[go: up one dir, main page]

JPH05144943A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH05144943A
JPH05144943A JP30158091A JP30158091A JPH05144943A JP H05144943 A JPH05144943 A JP H05144943A JP 30158091 A JP30158091 A JP 30158091A JP 30158091 A JP30158091 A JP 30158091A JP H05144943 A JPH05144943 A JP H05144943A
Authority
JP
Japan
Prior art keywords
layer
wiring
cell
integrated circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30158091A
Other languages
Japanese (ja)
Inventor
Susumu Sanai
進 佐内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP30158091A priority Critical patent/JPH05144943A/en
Publication of JPH05144943A publication Critical patent/JPH05144943A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To provide an output cell which operates stably by lowering noises which are carried on a power supply line when a number of output cells of a semiconductor integrated circuit operate simultaneously. CONSTITUTION:In a semiconductor integrated circuit device of master slice method using a three-layer wiring, two kinds of output cells are used, which are an A-type cell whose power supply line consists of a first layer of a wiring layer 8 and a second layer of wiring layers 1, 2 and a B-type cell whose power supply line consists of a first layer of a wiring layer 8, a second layer of a wiring layer 3 and a third layer of wiring layers 4, 5. Thereby, noises carried on a power supply line are separated to wirings of two layers and three layers, thereby lowering noises of a semiconductor integrated circuit device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマスタスライス方式の半
導体集積回路装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a master slice type semiconductor integrated circuit device.

【0002】[0002]

【従来の技術】従来のマスタスライス方式の半導体集積
回路装置においては、2層配線で入力セル、出力セルお
よび内部セルが構成されている。
2. Description of the Related Art In a conventional master slice type semiconductor integrated circuit device, an input cell, an output cell and an internal cell are composed of two layers of wiring.

【0003】最近、3層配線のセルが種々開発されてき
たが、出力セルに関しては2層配線のセルのみが使用さ
れている。
Recently, various three-layer wiring cells have been developed, but only two-layer wiring cells are used as output cells.

【0004】[0004]

【発明が解決しようとする課題】現在、半導体設計のデ
ザインルールは1.0μm,0.8μm,0.6μm等と
小さくなり、出力セル自体を小型化するとか、従来のデ
ザインルールの中でセルの幅を従来より狭くするなどし
て、半導体チップ上に多くの入力セル、出力セルが設け
られている。
Currently, the design rule of semiconductor design is as small as 1.0 μm, 0.8 μm, 0.6 μm, etc., and the output cell itself is downsized, or the conventional design rules A large number of input cells and output cells are provided on the semiconductor chip by making the width of the cell narrower than before.

【0005】また、一方でセル駆動の周波数がMHzの
オーダーから数百MHzに変わってきた。これにより、
実質的に同時に(実際には数十ナノ秒間)動作する出力
セル数が増加した。そして、セル駆動の周波数が高くな
ったために、従来に比べて出力端子および電源ラインに
のるノイズが増加してきた。
On the other hand, the cell driving frequency has changed from the order of MHz to several hundred MHz. This allows
The number of output cells operating at substantially the same time (actually several tens of nanoseconds) increased. Since the cell driving frequency has increased, the noise on the output terminal and the power supply line has increased compared to the conventional case.

【0006】このため、従来の設計方法のままでは、同
一半導体チップ上の多数の出力セルが高い周波数で同時
に動作したときノイズが大きくなるので、同時に変化し
てよいセルの数(同時変化の本数)を従来より制限しな
ければならないという問題が生じた。
For this reason, if the conventional design method is used as it is, noise increases when a large number of output cells on the same semiconductor chip operate simultaneously at a high frequency. ) Has to be restricted more than before.

【0007】そこで、本発明は、出力セル動作時の電源
ラインにのるノイズを低下させ、安定に動作する同一半
導体チップ上の出力セル群を提供することを目的とす
る。
Therefore, an object of the present invention is to provide a group of output cells on the same semiconductor chip that reduce noise on the power supply line during operation of the output cells and operate stably.

【0008】[0008]

【課題を解決するための手段】本発明は、3層配線を用
いたマスタスライス方式の半導体集積回路装置におい
て、電源ラインが1層目および2層目の配線層で構成さ
れたセルAタイプと、1層目,2層目および3層目の配
線層を利用して構成されたセルBタイプとの2種類の出
力セルで構成されたものである。
According to the present invention, in a master slice type semiconductor integrated circuit device using a three-layer wiring, a power supply line is a cell A type having a first wiring layer and a second wiring layer. It is composed of two types of output cells, that is, a cell B type composed by utilizing the wiring layers of the first layer, the second layer and the third layer.

【0009】[0009]

【作用】出力セルにA,Bタイプのセルを用いること
で、2層目の電源ラインにはAタイプのセルのノイズが
のり、3層目の電源ラインにはBタイプのセルのノイズ
がのることになり、ノイズののる電源ラインが異なるた
めにノイズが従来より低下する。
By using the A and B type cells as the output cells, the noise of the A type cell is placed on the power supply line of the second layer and the noise of the B type cell is placed on the power line of the third layer. Therefore, the noise is lower than the conventional one because the power supply line on which the noise is generated is different.

【0010】[0010]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。図1(a)は本発明の半導体集積回路装置
のマスク(1層目と2層目のコンタクト以降)の概略図
であり、図2(b)はその横方向の断面図である。図1
では1層目の配線8の図示を省略している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is a schematic view of a mask (after the contacts of the first and second layers) of the semiconductor integrated circuit device of the present invention, and FIG. 2B is a sectional view in the lateral direction thereof. Figure 1
Then, the illustration of the wiring 8 of the first layer is omitted.

【0011】図1において、Aのセルは従来例と同じ構
成のセルで、2層配線で構成されたものである。コンタ
クト6でもって2層目の配線1(VSS),2(VDD)が
1層目と接続される。Bのセルは3層配線で構成される
セルである。Bのセルにおいて、3は2層目の配線で、
1層目の配線8と3層目の配線4(VSS),5(VDD
と接続するために設けたものである。1層目と2層目と
はコンタクト6で接続される。配線はアルミニウム層で
形成した。
In FIG. 1, a cell A has the same structure as the conventional example and is composed of two-layer wiring. The contact 6 connects the wirings 1 (V SS ) and 2 (V DD ) of the second layer to the first layer. The cell B is a cell composed of three layers of wiring. In the cell of B, 3 is the wiring of the second layer,
First-layer wiring 8 and third-layer wiring 4 (V SS ) and 5 (V DD ).
It is provided to connect with. The first layer and the second layer are connected by a contact 6. The wiring was formed of an aluminum layer.

【0012】図1から明らかであるように、Aタイプは
2層の配線層で構成されたセルであるのに対して、Bタ
イプは3層の配線層で構成されたセルである。Aタイプ
のセルが動作したとき、ノイズは主に2層目の配線層
1,2にのる。これに対して、Bタイプのセルが動作し
たときには、ノイズが主に3層目の配線層4,5にの
る。A,B両タイプを用いたとき、Aタイプのノイズが
2層目に、またBタイプのノイズが3層目にそれぞれの
り、互いに分離することができる。つまり、Aタイプの
セル,Bタイプのセルは互いに相手方のノイズによる影
響を受けない。
As is apparent from FIG. 1, the A type is a cell composed of two wiring layers, while the B type is a cell composed of three wiring layers. When the A type cell is operated, noise is mainly on the second wiring layers 1 and 2. On the other hand, when the B type cell operates, noise is mainly transferred to the third wiring layers 4 and 5. When both A and B types are used, A type noise can be separated from the second layer and B type noise can be separated into the third layer. That is, the A type cell and the B type cell are not affected by the noise of the other party.

【0013】以上のことより、A,B両タイプのセルを
用いることで、ノイズを2層目と3層目の電源ラインに
分離することができ、電源ラインのノイズを従来より低
下させることができる。このためA,Bのセルを交互に
配置したり、または任意に配置したりすることにより、
ノイズを低減することができる。
From the above, by using both A and B type cells, the noise can be separated into the power supply lines of the second layer and the third layer, and the noise of the power supply line can be made lower than before. it can. Therefore, by alternately arranging the cells A and B, or by arranging them arbitrarily,
Noise can be reduced.

【0014】なお、9はNウェル11と1層目の配線8
とのコンタクト、10は絶縁体、12はSi基板であ
る。
Reference numeral 9 denotes the N well 11 and the first-layer wiring 8
, 10 is an insulator, and 12 is a Si substrate.

【0015】以下に具体的な例を用いて説明する。CM
OS1.5μmゲートアレイの出力セルにおいて、従来
の2層配線(Aタイプ)のみの15mAセルと、本発明
による2層(Aタイプ)および3層(Bタイプ)混合配
線15mAセルの出力波形を、図3に比較して示す。
A,B両タイプのセルは交互に配置されている。
A specific example will be described below. CM
In the output cell of the OS1.5 μm gate array, the output waveforms of the conventional 15 mA cell having only the two-layer wiring (A type) and the two-layer (A type) and three-layer (B type) mixed wiring 15 mA cells according to the present invention are shown. It shows in comparison with FIG.
Both A and B type cells are arranged alternately.

【0016】図2(a)は動作させた出力セルの電圧波
形図であり、同図(b)はそれに隣接した静止出力セル
の電圧波形図である。これは、出力セルを1セルのみ動
作させ、隣接した出力セルのノイズ波形を観測すること
で得たものである。図において、15が動作出力セルの
出力波形であり、隣接する出力セル静止時の5Vのレベ
ルでのノイズは、従来セルのみを用いたときには波形1
4であるのに対して、本発明によれば波形13のよう
に、その振幅がいちじるしく狭くなっている。
FIG. 2 (a) is a voltage waveform diagram of an operated output cell, and FIG. 2 (b) is a voltage waveform diagram of a static output cell adjacent thereto. This is obtained by operating only one output cell and observing the noise waveform of the adjacent output cell. In the figure, 15 is the output waveform of the operation output cell, and the noise at the level of 5 V when the adjacent output cells are stationary has the waveform 1 when only the conventional cell is used.
According to the present invention, however, the amplitude is remarkably narrow, as shown by the waveform 13.

【0017】このように、本発明によれば、出力波形電
圧のレベル変動を従来より低減することができる。
As described above, according to the present invention, the level fluctuation of the output waveform voltage can be reduced more than ever before.

【0018】[0018]

【発明の効果】本発明によると、出力セルが同時に動作
したとき、従来より出力ラインにのるノイズが低下する
ため、セルが誤動作しにくくなり、多数のセルが同時に
変化する時、安定に動作できるセルの数を増加させるこ
とができる。これにより、半導体設計の自由度を大きく
することができる。
According to the present invention, when the output cells operate simultaneously, noise on the output line is lower than in the prior art, so that the cells are less likely to malfunction and operate stably when a large number of cells change at the same time. The number of possible cells can be increased. As a result, the degree of freedom in semiconductor design can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の半導体集積回路装置のマスク
(1層目と2層目のコンタクト以降)の概略図、(b)
はその横方向の断面図
FIG. 1A is a schematic view of a mask (after the first and second contact layers) of a semiconductor integrated circuit device of the present invention, and FIG.
Is its cross-section

【図2】(a)は動作出力セルの出力波形図、(b)は
動作出力セルに隣接した静止出力セルの出力波形を、本
発明の半導体集積回路装置と従来例とを対比させて示す
2A is an output waveform diagram of an operation output cell, and FIG. 2B shows an output waveform of a static output cell adjacent to the operation output cell, comparing the semiconductor integrated circuit device of the present invention with a conventional example. Figure

【符号の説明】[Explanation of symbols]

1 2層目の配線 2 2層目の配線 3 2層目の配線 4 3層目の配線 5 3層目の配線 6 1層と2層とのコンタクト 7 2層と3層とのコンタクト 8 1層目の配線 9 Nウェルと1層目の配線8とのコンタクト 10 絶縁体 11 Nウェル 12 Si基板 1 Wiring of 2nd Layer 2 Wiring of 2nd Layer 3 Wiring of 2nd Layer 4 Wiring of 3rd Layer 5 Wiring of 3rd Layer 6 Contact between 1st Layer and 2nd Layer 7 Contact between 2nd Layer and 3rd Layer 8 1 Wiring of the layer 9 Contact between N well and wiring 8 of the first layer 10 Insulator 11 N well 12 Si substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 3層配線を用いたマスタスライス方式の
半導体集積回路装置であって、電源ラインが1層目およ
び2層目の配線層で構成された第1のタイプのセルと、
1層目,2層目および3層目の配線層を利用して構成さ
れた第2のタイプのセル2種類の出力セルを備えた半導
体集積回路装置。
1. A master slice type semiconductor integrated circuit device using three-layer wiring, wherein a power supply line is a first type cell having first and second wiring layers,
A semiconductor integrated circuit device including a second type cell and two types of output cells configured by using the first, second and third wiring layers.
JP30158091A 1991-11-18 1991-11-18 Semiconductor integrated circuit Pending JPH05144943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30158091A JPH05144943A (en) 1991-11-18 1991-11-18 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30158091A JPH05144943A (en) 1991-11-18 1991-11-18 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH05144943A true JPH05144943A (en) 1993-06-11

Family

ID=17898662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30158091A Pending JPH05144943A (en) 1991-11-18 1991-11-18 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH05144943A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5847420A (en) * 1994-03-03 1998-12-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit having three wiring layers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5847420A (en) * 1994-03-03 1998-12-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit having three wiring layers
US6157052A (en) * 1994-03-03 2000-12-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit having three wiring layers
US6388329B1 (en) 1994-03-03 2002-05-14 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit having three wiring layers

Similar Documents

Publication Publication Date Title
US5404035A (en) Multi-voltage-level master-slice integrated circuit
JPH05144943A (en) Semiconductor integrated circuit
JPH10229164A (en) Semiconductor integrated circuit device
JPH0122733B2 (en)
JP3353397B2 (en) Semiconductor integrated circuit
JPH0586668B2 (en)
JPH05299508A (en) Semiconductor integrated circuit device
JPH0645566A (en) Semiconductor integrated circuit device
JPS61225845A (en) semiconductor equipment
JPS6110253A (en) Semiconductor ic
JPH0774252A (en) Semiconductor integrated circuit
JPH0513680A (en) Semiconductor device
JPH09246476A (en) Power supply lines and method of planning layout of them in semiconductor integrated circuit
JPS63143843A (en) Power source wiring device for semiconductor integrated circuit
JPH0427159A (en) semiconductor equipment
JPH10154808A (en) Semiconductor device and manufacture thereof
JPH0927603A (en) Master sliced gate array
JPH06334157A (en) Integrated circuit and manufacture thereof
JPH0629393A (en) Semiconductor integrated circuit
JPH07106417A (en) Semiconductor integrated circuit device
JPH05166932A (en) Semiconductor integrated circuit device
JPS59215743A (en) Large scale integrated circuit device
JPH0574945A (en) Semi-custom integrated circuit
JPH02248049A (en) Semiconductor integrated circuit
JPH04260352A (en) Semiconductor integrated circuit device