JPH05138162A - Production of ultra pure water - Google Patents
Production of ultra pure waterInfo
- Publication number
- JPH05138162A JPH05138162A JP3301993A JP30199391A JPH05138162A JP H05138162 A JPH05138162 A JP H05138162A JP 3301993 A JP3301993 A JP 3301993A JP 30199391 A JP30199391 A JP 30199391A JP H05138162 A JPH05138162 A JP H05138162A
- Authority
- JP
- Japan
- Prior art keywords
- pure water
- exchange resin
- ultrapure water
- passed
- irradiated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Physical Water Treatments (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は超純水の製造法に関する
ものである。特に本発明は、超LSIの製造に必要とさ
れる全有機体炭素含有量の極めて低い超純水の製造に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultrapure water. In particular, the present invention relates to the production of ultrapure water having a very low total organic carbon content required for the production of VLSI.
【0002】[0002]
【従来の技術】超純水は、純水製造装置で得られた純水
を更に精製することにより製造されている。純水製造装
置は、純水に要求される特性に応じて、種々のものが開
発され、実用に供されている。なかでも超LSIの製造
に用いられる超純水は、要求特性が極めて厳しいので、
純水製造装置も紫外線照射手段、イオン交換手段及び膜
分離手段等を組合せた非常に高度のものとなっている。
図1はその代表的なものの一つであり、原水は凝集濾過
と2床3塔式のイオン交換から成る前処理を経たのち、
紫外線照射手段、真空脱気塔及び強酸性陽イオン交換樹
脂と強塩基性陰イオン交換樹脂の混合床から成る一次純
水装置、および逆浸透膜から成る二次純水装置を経て、
純水として取出される。この純水の水質は、例えば比抵
抗18MΩ・cm以上、全有機体炭素含有量20ppb
以下に達している。この純水を更に精製して超純水とす
る。このプロセスは通常サブシステムと称されており、
その代表的な例では図1に示すように、純水に短波長紫
外線を照射して含まれている有機物を炭酸ないし有機酸
に分解し、次いで強塩基性陰イオン交換樹脂床であるア
ニオンポリシャー及び強酸性陽イオン交換樹脂と強塩基
性陰イオン交換樹脂の混合床であるカートリッジポリシ
ャーを順次通過させてイオン性物質を除去し、更に限外
濾過をしてコロイド状の微粒子などを除去して超純水と
する。このようにして得られる超純水の水質は、比抵抗
18MΩ・cm以上、0.07μm以上の微粒子数5ケ
/ml以下、生菌数10ケ/l以下、全有機体炭素含有
量1〜5ppbに達している。2. Description of the Related Art Ultrapure water is produced by further refining the pure water obtained by a pure water producing apparatus. Various types of pure water production devices have been developed and put into practical use according to the characteristics required for pure water. Above all, the ultrapure water used in the manufacture of VLSI has extremely strict requirements, so
The deionized water producing device is also a highly sophisticated device that combines an ultraviolet irradiation means, an ion exchange means, a membrane separation means and the like.
Fig. 1 is one of the representative ones. Raw water is subjected to pretreatment consisting of coagulation filtration and two-bed, three-column type ion exchange.
Ultraviolet irradiation means, a vacuum degassing tower and a primary deionizer comprising a mixed bed of a strongly acidic cation exchange resin and a strongly basic anion exchange resin, and a secondary deionizer comprising a reverse osmosis membrane,
It is taken out as pure water. The water quality of this pure water is, for example, a specific resistance of 18 MΩ · cm or more and a total organic carbon content of 20 ppb.
Has reached the following: This pure water is further purified to obtain ultrapure water. This process is commonly referred to as the subsystem,
In a typical example thereof, as shown in FIG. 1, pure water is irradiated with short-wavelength ultraviolet rays to decompose contained organic matters into carbonic acid or organic acid, and then anion polisher which is a strongly basic anion exchange resin bed. Then, the mixture is passed through a cartridge polisher, which is a mixed bed of a strongly acidic cation exchange resin and a strongly basic anion exchange resin, to remove ionic substances, and then ultrafiltration is performed to remove colloidal fine particles and the like. Use ultrapure water. The quality of the ultrapure water thus obtained has a specific resistance of 18 MΩ · cm or more, a number of fine particles of 0.07 μm or more of 5 or less, a viable cell number of 10 or less, and a total organic carbon content of 1 to 1. It has reached 5 ppb.
【0003】[0003]
【発明が解決しようとする課題】最近の超LSIの集積
度の向上に伴い、超純水として全有機体炭素含有量1p
pb以下のものが要求されるようになっている。しかし
純水に上述の短波長紫外線の照射とイオン交換樹脂処理
を反復して施しても、全有機体炭素含有量が1ppb以
下の超純水を定常的に製造することは困難である。With the recent improvement in the degree of integration of VLSIs, the total organic carbon content of ultrapure water is 1p.
Those below pb have been required. However, it is difficult to constantly produce ultrapure water having a total organic carbon content of 1 ppb or less, even if pure water is repeatedly irradiated with the short-wavelength ultraviolet light and treated with an ion exchange resin.
【0004】従って本発明は全有機体炭素含有量が1p
pb以下の超純水を定常的に容易に製造する方法を提供
せんとするものである。Therefore, the present invention has a total organic carbon content of 1 p.
It is intended to provide a method for constantly and easily producing ultrapure water of pb or less.
【0005】[0005]
【課題を解決するための手段】本発明は、超純水製造に
おけるイオン交換樹脂処理の最終段階であるカートリッ
ジポリシャーを通過させる純水の速度を、空間速度で1
00以上、好ましくは200以上という高速にすること
により、イオン交換樹脂からの溶出物による汚染を最少
限に抑え、もって全有機体炭素含有量の極めて少ない超
純水を製造せんとするものである。According to the present invention, the velocity of pure water passing through the cartridge polisher, which is the final stage of the ion exchange resin treatment in the production of ultrapure water, is 1 in space velocity.
By using a high speed of 00 or more, preferably 200 or more, contamination by the eluate from the ion exchange resin can be minimized, and ultrapure water with an extremely low total organic carbon content can be produced. ..
【0006】本発明者らの知見によれば、超純水の製造
においては、イオン交換樹脂からの溶出物が、得られる
超純水の全有機体炭素含有量に大きく影響している。一
般にイオン交換樹脂を用いる各種の処理において、イオ
ン交換樹脂からの溶出物が処理液中に含まれることがあ
ることは、よく知られている。イオン交換樹脂からの溶
出物は、イオン交換樹脂を洗浄することにより低減させ
ることができ、イオン交換樹脂の用途に応じて各種の洗
浄方法が開発されている。純水を超純水に精製する過程
においても、溶出物を極度に減少させたイオン交換樹脂
が用いられている。しかしイオン交換樹脂からの溶出を
完全に除去することは、現状では不可能である。According to the knowledge of the present inventors, in the production of ultrapure water, the eluate from the ion exchange resin has a great influence on the total organic carbon content of the obtained ultrapure water. It is well known that, in various treatments using an ion exchange resin, the eluate from the ion exchange resin may be contained in the treatment liquid. The eluate from the ion exchange resin can be reduced by washing the ion exchange resin, and various washing methods have been developed according to the use of the ion exchange resin. In the process of purifying pure water into ultrapure water, ion exchange resins with extremely reduced eluates are used. However, it is impossible at present to completely remove the elution from the ion exchange resin.
【0007】本発明者らはイオン交換樹脂からの有機物
の溶出について詳細に検討した結果、溶出速度を支配す
るものは樹脂粒内における溶出物の拡散であることを見
出した。例えば図2は、図1の超純水製造プロセスで得
た純水に短波長紫外線照射を行ない、次いで強酸性陽イ
オン交換樹脂と強塩基性陰イオン交換樹脂との混合床
(混合比率は交換容量比で1:1、体積比で1:1.
7)を種々の流速で通過させたときの、空間速度と混合
床出口の超純水の全有機体炭素含有量との関係を示すグ
ラフである。(なお、本発明においては、混合床の体積
を陽イオン交換樹脂の体積と陰イオン交換樹脂の体積と
の和として空間速度を算出する。)また、図3は図2を
全有機体炭素含有量と空間速度の逆数との関係で表示し
たグラフである。As a result of detailed examination of the elution of organic substances from the ion exchange resin, the present inventors have found that the elution rate is controlled by the diffusion of the eluate within the resin particles. For example, in FIG. 2, pure water obtained in the ultrapure water production process of FIG. 1 is irradiated with short-wavelength ultraviolet light, and then a mixture bed of a strongly acidic cation exchange resin and a strongly basic anion exchange resin (mixing ratio is exchanged). Volume ratio 1: 1 and volume ratio 1: 1.
7 is a graph showing the relationship between the space velocity and the total organic carbon content of ultrapure water at the outlet of the mixed bed when 7) is passed at various flow rates. (Note that in the present invention, the space velocity is calculated by taking the volume of the mixed bed as the sum of the volume of the cation exchange resin and the volume of the anion exchange resin.) FIG. It is the graph displayed on the relationship between the quantity and the reciprocal of space velocity.
【0008】なお、全有機体炭素含有量の測定は、アナ
テル社製A−100PSEをもちいて行なった。このA
−100PSEの測定原理は、水に短波長紫外線を照射
して有機物を分解し、これにより生成した炭酸量を水の
抵抗率の変化から求め、この炭酸量より全有機体炭素含
有量を求めるものである。図3から明らかな如く、空間
速度の大きい領域では、超純水の全有機体炭素含有量と
空間速度の逆数とは、グラフが直線関係になり、イオン
交換樹脂からの有機物の溶出速度が樹脂粒内の拡散律速
であることを示している。空間速度の小さい領域で超純
水の全有機体炭素含有量が直線より下に位置しているの
は、樹脂粒の表面における境膜拡散の影響が表われてい
ることを示している。The total organic carbon content was measured using A-100 PSE manufactured by Anatelle. This A
The measuring principle of -100PSE is to irradiate water with short-wavelength ultraviolet light to decompose organic substances, obtain the amount of carbonic acid generated by this from the change in resistivity of water, and obtain the total organic carbon content from this amount of carbonic acid. Is. As is clear from FIG. 3, in the region where the space velocity is large, the graph shows a linear relationship between the total organic carbon content of the ultrapure water and the reciprocal of the space velocity, and the elution rate of the organic substances from the ion exchange resin is the resin. It is shown that it is diffusion controlled within the grain. The fact that the total organic carbon content of the ultrapure water is below the straight line in the region where the space velocity is small indicates that the influence of the film diffusion on the surface of the resin particles is shown.
【0009】本発明においては、純水を空間速度100
以上でイオン交換樹脂床を通過させる。通常は120以
上、特に200以上の流速でイオン交換樹脂床を通過さ
せる。空間速度が大きいほどイオン交換樹脂からの溶出
物の影響を避けることができるが、イオン交換樹脂床を
通過する際の圧力損失が増大し、且つイオン交換樹脂床
で捕捉されるべき不純物が捕捉されずに超純水中に漏出
する危険性が増大する。更には超LSIの製造工場で
は、超純水製造装置は少くとも120日間(4ケ月)、
通常は180日間(6ケ月)の連続運転が行なわれるの
で、空間速度が大き過ぎると樹脂床の交換能力が不足し
て、超純水の水質が悪化し、連続運転時間が短くなる危
険性がある。従って空間速度は500以下、特に400
以下に止めるのが好ましい。In the present invention, pure water is supplied at a space velocity of 100.
Thus, the ion exchange resin bed is passed. It is usually passed through the ion exchange resin bed at a flow rate of 120 or more, especially 200 or more. The higher the space velocity, the more the influence of the eluate from the ion exchange resin can be avoided, but the pressure loss when passing through the ion exchange resin bed increases, and the impurities to be trapped in the ion exchange resin bed are trapped. Instead, the risk of leakage into ultrapure water increases. Furthermore, in ultra-LSI manufacturing plants, ultra-pure water production equipment is required for at least 120 days (4 months),
Normally, continuous operation is performed for 180 days (6 months), so if the space velocity is too high, the exchange capacity of the resin bed will be insufficient, the quality of ultrapure water will deteriorate, and there is a risk that the continuous operation time will be shortened. is there. Therefore, the space velocity is 500 or less, especially 400
It is preferable to stop below.
【0010】本発明においては、純水を精製して超純水
とする過程の最終イオン交換樹脂床を通過させる際の空
間速度を100以上とする以外は、常法に従って超純水
を製造することができる。例えば超純水製造の前段階で
ある純水製造は、前処理装置−一次純水装置−二次純水
装置からなる常用の装置を用いて行なえばよい。純水の
水質は比抵抗18MΩ・cm以上、全有機体炭素含有量
20ppb以下が好ましい。本発明の純水を精製して超
純水とする過程では、イオン交換樹脂床を通過する際の
空間速度が著るしく大きいので、純水の比抵抗が小さい
と、超純水の比抵抗が所望の値にまで到達しなかった
り、所望の連続通水時間に達しないうちに超純水の水質
が悪化したりする危険がある。純水中の有機物は、短波
長紫外線照射により炭酸ないしはカルボン酸に分解され
てイオン交換樹脂に捕捉されるので、これが多いとイオ
ン交換樹脂への負荷が増大し、上述したところと同じく
超純水の水質が低下したり、連続通水可能な処理時間が
短くなったりする危険がある。従って純水中の有機物は
10ppb以下、特に5ppb以下とするのが好まし
い。In the present invention, ultrapure water is produced by a conventional method except that the space velocity when passing through the final ion-exchange resin bed in the process of purifying pure water into ultrapure water is 100 or more. be able to. For example, the pure water production, which is the pre-stage of the ultrapure water production, may be carried out using a conventional apparatus comprising a pretreatment apparatus-a primary pure water apparatus-a secondary pure water apparatus. The quality of pure water is preferably 18 MΩ · cm or more in specific resistance and 20 ppb or less in total organic carbon content. In the process of purifying the pure water of the present invention into ultrapure water, the space velocity when passing through the ion exchange resin bed is remarkably high. May not reach the desired value, or the water quality of the ultrapure water may deteriorate before the desired continuous water passage time is reached. Organic matter in pure water is decomposed into carbonic acid or carboxylic acid by irradiation with short-wavelength ultraviolet light and captured by the ion exchange resin. Therefore, if this amount is large, the load on the ion exchange resin increases, and the ultrapure water is the same as described above. There is a risk that the water quality will deteriorate and the treatment time for continuous water flow will be shortened. Therefore, the organic matter in pure water is preferably 10 ppb or less, and particularly preferably 5 ppb or less.
【0011】純水を精製して超純水とする過程は、常法
と同じく、先ず紫外線照射により純水中の有機物を分解
し、次いで陰イオン交換樹脂床であるアニオンポリシャ
ー及び陽イオン交換樹脂と陰イオン交換樹脂の混合床で
あるカートリッジポリシャーをこの順に通過させ、最後
に限外濾過を行なって超純水とする方法に依るのが有利
である。アニオンポリシャーは場合によっては省略し得
るが、一定水質の超純水を安定して製造するにはこれら
を用いるのが望ましい。In the process of purifying pure water into ultrapure water, the organic substances in the pure water are first decomposed by irradiation with ultraviolet rays, and then anion polisher and cation exchange resin which are anion exchange resin beds are used, as in the conventional method. It is advantageous to use a method in which a cartridge polisher, which is a mixed bed of cation and anion exchange resin, is passed in this order, and finally ultrafiltration is performed to obtain ultrapure water. The anion polisher may be omitted in some cases, but it is desirable to use them in order to stably produce ultrapure water having a constant water quality.
【0012】紫外線は有機物の分解力の大きい短波長の
紫外線であることが必要であり、通常は185nmの波
長を有するものが用いられる。紫外線の照射量は純水の
有機物量により決定すればよいが、通常は通水量1m3
/h当り0.1〜0.5KW・hの紫外線量が照射され
る。紫外線照射を経た純水は、アニオンポリシャーで生
成した炭酸およびカルボン酸を捕捉する。アニオンポリ
シャーに対する空間速度も100以上、特に200以上
とするのが好ましい。純水中の有機物が10ppb以
下、好ましくは5ppb以下ならば、空間速度200で
通水しても少くとも4ケ月、通常は6ケ月間は不純物の
漏出は起らないし、若し漏出しても次のカートリッジポ
リシャーで完全に捕捉できる。カートリッジポリシャー
は超純水製造における最後のイオン交換樹脂処理であ
り、前述した如く空間速度100以上、好ましくは20
0以上で通水して、溶出物による汚染をできるだけ回避
するようにする。カートリッジポリシャーの組成は、そ
の入口の水質により適宣決定すればよいが、通常は陽イ
オン交換樹脂と陰イオン交換樹脂との交換容量比で1:
2〜2:1である。It is necessary for the ultraviolet rays to be short-wavelength ultraviolet rays having a large decomposing power for organic substances, and those having a wavelength of 185 nm are usually used. The amount of UV irradiation may be determined by the amount of pure water organic matter, but normally the amount of water flow is 1 m 3
The amount of ultraviolet rays is 0.1 to 0.5 KW · h per hour. Pure water that has been irradiated with ultraviolet rays captures carbonic acid and carboxylic acid produced by the anion polisher. The space velocity with respect to the anion polisher is also preferably 100 or more, and particularly preferably 200 or more. If the organic matter in the pure water is 10 ppb or less, preferably 5 ppb or less, no leakage of impurities occurs for at least 4 months, usually 6 months even if water is passed at a space velocity of 200, and even if it leaks. It can be completely captured by the next cartridge polisher. Cartridge polisher is the last ion exchange resin treatment in ultrapure water production, and as described above, the space velocity is 100 or more, preferably 20.
Pass water at 0 or more to avoid contamination by eluate as much as possible. The composition of the cartridge polisher may be appropriately determined depending on the water quality at the inlet, but usually the exchange capacity ratio of the cation exchange resin and the anion exchange resin is 1 :.
2 to 2: 1.
【0013】カートリッジポリシャーを通過した処理水
は、次いで限外濾過を経て極微量含有されているコロイ
ド状物質などを除去し、超純水として各種の用途に供す
る。本発明においてはイオン交換樹脂からの溶出物が著
るしく低いので、限外濾過膜の目詰りなどは殆んど起ら
ない。The treated water that has passed through the cartridge polisher is then subjected to ultrafiltration to remove colloidal substances and the like contained in an extremely small amount, and then used as ultrapure water for various purposes. In the present invention, the amount of eluate from the ion exchange resin is extremely low, so that clogging of the ultrafiltration membrane hardly occurs.
【0014】[0014]
【発明の効果】本発明によればイオン交換樹脂からの溶
出物の影響を最少限に抑えることができるので、全有機
体炭素含有量が1ppb以下の超純水を安定して製造す
ることができる。According to the present invention, the influence of the eluate from the ion exchange resin can be suppressed to a minimum, so that ultrapure water having a total organic carbon content of 1 ppb or less can be stably produced. it can.
【図1】超純水製造装置の1例のフローシートである。FIG. 1 is a flow sheet of an example of an ultrapure water production system.
【図2】強酸性陽イオン交換樹脂と強塩基性陰イオン交
換樹脂との混合床に短波長紫外線を照射した純水を通水
したときの、空間速度と混合床出口の超純水の全有機体
炭素含有量との関係を示すグラフである。FIG. 2 shows the space velocity and the total amount of ultrapure water at the outlet of the mixed bed when pure water irradiated with short-wavelength ultraviolet light is passed through the mixed bed of the strongly acidic cation exchange resin and the strongly basic anion exchange resin. It is a graph which shows the relationship with an organic carbon content.
【図3】図2のグラフを空間速度の逆数と全有機体炭素
含有量との関係として表示したグラフである。FIG. 3 is a graph showing the graph of FIG. 2 as a relationship between the reciprocal of space velocity and the total organic carbon content.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C02F 9/00 Z 6647−4D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C02F 9/00 Z 6647-4D
Claims (10)
水に短波長紫外線を照射したのち、該純水を陽イオン交
換樹脂と陰イオン交換樹脂の混合床に空間速度100以
上で通過させることを特徴とする超純水の製造法。1. Pure water having a total organic carbon content of 10 ppb or less is irradiated with short wavelength ultraviolet rays, and then the pure water is passed through a mixed bed of a cation exchange resin and an anion exchange resin at a space velocity of 100 or more. And a method for producing ultrapure water.
炭素含有量が5ppb以下であることを特徴とする請求
項1記載の超純水の製造法。2. The method for producing ultrapure water according to claim 1, wherein the total organic carbon content of the pure water irradiated with short-wavelength ultraviolet light is 5 ppb or less.
空間速度200以上で通過させることを特徴とする請求
項1または2に記載の超純水の製造法。3. The method for producing ultrapure water according to claim 1, wherein pure water irradiated with short wavelength ultraviolet rays is passed through the mixed bed at a space velocity of 200 or more.
交換樹脂床を通過させ、次いで混合床を通過させること
を特徴とする請求項1〜3のいずれかに記載の超純水の
製造法。4. The production of ultrapure water according to any one of claims 1 to 3, wherein pure water irradiated with short-wavelength ultraviolet light is passed through an anion exchange resin bed and then through a mixed bed. Law.
交換樹脂床に空間速度100以上で通過させることを特
徴とする請求項4に記載の超純水の製造法。5. The method for producing ultrapure water according to claim 4, wherein pure water irradiated with short wavelength ultraviolet rays is passed through the anion exchange resin bed at a space velocity of 100 or more.
少くとも120日間連続して通水することを特徴とする
請求項1〜5のいずれかに記載の超純水の製造法。6. The method for producing ultrapure water according to claim 1, wherein pure water irradiated with short-wavelength ultraviolet rays is continuously passed through the mixed bed for at least 120 days.
通過させたのち限外濾過膜を通過させることを特徴とす
る請求項1〜6のいずれかに記載の超純水の製造法。7. The method for producing ultrapure water according to any one of claims 1 to 6, wherein pure water irradiated with short-wavelength ultraviolet light is passed through a mixed bed and then passed through an ultrafiltration membrane. ..
膜分離手段を含む純水製造工程から得られた純水に、短
波長紫外線を照射したのち陽イオン交換樹脂と陰イオン
交換樹脂の混合床に空間速度100以上で通過させるこ
とを特徴とする超純水の製造法。8. Pure water obtained from a pure water production process including an ultraviolet irradiation means, an ion exchange means, and a membrane separation means is irradiated with short-wavelength ultraviolet light, and then applied to a mixed bed of cation exchange resin and anion exchange resin. A method for producing ultrapure water, characterized in that the ultrapure water is passed at a space velocity of 100 or more.
交換樹脂床に通過させ、次いで混合床に通過させること
を特徴とする請求項8記載の超純水の製造法。9. The method for producing ultrapure water according to claim 8, wherein pure water irradiated with short-wave ultraviolet rays is passed through an anion exchange resin bed and then passed through a mixed bed.
ン交換樹脂床に空間速度100以上で通過させることを
特徴とする請求項9記載の超純水の製造法。10. The method for producing ultrapure water according to claim 9, wherein pure water irradiated with short-wavelength ultraviolet rays is passed through the anion exchange resin bed at a space velocity of 100 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30199391A JP3189329B2 (en) | 1991-11-18 | 1991-11-18 | Ultrapure water production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30199391A JP3189329B2 (en) | 1991-11-18 | 1991-11-18 | Ultrapure water production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05138162A true JPH05138162A (en) | 1993-06-01 |
JP3189329B2 JP3189329B2 (en) | 2001-07-16 |
Family
ID=17903595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30199391A Expired - Lifetime JP3189329B2 (en) | 1991-11-18 | 1991-11-18 | Ultrapure water production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3189329B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015068635A1 (en) * | 2013-11-11 | 2015-05-14 | 栗田工業株式会社 | Method and apparatus for manufacturing pure water |
JP2015178107A (en) * | 2015-06-08 | 2015-10-08 | 栗田工業株式会社 | Method of producing ultrapure water and ultrapure water production equipment |
JP2022145819A (en) * | 2019-05-30 | 2022-10-04 | オルガノ株式会社 | Ultrapure water production system, and ultrapure water production method |
WO2024262095A1 (en) * | 2023-06-20 | 2024-12-26 | オルガノ株式会社 | Water treatment method, water treatment device, and method for designing water treatment device |
-
1991
- 1991-11-18 JP JP30199391A patent/JP3189329B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015068635A1 (en) * | 2013-11-11 | 2015-05-14 | 栗田工業株式会社 | Method and apparatus for manufacturing pure water |
JP2015093226A (en) * | 2013-11-11 | 2015-05-18 | 栗田工業株式会社 | Method and apparatus for manufacturing pure water |
CN105517957A (en) * | 2013-11-11 | 2016-04-20 | 栗田工业株式会社 | Method and apparatus for manufacturing pure water |
CN105517957B (en) * | 2013-11-11 | 2018-08-24 | 栗田工业株式会社 | The manufacturing method and device of pure water |
JP2015178107A (en) * | 2015-06-08 | 2015-10-08 | 栗田工業株式会社 | Method of producing ultrapure water and ultrapure water production equipment |
JP2022145819A (en) * | 2019-05-30 | 2022-10-04 | オルガノ株式会社 | Ultrapure water production system, and ultrapure water production method |
WO2024262095A1 (en) * | 2023-06-20 | 2024-12-26 | オルガノ株式会社 | Water treatment method, water treatment device, and method for designing water treatment device |
Also Published As
Publication number | Publication date |
---|---|
JP3189329B2 (en) | 2001-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3426072B2 (en) | Ultrapure water production equipment | |
US4595498A (en) | Water-polishing loop | |
JP3468784B2 (en) | Ultrapure water production equipment | |
JPH0790219B2 (en) | Pure water production apparatus and production method | |
US6991733B2 (en) | Process for removing organics from ultrapure water | |
WO1996003350A1 (en) | Method of manufacturing pure water or ultrapure water and apparatus for manufacturing the same | |
EP0572035A2 (en) | Cleaning water production system | |
JPH0596277A (en) | Method for producing pure water and apparatus therefor | |
JP2009240891A (en) | Method for producing ultrapure water | |
WO2005095280A1 (en) | Apparatus for producing ultrapure water | |
JPH0818040B2 (en) | Purification method and device for pure water or ultrapure water | |
JPH0638953B2 (en) | High-purity water manufacturing equipment | |
JP3189329B2 (en) | Ultrapure water production method | |
JP3985500B2 (en) | Ultrapure water supply method | |
JPH09253638A (en) | Ultrapure water making apparatus | |
JPH0929251A (en) | Ultrapure water production equipment | |
JP3340831B2 (en) | Ultrapure water production equipment | |
JPS6397284A (en) | Method for removing trace organic matter in ultrapure water | |
JPH04108587A (en) | Production of ultrapure water | |
JPH09155393A (en) | Ultrapure water preparation device | |
JPH0630794B2 (en) | Ultrapure water production system for semiconductor cleaning | |
JPH0655171A (en) | Method for producing ultrapure water from primary pure water and apparatus therefor | |
JPH05138167A (en) | Ultra pure water supplying equipment | |
JPH09220560A (en) | Ultrapure water making apparatus | |
JPH0929245A (en) | Ultrapure water preparation apparatus |