反応温度は300〜100
0℃,より好ましくは400〜950℃である。反応温
度が300℃未満では二酸化炭素の十分な転化率が得ら
れず、また、1000℃を越える場合には触媒のシンタ
リングによる活性の低下を起こすことがある。
The reaction temperature in the present invention is 300 to 100.
The temperature is 0 ° C, more preferably 400 to 950 ° C. If the reaction temperature is lower than 300 ° C, a sufficient conversion rate of carbon dioxide cannot be obtained, and if the reaction temperature exceeds 1000 ° C, the activity may decrease due to the sintering of the catalyst.

【0027】反応圧力については特に制限はなく常圧か
ら20気圧、好ましくは常圧から10気圧で反応を行う
のがよい。
The reaction pressure is not particularly limited, and the reaction may be carried out at atmospheric pressure to 20 atm, preferably atmospheric pressure to 10 atm.

【0028】触媒に対する原料供給速度は単位触媒体積
あたりの原料供給速度(SV)で規定することができ
る。本発明の方法h、SVは500〜100000/h
である。SVが500/h未満では一酸化炭素の生成速
度が小さく、またSVが100000/hを越えると原
料の転化率が低下し経済的でなくなることがある。
The raw material supply rate to the catalyst can be defined by the raw material supply rate (SV) per unit catalyst volume. The method h and SV of the present invention are 500 to 100,000 / h.
Is. If the SV is less than 500 / h, the carbon monoxide generation rate is low, and if the SV is more than 100,000 / h, the conversion rate of the raw material is lowered, which may be uneconomical.

【0029】反応方法は触媒と原料が効率的に接触でき
れば特に制限はなく、たとえぱ固定床、流動床、移動床
で反応を行わせることができる。
The reaction method is not particularly limited as long as the catalyst and the raw material can be efficiently contacted, and the reaction can be carried out in a fixed bed, a fluidized bed or a moving bed.

【0030】[0030]

【実施例】以下に本発明を実施例を用いて説明するが、
本発明がこれらの実施例によって制限されるものではな
い。
EXAMPLES The present invention will be described below with reference to examples.
The invention is not limited by these examples.

【0031】実施例1 酢酸マグネシウム四水和物2.5gを水8ccに溶解し
た水溶液に、3mm径の球状シリカ(富士デヴィソン
製、キャリアクト−30)4.2gを3時間浸漬した
後、110℃、11時間乾燥した。次にこれを600℃
で2時間空気焼成した担体4.6gを、硝酸ニッケル六
水和物2.3gを水9ccに溶かした水溶液に3時間浸
漬し、その後110℃で一晩乾燥後500℃で1時間、
10%水素気流下で還元し、重量比でニッケル10%、
酸化マグネシウム10%、シリカ80%を含有した触媒
を得た。
Example 1 4.2 g of spherical silica having a diameter of 3 mm (made by Fuji Davison, Carriact-30) was immersed in an aqueous solution of 2.5 g of magnesium acetate tetrahydrate dissolved in 8 cc of water for 3 hours, and then 110 C., and dried for 11 hours. Then this is 600 ℃
4.6 g of the carrier which had been air-calcined for 2 hours was immersed in an aqueous solution of 2.3 g of nickel nitrate hexahydrate dissolved in 9 cc of water for 3 hours, then dried at 110 ° C. overnight and then at 500 ° C. for 1 hour
Reduced under a 10% hydrogen flow, nickel 10% by weight,
A catalyst containing 10% magnesium oxide and 80% silica was obtained.

【0032】この触媒1.5gを内径14mmのSUS
反応管に充填し、反応温度を500℃に保ち、ここに二
酸化炭素:メタン:窒素のモル比が1:1:3となる混
合ガスを100cc/minで供給した。なお、出口ガ
スの分析はガスクロマトグラフィーにより行い、一酸化
炭素の収率、炭素析出度は炭素の物質収支から以下の計
算式により算出した。
1.5 g of this catalyst was added to SUS with an inner diameter of 14 mm.
The reaction tube was filled, the reaction temperature was kept at 500 ° C., and a mixed gas having a carbon dioxide: methane: nitrogen molar ratio of 1: 1: 3 was supplied at 100 cc / min. The analysis of the outlet gas was carried out by gas chromatography, and the yield of carbon monoxide and the degree of carbon deposition were calculated from the mass balance of carbon by the following formulas.

【0033】CO収率(%)=出口COのモル数/(供
給CO2 のモル数+供給CH4 モル数)×100(%) 炭素析出度(%)=(1−出口ガスの全炭素モル数/
(供給CO2 のモル数+供給CH4 モル数))×100
(%) 結果を表1に示す。
CO yield (%) = moles of outlet CO / (moles of supplied CO 2 + moles of supplied CH 4 ) × 100 (%) Deposition degree of carbon (%) = (1-total carbon of outlet gas Number of moles /
(Moles of supplied CO 2 + moles of supplied CH 4 )) × 100
(%) The results are shown in Table 1.

【0034】実施例2 酢酸マグネシウムの代わりに所定量の硝酸カルシウム四
水和物を使用し、実施例1と同様の触媒調製操作により
重量比でニッケル10%、酸化カルシウム10%、シリ
カ80%を含有した触媒を得た。この触媒1.5gを使
用し、実施例1と同様の反応操作を行った。結果を表1
に示す。
Example 2 A predetermined amount of calcium nitrate tetrahydrate was used in place of magnesium acetate, and the same catalyst preparation procedure as in Example 1 was used to prepare nickel 10%, calcium oxide 10% and silica 80% by weight. The contained catalyst was obtained. Using 1.5 g of this catalyst, the same reaction operation as in Example 1 was performed. The results are shown in Table 1.
Shown in.

【0035】実施例3 酢酸マグネシウムの代わりに所定量の硝酸バリウムを使
用し、実施例1と同様の触媒調製操作により重量比でニ
ッケル10%、酸化バリウム10%、シリカ80%を含
有した触媒を得た。この触媒1.5gを使用し、実施例
1と同様の反応操作を行った。結果を表1に示す。
Example 3 A catalyst containing nickel 10%, barium oxide 10% and silica 80% by weight was prepared by the same catalyst preparation procedure as in Example 1 except that a predetermined amount of barium nitrate was used instead of magnesium acetate. Obtained. Using 1.5 g of this catalyst, the same reaction operation as in Example 1 was performed. The results are shown in Table 1.

【0036】実施例4 硝酸ニッケル六水和物5.9g、硝酸カルシウム四水和
物2.3g、硝酸マグネシウム六水和物0.75gを水
10ccに溶解したのち、3mm径の球状アルミナ(住
友化学製、KHA−24)10gを3時間浸漬した。1
10℃で一晩乾燥後、600℃で2時間空気焼成、続い
て10%水素気流中500℃で1時間の還元処理を行
い、重量比でニッケル10%、酸化カルシウム5%、酸
化マグネシウム1%、アルミナ84%からなる触媒を得
た。この触媒1.5gを使用し、実施例1と同様の反応
操作を行った。結果を表1に示す。
Example 4 5.9 g of nickel nitrate hexahydrate, 2.3 g of calcium nitrate tetrahydrate and 0.75 g of magnesium nitrate hexahydrate were dissolved in 10 cc of water, and then spherical alumina having a diameter of 3 mm (Sumitomo 10g of KHA-24) manufactured by Kagaku Co., Ltd. was immersed for 3 hours. 1
After drying overnight at 10 ° C, air calcination at 600 ° C for 2 hours, followed by reduction treatment in a 10% hydrogen stream at 500 ° C for 1 hour, weight ratio nickel 10%, calcium oxide 5%, magnesium oxide 1%. A catalyst composed of 84% alumina was obtained. Using 1.5 g of this catalyst, the same reaction operation as in Example 1 was performed. The results are shown in Table 1.

【0037】実施例5 硝酸ニッケル六水和物5g、硝酸カルシウム四水和物
4.1gをエチレングリコール100ccに溶解したの
ち、撹拌しながら80℃に加温した。そこに温度を保ち
ながらアルミニウムイソプロポキサイド32.4gを滴
下し、更に同温度で3時間撹拌を行った。その後、水1
3gを加え加水分解し、さらに撹拌を3時間行い目的の
ゲルを得た。ゲルは110℃で24時間乾燥し、加圧成
型後700℃で2時間空気焼成を行い、更に600℃で
1時間10%水素気流中で還元を行った。重量比でニッ
ケル、酸化カルシウム、アルミナがそれぞれ10%、1
0%及び80%からなる触媒を得た。この触媒1.5g
を使用し、実施例1と同様の反応操作を行った。結果を
表1に示す。
Example 5 5 g of nickel nitrate hexahydrate and 4.1 g of calcium nitrate tetrahydrate were dissolved in 100 cc of ethylene glycol and then heated to 80 ° C. with stirring. While maintaining the temperature, 32.4 g of aluminum isopropoxide was added dropwise thereto, and the mixture was further stirred at the same temperature for 3 hours. Then water 1
3 g was added and hydrolyzed, followed by stirring for 3 hours to obtain the desired gel. The gel was dried at 110 ° C. for 24 hours, pressure-molded, air-baked at 700 ° C. for 2 hours, and further reduced at 600 ° C. for 1 hour in a 10% hydrogen stream. 10% by weight of nickel, calcium oxide, and alumina, respectively, 1
A catalyst consisting of 0% and 80% was obtained. 1.5g of this catalyst
Was used and the same reaction operation as in Example 1 was performed. The results are shown in Table 1.

【0038】比較例 3mm径の球状シリカ(富士デヴィソン製)14gを硝
酸ニッケル六水和物6.9gを水20ccに溶かした水
溶液に3時間浸漬した後、実施例1と同様の処理を行
い、重量比でニッケル10%、シリカ90%を含有した
触媒を得た。この触媒1.5gを使用し、実施例1と同
様の反応操作を行った。結果を表1に示す。
Comparative Example 14 g of spherical silica having a diameter of 3 mm (manufactured by Fuji Davison) was immersed in an aqueous solution prepared by dissolving 6.9 g of nickel nitrate hexahydrate in 20 cc of water for 3 hours, and then the same treatment as in Example 1 was performed. A catalyst containing nickel 10% and silica 90% by weight was obtained. Using 1.5 g of this catalyst, the same reaction operation as in Example 1 was performed. The results are shown in Table 1.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【発明の効果】二酸化炭素をメタンにより還元する際、
本発明の触媒を使用することで、触媒表面での炭素析出
を抑制し、合成ガスを製造することができる。
When carbon dioxide is reduced by methane,
By using the catalyst of the present invention, it is possible to suppress carbon deposition on the catalyst surface and produce synthesis gas.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年1月20日[Submission date] January 20, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】本発明において用いられる触媒は、アルカ
リ土類金属酸化物類と、金属あるいは金属酸化物からな
るものであってもよいし、またその両者をシリカ、アル
ミナ、ジルコニア、ニオビア、チタニア、結晶性アルミ
ノシリケートなどの酸化物に担持させたものであっても
よい。
The catalyst used in the present invention may be composed of an alkaline earth metal oxide and a metal or a metal oxide, and both of them may be silica, alumina, zirconia, niobia, titania, crystals. It may be supported on an oxide such as aluminosilicate.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】アルカリ土類金属酸化物類としては、酸化
マグネシウム、酸化カルシウム、酸化バリウム、酸化ス
トロンチウムの中から少なくとも一つ以上の酸化物を含
むものを例示できる。アルカリ土類金属酸化物類が二つ
以上の酸化物からなる場合、それらの重量比は特に制限
されない。
Examples of the alkaline earth metal oxides include those containing at least one oxide selected from magnesium oxide, calcium oxide, barium oxide and strontium oxide. When the alkaline earth metal oxides are composed of two or more oxides, their weight ratio is not particularly limited.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】アルカリ土類金属酸化物類を含む金属ある
いは金属酸化物触媒の調製法としては特に制限はなく、
通常の含浸法、共沈法等の方法で製造できる。
The method for preparing the metal or metal oxide catalyst containing the alkaline earth metal oxides is not particularly limited,
It can be produced by a usual impregnation method, a coprecipitation method or the like.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】(1)シリカ成型物を、アルカリ土類金属
塩類溶解させた水溶液に浸漬し乾燥・焼成の処理を行
い、その得られた酸化物をニッケル塩水溶液に浸漬し活
性化処理を行なう。
[0016] The (1) silica molded product, a process of dipping and dried and baked in an aqueous solution obtained by dissolving an alkaline-earth metal salts, performs immersed activation treatment aqueous nickel salt solution and the resulting oxide ..

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】(2)アルカリ土類金属塩類とアルミニウ
ム塩を混合した水溶液にアンモニアを加えて沈澱を形成
し、得られたゲルを乾燥後、ニッケル塩水溶液に浸漬
活性化処理を行う。
(2) Ammonia is added to an aqueous solution in which alkaline earth metal salts and aluminum salts are mixed to form a precipitate, and the obtained gel is dried and then immersed in an aqueous nickel salt solution for activation treatment.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Name of item to be corrected] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】(4)チタニア成型物を、アルカリ土類金
属塩類とニッケル塩の混合水溶液に浸漬させ、乾燥・焼
成の処理を行なう。
(4) The titania molded product is immersed in a mixed aqueous solution of an alkaline earth metal salt and a nickel salt, and dried and fired.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 淺川 哲夫 三重県四日市市別名6丁目7−5 (72)発明者 中村 宗太郎 三重県鈴鹿市長太旭町6丁目19−18 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuo Asakawa 6-7-5, also known as Yokkaichi-shi, Mie (72) Inventor Sotaro Nakamura 6-19-18 Nagataasa-cho, Suzuka-shi, Mie

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 二酸化炭素及びメタンを含有するガスを
触媒に接触させて、一酸化炭素と水素を製造するにあた
り、触媒がアルカリ土類金属酸化物類を含む金属或いは
金属酸化物触媒であることを特徴とするメタンによる二
酸化炭素の変換方法。
1. In producing carbon monoxide and hydrogen by bringing a gas containing carbon dioxide and methane into contact with the catalyst, the catalyst is a metal or metal oxide catalyst containing alkaline earth metal oxides. A method for converting carbon dioxide by methane, which is characterized by:
【請求項2】 金属或いは金属酸化物が、ニッケル或い
はニッケル酸化物であることを特徴とする謂求項1に記
載の変換方法。
2. The conversion method according to claim 1, wherein the metal or metal oxide is nickel or nickel oxide.
JP3343338A 1991-12-25 1991-12-25 How to convert carbon dioxide with methane Pending JPH05170403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3343338A JPH05170403A (en) 1991-12-25 1991-12-25 How to convert carbon dioxide with methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3343338A JPH05170403A (en) 1991-12-25 1991-12-25 How to convert carbon dioxide with methane

Publications (1)

Publication Number Publication Date
JPH05170403A true JPH05170403A (en) 1993-07-09

Family

ID=18360757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3343338A Pending JPH05170403A (en) 1991-12-25 1991-12-25 How to convert carbon dioxide with methane

Country Status (1)

Country Link
JP (1) JPH05170403A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131487A (en) * 2008-12-03 2010-06-17 Kansai Electric Power Co Inc:The Catalyst for manufacturing carbon nanotube, method for manufacturing carbon nanotube using the same, and method for manufacturing catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131487A (en) * 2008-12-03 2010-06-17 Kansai Electric Power Co Inc:The Catalyst for manufacturing carbon nanotube, method for manufacturing carbon nanotube using the same, and method for manufacturing catalyst

Similar Documents

Publication Publication Date Title
ES2227249T3 (en) CATALYST AND HYDROCARBON PREPARATION PROCEDURE.
WO1998046523A1 (en) Catalyst for preparation of synthesis gas and process for preparing carbon monoxide
NZ202305A (en) Catalytic system;process for production of alcohol mixtures
WO1998046524A1 (en) Process for preparing synthesis gas
KR20060132818A (en) Method for preparing methyl mercaptan
CA1321604C (en) Catalytic process for the production of alcohols from carbon monoxide, hydrogen and olefins
JP2003320254A (en) Catalyst for water gas shift reaction and steam reforming reaction of methanol
JP3667801B2 (en) Method for producing ruthenium catalyst and method for steam reforming hydrocarbon using the catalyst
EP0548679A1 (en) Process for the preparation of synthetic gases
JPH06319999A (en) Catalyst for synthetic production of isoalcohol from carbon monoxide and hydrogen
JPH0691958B2 (en) Catalyst for hydrogenation reaction of carbon monoxide or carbon dioxide
JP2813770B2 (en) Ethanol production method
JPH05221602A (en) Production of synthesis gas
JPH05170404A (en) Method for converting carbon dioxide by methane
JP2685130B2 (en) Ethanol production method
JPH05170403A (en) How to convert carbon dioxide with methane
JPH0788376A (en) Hydrocarbon steam reforming catalyst
JP3837520B2 (en) Catalyst for CO shift reaction
JP3089677B2 (en) How to reduce carbon dioxide with propane
JP3095497B2 (en) How to convert carbon dioxide with ethane
JPH06279012A (en) Production of carbon monoxide
JPH039772B2 (en)
JPS615036A (en) Production of alcohol
JP4012965B2 (en) Catalyst for high temperature CO shift reaction
JP3413235B2 (en) Synthesis gas production method