[go: up one dir, main page]

JPH05126458A - High-humidity cooling/storing device - Google Patents

High-humidity cooling/storing device

Info

Publication number
JPH05126458A
JPH05126458A JP29160591A JP29160591A JPH05126458A JP H05126458 A JPH05126458 A JP H05126458A JP 29160591 A JP29160591 A JP 29160591A JP 29160591 A JP29160591 A JP 29160591A JP H05126458 A JPH05126458 A JP H05126458A
Authority
JP
Japan
Prior art keywords
temperature
cooler
storage
defrosting
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29160591A
Other languages
Japanese (ja)
Inventor
Katsuya Kobayashi
克也 小林
Atsuya Ito
淳哉 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP29160591A priority Critical patent/JPH05126458A/en
Publication of JPH05126458A publication Critical patent/JPH05126458A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/12Removing frost by hot-fluid circulating system separate from the refrigerant system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0413Treating air flowing to refrigeration compartments by purification by humidification
    • F25D2317/04131Control means therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)

Abstract

PURPOSE:To provide a high-humidity cooling/storing device in which a non- required increasing of temperature in a storing chamber can be prevented and further positive defrosting at a wall surface of the storing chamber is accomplished. CONSTITUTION:During a defrosting operation of a cooler, a micro-computer 41 operates a defrosting heater and a cooling fan and performs a forced circulation of hot air within a duct. The micro-computer 41 stops the operation of the cooling fan when the temperature within the upper storing chamber reaches up to its predetermined temperature in response to the output from an inside temperature sensor 44 of the storing device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生鮮食品等を高湿度状
態で冷却保存するための高湿冷却貯蔵庫に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-humidity cold storage for refrigerating fresh food or the like in a high humidity condition.

【0002】[0002]

【従来の技術】肉や鮮魚或いは野菜等の生鮮食品を保存
する場合は、乾燥を避け高湿度で且つ冷却して保存する
必要があり、従来では例えば実開昭64−24993号
公報の如く、断熱箱体内部に伝熱性の収納箱を間隔を存
して設置し、この間隔内をダクトとし、ダクト内には冷
凍装置を設けてダクト内に冷気を循環し、収納箱壁面よ
り収納箱内部の貯蔵室を間接的に冷却する構造の高湿冷
却貯蔵庫を構成している。
2. Description of the Related Art When storing fresh foods such as meat, fresh fish, vegetables, etc., it is necessary to avoid drying and to keep them at high humidity and by cooling, and in the past, for example, as disclosed in Japanese Utility Model Publication No. 64-24993. A heat-conducting storage box is installed inside the heat-insulating box at intervals, and a duct is provided in this interval, and a refrigeration device is installed in the duct to circulate cold air in the duct, and the inside of the storage box from the wall of the storage box The high humidity cooling storage has a structure that indirectly cools the storage room.

【0003】係る構造によれば、収納箱内には直接冷気
が侵入しないので内部の除湿作用は行われず、食品から
蒸散した水分或いは外部から進入した水分等により収納
箱内は高湿に保たれ、それによって食品の乾燥を防ぎ、
高湿状態で且つ冷却保存することが可能となる。前記冷
却器には冷却運転中に着霜が生じるため、圧縮機の運転
時間を積算し、或いは所定時間毎に、若しくは所定時刻
に除霜ヒータに通電して除霜を行うが、このような高湿
冷却貯蔵庫では、貯蔵室内雰囲気中の水分が貯蔵室壁面
(収納箱内壁面)に霜となって成長するので前記冷却器
の除霜時にこれら壁面の霜も融解させる必要がある。そ
のために冷却器の除霜中、ダクト内に冷却器と熱交換し
た空気を循環させる冷却ファンを停止させると、貯蔵室
の部位により温度分布が生じ、一定期間経過すると温度
の低い部位から霜が成長を始める問題がある。
According to this structure, since the cool air does not directly enter the storage box, the internal dehumidifying action is not performed, and the inside of the storage box is kept at a high humidity due to water evaporated from food or water entering from the outside. , Thereby preventing the food from drying out,
It becomes possible to store in a high humidity state while cooling. Since frost is formed in the cooler during the cooling operation, the operating time of the compressor is integrated, or defrosting is performed by energizing the defrosting heater at every predetermined time or at a predetermined time. In the high-humidity cooling storage, water in the atmosphere in the storage room grows as frost on the wall surface of the storage room (wall surface inside the storage box), and therefore it is necessary to melt the frost on these wall surfaces when defrosting the cooler. Therefore, during defrosting of the cooler, if the cooling fan that circulates the air that has exchanged heat with the cooler is stopped in the duct, temperature distribution will occur due to the part of the storage chamber, and after a certain period of time, frost will form from the low temperature part. There is a problem of starting to grow.

【0004】一方、冷却器の除霜中に冷却ファンを連続
運転させるとダクト内に除霜ヒータと熱交換した温風が
循環されるために貯蔵室壁面は満遍なく加熱されて円滑
に壁面の霜を融解させることができる。図5に係る冷却
ファンの連続運転による方式の各部の温度推移を示す。
冷却器には例えば+10℃等の冷却器の除霜終了温度を
検出するための除霜終了温度センサーが設けられ、最上
段にこの除霜終了温度センサーの感知する温度を示す。
2段目は貯蔵室内温度であり、以下圧縮機、冷却ファン
及び冷却器に設けられる除霜ヒータの運転・通電(O
N)、停止・非通電(OFF)状況が示される。
On the other hand, when the cooling fan is continuously operated during defrosting of the cooler, warm air that has exchanged heat with the defrost heater is circulated in the duct, so that the wall surface of the storage chamber is evenly heated and the frost on the wall surface is smooth. Can be melted. The temperature transition of each part of the system by the continuous operation of the cooling fan which concerns on FIG. 5 is shown.
The cooler is provided with a defrosting end temperature sensor for detecting the defrosting end temperature of the cooler such as + 10 ° C., and the temperature detected by the defrosting end temperature sensor is shown in the uppermost stage.
The second stage is the temperature of the storage room, and the operation and energization (O) of the defrost heaters installed in the compressor, cooling fan and cooler will be described below.
N), a stop / non-energization (OFF) status is shown.

【0005】[0005]

【発明が解決しようとする課題】図5中時刻t1におい
て除霜が開始されたものとすると、圧縮機は停止し、除
霜ヒータは発熱を開始する。冷却ファンは運転されたま
まである。除霜ヒータの発熱に伴って冷却器の温度は上
昇して行くため、除霜終了温度センサーの感知温度も上
昇して行く。冷却器の温度上昇に伴ってこれと熱交換す
る空気温度も上昇し、この温風が冷却ファンによってダ
クト内を循環されるため、貯蔵室壁面の温度も上昇して
霜は融解されるが、同時に貯蔵室内温度も上昇して行
く。
If defrosting is started at time t1 in FIG. 5, the compressor is stopped and the defrosting heater starts to generate heat. The cooling fan remains running. Since the temperature of the cooler rises as the defrost heater heats up, the temperature sensed by the defrost end temperature sensor also rises. As the temperature of the cooler rises, the temperature of the air that exchanges heat with it also rises, and since this warm air is circulated in the duct by the cooling fan, the temperature of the wall of the storage room also rises and the frost is melted, At the same time, the temperature in the storage room rises.

【0006】ここで、貯蔵室内の温度はもともと冷却器
よりも高く、貯蔵室壁面の着霜も密度の低いものであっ
て、より低い温度でも貯蔵室内壁面の除霜は達成される
が、前述の如く冷却ファンを連続運転すると冷却器の温
度が除霜を終了する+10℃まで上昇した時には、貯蔵
室内温度も不必要に上昇して同様の+10℃まで上昇し
てしまう。係る温度まで貯蔵室内温度が上昇すると収納
されている食品の品質が劣化してしまう問題がある。
Here, the temperature inside the storage chamber is originally higher than that of the cooler, and the frost on the wall surface of the storage chamber is also low in density, and defrosting on the wall surface of the storage chamber is achieved even at a lower temperature. When the cooling fan is continuously operated as described above, when the temperature of the cooler rises to + 10 ° C. at which defrosting ends, the temperature of the storage chamber also rises unnecessarily and rises to the same + 10 ° C. When the temperature in the storage room rises to such a temperature, there is a problem that the quality of the stored food is deteriorated.

【0007】そこで、冷却器の除霜中基本的には冷却フ
ァンは停止させるが、冷却ファンの強制運転スイッチを
設けて貯蔵室の着霜が進んだ場合にのみ使用者がこのス
イッチを操作して冷却ファンを運転させる方法がある
が、冷却ファンを停止させるタイミングを使用者が貯蔵
室壁面の着霜の融解状況を見ながら一々確認する必要が
あり、きわめて煩雑となり、停止させるのを忘れるとや
はり温度が不必要に上昇してしまう問題があった。
Therefore, the cooling fan is basically stopped during defrosting of the cooler, but the user operates this switch only when a forced operation switch of the cooling fan is provided and frost formation in the storage chamber progresses. There is a method to operate the cooling fan by using this method, but it is necessary for the user to check the timing to stop the cooling fan while observing the melting state of the frost on the wall of the storage room. After all, there was a problem that the temperature unnecessarily increased.

【0008】本発明は、係る従来の技術的課題を解決
し、貯蔵室壁面の除霜を確実に達成しつつ、貯蔵室内温
度の不必要な上昇を防止することができる高湿冷却貯蔵
庫を提供することを目的とする。
The present invention solves the above-mentioned conventional technical problems, and provides a high-humidity cooling storage cabinet capable of reliably achieving defrosting of the storage room wall surface and preventing an unnecessary rise in the storage room temperature. The purpose is to do.

【0009】[0009]

【課題を解決するための手段】本発明の高湿冷却貯蔵庫
は、断熱箱体内に断熱箱体と所定の間隔を存して熱伝導
性の貯蔵箱を設け、この貯蔵箱内を貯蔵室と成すと共
に、前記間隔をダクトとし、このダクト内に冷気を循環
することにより貯蔵室内を間接的に冷却するよう構成し
たものであって、冷却器と、この冷却器と熱交換した空
気をダクト内に循環する送風手段と、冷却器の除霜手段
と、貯蔵室内の温度を検出する庫内温度センサーと、制
御手段とを具備しており、この制御手段は冷却器の除霜
時、除霜手段及び送風手段を運転すると共に、庫内温度
センサーに基づく貯蔵室内の温度が所定の温度に上昇し
た場合は送風手段を停止するように構成したものであ
る。
The high-humidity cooling storage box of the present invention is provided with a heat-conductive storage box in the heat-insulating box at a predetermined distance from the heat-insulating box, and the storage box serves as a storage chamber. In addition, the storage space is indirectly cooled by circulating the cool air in the duct, and the cooler and the air that has exchanged heat with the cooler are provided in the duct. It is provided with an air blowing means that circulates in the interior, a defrosting means for the cooler, an internal temperature sensor that detects the temperature in the storage chamber, and a control means, and this control means is used when defrosting the cooler. The air blowing means is stopped while the air blowing means and the air blowing means are operated, and when the temperature in the storage chamber based on the internal temperature sensor rises to a predetermined temperature.

【0010】[0010]

【作用】制御手段は冷却器の除霜を開始すると除霜手段
に通電して発熱させ、冷却器の着霜の融解を行う。同時
に送風手段を運転することによって除霜中の冷却器と熱
交換して温度の高くなった空気(温風)をダクト内に強
制循環し、これによって貯蔵箱を加熱して貯蔵箱内壁面
に成長した着霜を融解する。その後、庫内温度センサー
に基づき貯蔵室内の温度が所定の温度に上昇すると送風
手段を停止して、ダクトへの温風の強制循環を停止す
る。
When the defrosting of the cooler is started, the control means energizes the defrosting means to generate heat and melts the frost on the cooler. At the same time, by operating the air blower, heat exchanged with the cooler during defrosting and forcedly circulates the hot air (hot air) in the duct, which heats the storage box to the inner wall surface of the storage box. Thaw the frost that has grown. After that, when the temperature in the storage chamber rises to a predetermined temperature based on the internal temperature sensor, the air blowing means is stopped and the forced circulation of the hot air to the duct is stopped.

【0011】[0011]

【実施例】次に、図面に基づき本発明の実施例を詳述す
る。図1は本発明の高湿冷却貯蔵庫1の制御手段として
の制御装置40のブロック図、図2は本発明の高湿冷却
貯蔵庫1の正面図、図3は高湿冷却貯蔵庫1の縦断面図
をそれぞれ示している。図2及び図3において、高湿冷
却貯蔵庫1は前面に開口を有する断熱箱体2の本体内部
に所定間隔を存して熱伝導性の貯蔵箱3を収納配設して
構成されている。この貯蔵箱3は鋼板等の熱伝導板をビ
ス止めし、接合面をシール材にてシールして形成されて
おり、貯蔵箱3内部は仕切部4によって上下に区画さ
れ、上方に上貯蔵室5、下方に下貯蔵室6が構成されて
いる。この貯蔵箱3と断熱箱体2間の間隔及び仕切部4
内は一連の冷気通路としてのダクト8とされ、このダク
ト8内は分割板9によって吐出側ダクト8Aと帰還側ダ
クト8Bとに分割されている。
Embodiments of the present invention will now be described in detail with reference to the drawings. 1 is a block diagram of a control device 40 as a control means of the high humidity cooling storage cabinet 1 of the present invention, FIG. 2 is a front view of the high humidity cooling storage cabinet 1 of the present invention, and FIG. 3 is a vertical sectional view of the high humidity cooling storage cabinet 1. Are shown respectively. 2 and 3, the high-humidity cooling storage cabinet 1 is configured by accommodating and arranging a heat-conductive storage box 3 at a predetermined interval inside a main body of a heat insulating box body 2 having an opening on the front surface. The storage box 3 is formed by fixing a heat conduction plate such as a steel plate with a screw and sealing the joint surface with a sealing material, and the inside of the storage box 3 is divided into upper and lower parts by a partition portion 4, and an upper storage chamber is formed above. 5, a lower storage chamber 6 is formed below. The space between the storage box 3 and the heat insulating box 2 and the partition 4
The inside is a duct 8 as a series of cold air passages, and the inside of this duct 8 is divided into a discharge side duct 8A and a return side duct 8B by a dividing plate 9.

【0012】断熱箱体2の前面開口には上下に渡る支柱
10が取り付けられると共に、開口は更に仕切部4前方
において上下に仕切られ、これらによって仕切られた上
下貯蔵室5、6の前面開口は上下それぞれ一対づつの観
音開き式の断熱扉11、11及び12、12によってそ
れぞれ開閉自在に閉塞されている。断熱箱体2の天壁2
Aには矩形状の窓孔14が開口しており、この窓孔14
を上方から閉塞するように取付架台15が取り付けられ
ている。この取付架台15の上面には冷凍装置16を構
成する圧縮機17、凝縮器18及び凝縮器用ファン19
が設置されており、これらの前方はコントロールパネル
20等を配したグリル21によって隠蔽されている。取
付架台15の下面には前記冷凍装置16を構成する冷却
器22が取り付けられて貯蔵箱3上方のダクト8内に臨
んでおり、冷却器22下方のドレンパン23に形成した
図示しないファンカバー部に対応して冷却器22の前方
のダクト8内に送風手段としての冷却ファン24が取り
付けられている。また、冷却器22には除霜手段として
の除霜ヒータ56が熱交換的に配設されている。
A support column 10 extending vertically is attached to the front opening of the heat insulating box body 2, and the opening is further divided into upper and lower parts in front of the partition part 4, and the front opening of the upper and lower storage chambers 5 and 6 partitioned by these. A pair of upper and lower insulated doors 11, 11 and 12, 12 are openably closed. Insulation box 2 top wall 2
A rectangular window hole 14 is opened in A.
The mounting base 15 is attached so as to close the above. A compressor 17, a condenser 18, and a condenser fan 19 which constitute the refrigeration system 16 are provided on the upper surface of the mounting base 15.
Are installed, and the front of these is hidden by a grill 21 having a control panel 20 and the like. A cooler 22 constituting the refrigeration system 16 is attached to the lower surface of the mounting base 15 and faces the duct 8 above the storage box 3, and a fan cover portion (not shown) formed in a drain pan 23 below the cooler 22 is provided. Correspondingly, a cooling fan 24 as an air blower is installed in the duct 8 in front of the cooler 22. Further, a defrost heater 56 as a defrosting unit is disposed in the cooler 22 in a heat exchange manner.

【0013】冷却ファン24が運転されると、冷却器2
2にて冷却された冷気は図3中矢印の如くダクト8の吐
出側ダクト8Aに吹き出され、貯蔵箱3の上面から背方
に流下し、仕切部4に流入した後Uターンして下部背方
を流下し、貯蔵箱3の底面下方を流れて帰還側ダクト8
Bに流入し、帰還側ダクト8Bを上昇して冷却器22の
吸込側に帰還する循環を行う。係る冷気循環によって貯
蔵箱3壁面が冷却され、上下貯蔵室5、6内は貯蔵箱3
の壁面から間接的に冷却される。
When the cooling fan 24 is operated, the cooler 2
The cold air cooled in 2 is blown out to the discharge side duct 8A of the duct 8 as shown by the arrow in FIG. 3, flows backward from the upper surface of the storage box 3, flows into the partition section 4, and then makes a U-turn to make a lower spine. And the return duct 8 flowing under the bottom surface of the storage box 3.
Circulation is carried out by flowing into B and ascending the return duct 8B to return to the suction side of the cooler 22. The wall surface of the storage box 3 is cooled by the cold air circulation, and the storage boxes 3 and 5 are stored in the upper and lower storage chambers 5 and 6.
It is indirectly cooled from the wall surface.

【0014】一方、支柱10内部には断熱箱体2の天壁
2A前端の連通部25にて外部と連通する外気導入ダク
ト26が形成されている。この外気導入ダクト26は上
下貯蔵室5、6内と吹出口27、28にてそれぞれ連通
しており、ここから水分を含んだ外気が上下貯蔵室5、
6内に図中矢印の如く導入される構造とされている。こ
のように上下貯蔵室5、6は貯蔵箱3壁面から間接冷却
を受けると共に、外気導入ダクト26から水分を多く含
んだ外気が導入されることにより、その内部は後述する
制御装置40によって例えば−5℃乃至+13℃の範囲
内で80%乃至90%の高湿度にて冷却維持されように
なる。
On the other hand, inside the column 10, an outside air introducing duct 26 communicating with the outside is formed at a communicating portion 25 at the front end of the top wall 2A of the heat insulating box 2. The outside air introducing duct 26 communicates with the insides of the upper and lower storage chambers 5 and 6 and the outlets 27 and 28, respectively, from which outside air containing moisture is connected to the upper and lower storage chambers 5, 6.
The structure is introduced in 6 as indicated by the arrow in the figure. In this way, the upper and lower storage chambers 5 and 6 receive indirect cooling from the wall surface of the storage box 3 and the outside air containing a large amount of water is introduced from the outside air introducing duct 26, so that the inside thereof is controlled by the control device 40 described later, for example. Cooling is maintained at a high humidity of 80% to 90% within a range of 5 ° C to + 13 ° C.

【0015】貯蔵箱3の上面は後方に低く傾斜してお
り、上貯蔵室5内上部にはこの傾斜にそって傾斜した露
受板30が配置されている。また、下貯蔵室6内上部に
も後方に低く傾斜した露受板31が配置されると共に、
仕切部4には上下貯蔵室5、6を連通して露受板31上
方に開口する連通管32が取り付けられている。更に、
下貯蔵室6底部の貯蔵箱3にはドレン水を排出するため
の排水経路33が構成されている。
The upper surface of the storage box 3 is inclined rearward low, and the dew receiving plate 30 inclined along this inclination is arranged in the upper part of the upper storage chamber 5. In addition, the dew receiving plate 31 that is inclined rearward is arranged in the upper portion of the lower storage chamber 6 as well, and
A communication pipe 32, which communicates the upper and lower storage chambers 5 and 6 and opens above the dew receiving plate 31, is attached to the partition section 4. Furthermore,
The storage box 3 at the bottom of the lower storage chamber 6 has a drainage path 33 for discharging drain water.

【0016】図1において、制御装置40は1チップC
PUから成るマイクロコンピュータ41にて構成され、
このマイクロコンピュータ41には設定切換スイッチ4
2及び設定値可変部43の出力が入力され、更に、上貯
蔵室5内の温度を検出するよう露受板30上側に設けら
れた庫内温度センサー44と、帰還側ダクト8B内の温
度を検出するように冷却器22の吸込側に設けられたコ
ントロールセンサー45と、冷却器22の所定の除霜終
了温度を検出するように冷却器22に設けられた除霜終
了温度センサー53の出力がセンサー信号増幅部46を
介して入力される。前記設定切換スイッチ42及び設定
値可変部43はコントロールパネル20に配置される。
同じくコントロールパネル20には温度表示部47が設
けられ、この温度表示部47はマイクロコンピュータ4
1の出力側に接続される。マイクロコンピュータ41の
出力側には更に前記冷凍装置16の圧縮機17の通電を
制御する出力リレー48と、冷却ファン24の通電を制
御する出力リレー54と、除霜ヒータ56の通電を制御
する出力リレー55とが接続されている。また、マイク
ロコンピュータ41はプログラムを内蔵したROM50
と、メモリとしてのRAM51を内蔵している。
In FIG. 1, the controller 40 is a one-chip C
Comprised of a microcomputer 41 composed of PU,
The microcomputer 41 has a setting switch 4
2 and the output of the set value varying unit 43 are input, and further, the inside temperature sensor 44 provided on the upper side of the dew receiving plate 30 so as to detect the temperature inside the upper storage chamber 5, and the temperature inside the return side duct 8B are detected. The output of the control sensor 45 provided on the suction side of the cooler 22 for detection and the output of the defrosting end temperature sensor 53 provided on the cooler 22 for detecting a predetermined defrosting end temperature of the cooler 22 are output. It is input via the sensor signal amplifier 46. The setting changeover switch 42 and the set value varying section 43 are arranged on the control panel 20.
Similarly, the control panel 20 is provided with a temperature display portion 47, and the temperature display portion 47 is provided in the microcomputer 4.
1 is connected to the output side. On the output side of the microcomputer 41, an output relay 48 for controlling the energization of the compressor 17 of the refrigeration system 16, an output relay 54 for controlling the energization of the cooling fan 24, and an output for controlling the energization of the defrost heater 56. The relay 55 is connected. In addition, the microcomputer 41 is a ROM 50 that contains a program.
And a RAM 51 as a memory is built in.

【0017】次に、図4を参照してマイクロコンピュー
タ41の動作を説明する。尚、図4において最上段は除
霜終了温度センサー53の感知する冷却器22の温度を
示し、2段目は庫内温度センサー44が感知する上貯蔵
室5内の温度を示す。以下、圧縮機17、冷却ファン2
4及び除霜ヒータ56の運転・通電(ON・)、停止・
非通電(OFF)状況が示されている。
Next, the operation of the microcomputer 41 will be described with reference to FIG. 4, the uppermost stage shows the temperature of the cooler 22 sensed by the defrosting end temperature sensor 53, and the second stage shows the temperature inside the upper storage chamber 5 sensed by the in-compartment temperature sensor 44. Hereinafter, the compressor 17 and the cooling fan 2
Operation of 4 and defrost heater 56, energization (ON), stop
A de-energized (OFF) situation is shown.

【0018】使用者が設定切換スイッチ42を操作する
と、マイクロコンピュータ41は設定モードに切り換わ
り、次に設定値可変部43にて例えば前述の−5℃乃至
+13℃の範囲内で所望の貯蔵室内温度設定値を設定す
る。この設定モードは所定時間後に解除されるが、設定
モード中マイクロコンピュータ41は温度表示部47に
設定値を表示し,それ以外の時は庫内温度センサー44
に基づく上貯蔵室5内の温度を表示する。
When the user operates the setting changeover switch 42, the microcomputer 41 is switched to the setting mode, and then the set value changing section 43 is used, for example, within the desired storage chamber within the range of -5 ° C to + 13 ° C. Set the temperature setting value. This setting mode is canceled after a predetermined time, but during the setting mode, the microcomputer 41 displays the set value on the temperature display section 47, and in other cases, the inside temperature sensor 44
The temperature in the upper storage chamber 5 is displayed based on the above.

【0019】マイクロコンピュータ41は、上記の如く
設定された貯蔵室内温度設定値に基づき、例えば所定の
温度差でもってダクト内温度設定値を自ら決定し、この
ダクト内温度設定値とコントロールセンサー43に基づ
くダクト8内の温度とを比較し、所定の上限温度と下限
温度の間で出力リレー48をON−OFFすることによ
り、圧縮機17を運転・停止する。一方、出力リレー5
4はONのままとして冷却ファン24を連続運転し、冷
却器22と熱交換した冷気をダクト8内に強制循環して
ダクト8内の温度を平均してダクト内温度設定値に制御
する冷却運転を実行する。
The microcomputer 41 itself determines the temperature setting value in the duct on the basis of the temperature setting value in the storage room set as described above, for example, with a predetermined temperature difference, and the temperature setting value in the duct and the control sensor 43 are determined. The compressor 17 is operated / stopped by comparing the temperature inside the duct 8 based on it and turning the output relay 48 ON / OFF between a predetermined upper limit temperature and a lower limit temperature. On the other hand, output relay 5
4 is kept ON, the cooling fan 24 is continuously operated, and the cool air that has exchanged heat with the cooler 22 is forcedly circulated in the duct 8 to average the temperature in the duct 8 and control it to the temperature set value in the duct. To execute.

【0020】一方、マイクロコンピュータ41は圧縮機
17の運転時間を積算しており、所定の積算値に達する
と図4の時刻t3にて出力リレー48をOFFして圧縮
機17を停止する。この時、出力リレー54はONのま
まで冷却ファン24は運転を続行し、同時に出力リレー
55をONにし、除霜ヒータ56に通電して発熱させ、
冷却器22の除霜運転を開始する。除霜ヒータ56の発
熱により時刻t3から除霜終了温度センサー53の感知
する冷却器22の温度は上昇し、冷却器の着霜は融解さ
れて行く。冷却器22の温度上昇に伴い、これと熱交換
するダクト8内空気温度も上昇し、この温風が冷却ファ
ン24によってダクト8内に強制循環されるため貯蔵箱
3の温度も上昇して行き、貯蔵箱3内壁面に成長した霜
も融解されて行く。貯蔵箱3の温度上昇によって庫内温
度センサー44の感知する上貯蔵室5の温度も上昇して
行くが、時刻t4において貯蔵箱3内壁面の着霜を融解
するのに充分と考えられる+4℃に上貯蔵室5内温度が
上昇すると、マイクロコンピュータ41は庫内温度セン
サー44の出力に基づき出力リレー54をOFFして冷
却ファン24の運転を停止する。従って、ダクト8内へ
の温風の強制循環は停止し、上下貯蔵室5、6のそれ以
上の温度上昇は抑制されることになり、上下貯蔵室5、
6内に収納した生鮮食品の品質劣化が抑制される。
On the other hand, the microcomputer 41 integrates the operating time of the compressor 17, and when the predetermined integrated value is reached, the output relay 48 is turned off and the compressor 17 is stopped at time t3 in FIG. At this time, the output relay 54 remains ON and the cooling fan 24 continues to operate. At the same time, the output relay 55 is turned ON, and the defrost heater 56 is energized to generate heat.
The defrosting operation of the cooler 22 is started. Due to the heat generated by the defrosting heater 56, the temperature of the cooler 22 sensed by the defrosting end temperature sensor 53 rises from time t3, and the frost on the cooler is melted. As the temperature of the cooler 22 rises, the temperature of the air in the duct 8 that exchanges heat with the cooler 22 also rises, and this warm air is forcedly circulated in the duct 8 by the cooling fan 24, so the temperature of the storage box 3 also rises. The frost that has grown on the inner wall surface of the storage box 3 is also melted. As the temperature of the storage box 3 rises, the temperature of the upper storage chamber 5 sensed by the internal temperature sensor 44 also rises, but it is considered to be sufficient to melt the frost on the inner wall surface of the storage box 3 at time t4, + 4 ° C. When the temperature inside the upper storage chamber 5 rises, the microcomputer 41 turns off the output relay 54 based on the output of the inside temperature sensor 44 to stop the operation of the cooling fan 24. Therefore, the forced circulation of the warm air into the duct 8 is stopped, and the further temperature increase in the upper and lower storage chambers 5, 6 is suppressed, and the upper and lower storage chambers 5, 6 are
Deterioration of the quality of fresh food stored in 6 is suppressed.

【0021】ここで、マイクロコンピュータ41は時刻
t4以降も除霜ヒータ56の発熱による冷却器22の除
霜運転は続行し、時刻t5において除霜終了温度センサ
ー53の感知する冷却器22の温度が+10℃に達する
と出力リレー55をOFFにし、除霜ヒータ56の発熱
を停止させて冷却器22の除霜運転を終了する。この場
合、時刻t4以降は冷却ファン24の運転が停止するた
め、除霜ヒータ56の熱は専ら冷却器22の加熱に使用
されることになるので、図4に示す時刻t4以降の除霜
終了温度センサー53の感知する冷却器22の温度の上
昇角度は、図5に示した冷却器の温度の上昇角度よりも
急峻となる。即ち、時刻t4以降冷却器22の霜の融解
が促進されるため、結果的に図4に示す本発明の除霜運
転に費やされる時刻t3から時刻t5までの時間は、図
5に示した前述の従来の除霜運転の場合の時刻t1から
時刻t2までの除霜運転時間に比して短くなる。従っ
て、冷却運転の停止による上下貯蔵室5、6内の温度上
昇は尚一層抑制されると共に、除霜運転の短縮によって
省エネルギーにも寄与することになる。
Here, the microcomputer 41 continues the defrosting operation of the cooler 22 by the heat generation of the defrosting heater 56 after the time t4, and the temperature of the cooler 22 detected by the defrosting end temperature sensor 53 is detected at the time t5. When it reaches + 10 ° C., the output relay 55 is turned off, the heat generation of the defrost heater 56 is stopped, and the defrost operation of the cooler 22 is completed. In this case, since the operation of the cooling fan 24 is stopped after the time t4, the heat of the defrost heater 56 is used exclusively for heating the cooler 22, so that the defrosting after the time t4 shown in FIG. The rising angle of the temperature of the cooler 22 sensed by the temperature sensor 53 is steeper than the rising angle of the temperature of the cooler shown in FIG. That is, since the frost melting of the cooler 22 is promoted after the time t4, as a result, the time from the time t3 to the time t5 spent for the defrosting operation of the present invention shown in FIG. 4 is the same as that shown in FIG. It becomes shorter than the defrosting operation time from time t1 to time t2 in the case of the conventional defrosting operation. Therefore, the temperature rise in the upper and lower storage chambers 5 and 6 due to the stop of the cooling operation is further suppressed, and the defrosting operation is shortened to contribute to energy saving.

【0022】除霜運転を終了するとマイクロコンピュー
タ41は再び圧縮機17のON−OFF運転と冷却ファ
ン24の連続運転による冷却運転を再開するので、上下
貯蔵室5、6の温度は再び低下して行く。尚、実施例で
は除霜運転を圧縮機17の運転時間の積算によって開始
したが、所定の時刻に、或いは所定時間毎に除霜運転に
入る方式であっても差し支えない。また、実施例では除
霜運転の終了を冷却器22の温度を除霜終了温度センサ
ー53によって検出することによって検知するようにし
たが、所定時間除霜ヒータ56に通電する方式としても
本発明は有効である。
When the defrosting operation is completed, the microcomputer 41 resumes the ON-OFF operation of the compressor 17 and the cooling operation by the continuous operation of the cooling fan 24, so that the temperatures of the upper and lower storage chambers 5 and 6 are lowered again. go. Although the defrosting operation is started by integrating the operation time of the compressor 17 in the embodiment, the defrosting operation may be started at a predetermined time or every predetermined time. Further, in the embodiment, the end of the defrosting operation is detected by detecting the temperature of the cooler 22 by the defrosting end temperature sensor 53, but the present invention is also applicable to a method of energizing the defrosting heater 56 for a predetermined time. It is valid.

【0023】[0023]

【発明の効果】本発明の高湿冷却貯蔵庫によれば、冷却
器の除霜時に除霜手段と送風手段を運転して冷却器の着
霜の融解と合わせて貯蔵箱内壁面の着霜の融解も実行す
ると共に、貯蔵室内の温度が所定の温度に上昇したとこ
ろで送風手段の運転を停止するので、貯蔵室の必要以上
の温度上昇は抑制される。また、送風手段の停止によっ
て冷却器自体の除霜も促進されことになり、除霜運転時
間が短縮されるので、総じて貯蔵箱内壁面の除霜を確実
に達成しつつ貯蔵室内の収納食品の品質劣化を防止し、
且つ、省エネルギーに寄与することが可能となるもので
ある。
According to the high humidity cooling storage of the present invention, the defrosting means and the air blowing means are operated during defrosting of the cooler to melt the frost on the cooler and to prevent frost on the inner wall surface of the storage box. Melting is also performed, and the operation of the blowing unit is stopped when the temperature in the storage chamber rises to a predetermined temperature, so that an excessive temperature rise in the storage chamber is suppressed. In addition, the defrosting of the cooler itself is also promoted by stopping the air blowing means, and the defrosting operation time is shortened. Prevents quality deterioration,
In addition, it is possible to contribute to energy saving.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高湿冷却貯蔵庫の制御装置のブロック
図である。
FIG. 1 is a block diagram of a controller for a high-humidity cooled storage according to the present invention.

【図2】本発明の高湿冷却貯蔵庫の正面図である。FIG. 2 is a front view of the high-humidity cooling storage cabinet of the present invention.

【図3】本発明の高湿冷却貯蔵庫の縦断面図である。FIG. 3 is a vertical cross-sectional view of the high-humidity cold storage of the present invention.

【図4】本発明の高湿冷却貯蔵庫の制御装置の制御によ
る各部の温度推移及び機器の運転状況を示す図である。
FIG. 4 is a diagram showing the temperature transition of each part and the operating condition of the equipment under the control of the controller of the high humidity cooling storage according to the present invention.

【図5】従来の高湿冷却貯蔵庫による各部の温度推移及
び機器の運転状況を示す図である。
FIG. 5 is a diagram showing a temperature transition of each part and an operation state of equipment by a conventional high humidity cooling storage.

【符号の説明】[Explanation of symbols]

1 高湿冷却貯蔵庫 2 断熱箱体 3 貯蔵箱 5 上貯蔵室 6 下貯蔵室 8 ダクト 16 冷凍装置 17 圧縮機 22 冷却器 24 冷却ファン 40 制御装置 41 マイクロコンピュータ 44 庫内温度センサー 45 コントロールセンサー 53 除霜終了温度センサー 56 除霜ヒータ 1 High-humidity Cooling Storage 2 Insulation Box 3 Storage Box 5 Upper Storage Room 6 Lower Storage Room 8 Duct 16 Refrigerator 17 Compressor 22 Cooler 24 Cooling Fan 40 Control Device 41 Microcomputer 44 Internal Temperature Sensor 45 Control Sensor 53 Except Defrost end temperature sensor 56 Defrost heater

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 断熱箱体内に該断熱箱体と所定の間隔を
存して熱伝導性の貯蔵箱を設け、該貯蔵箱内を貯蔵室と
成すと共に、前記間隔をダクトとし、該ダクト内に冷気
を循環することにより前記貯蔵室内を間接的に冷却する
よう構成した高湿冷却貯蔵庫において、冷却器と、該冷
却器と熱交換した空気を前記ダクト内に循環する送風手
段と、前記冷却器の除霜手段と、前記貯蔵室内の温度を
検出する庫内温度センサーと、制御手段とを具備して成
り、該制御手段は前記冷却器の除霜時、前記除霜手段及
び送風手段を運転すると共に、前記庫内温度センサーに
基づく前記貯蔵室内の温度が所定の温度に上昇した場合
は前記送風手段を停止することを特徴とする高湿冷却貯
蔵庫。
1. A heat-conductive storage box is provided in the heat-insulating box at a predetermined distance from the heat-insulating box, a storage chamber is formed in the storage box, and the space is a duct. In a high-humidity cooling storage configured to indirectly cool the storage chamber by circulating cold air into the cooler, a cooler, a blowing unit that circulates air that has exchanged heat with the cooler in the duct, and the cooling Defrosting means for the cooler, an internal temperature sensor for detecting the temperature in the storage chamber, and a control means, which controls the defrosting means and the blowing means during defrosting of the cooler. A high-humidity cooling storage cabinet which is operated and which stops the air blower when the temperature in the storage chamber based on the internal temperature sensor rises to a predetermined temperature.
JP29160591A 1991-11-07 1991-11-07 High-humidity cooling/storing device Pending JPH05126458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29160591A JPH05126458A (en) 1991-11-07 1991-11-07 High-humidity cooling/storing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29160591A JPH05126458A (en) 1991-11-07 1991-11-07 High-humidity cooling/storing device

Publications (1)

Publication Number Publication Date
JPH05126458A true JPH05126458A (en) 1993-05-21

Family

ID=17771115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29160591A Pending JPH05126458A (en) 1991-11-07 1991-11-07 High-humidity cooling/storing device

Country Status (1)

Country Link
JP (1) JPH05126458A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263426A (en) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd Defrosting control device
JP2011002143A (en) * 2009-06-18 2011-01-06 Hitachi Appliances Inc Refrigerator
JP2011002142A (en) * 2009-06-18 2011-01-06 Hitachi Appliances Inc Refrigerator
JP2011169591A (en) * 2011-06-10 2011-09-01 Sanyo Electric Co Ltd Defrosting control device
EP3851775B1 (en) * 2020-01-17 2023-09-27 Carrier Corporation Method of defrosting a freezer cabinet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195080A (en) * 1983-04-19 1984-11-06 株式会社東芝 Refrigerator
JPH02272285A (en) * 1989-04-13 1990-11-07 Sanyo Electric Co Ltd Cooling refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195080A (en) * 1983-04-19 1984-11-06 株式会社東芝 Refrigerator
JPH02272285A (en) * 1989-04-13 1990-11-07 Sanyo Electric Co Ltd Cooling refrigerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263426A (en) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd Defrosting control device
JP2011002143A (en) * 2009-06-18 2011-01-06 Hitachi Appliances Inc Refrigerator
JP2011002142A (en) * 2009-06-18 2011-01-06 Hitachi Appliances Inc Refrigerator
JP2011169591A (en) * 2011-06-10 2011-09-01 Sanyo Electric Co Ltd Defrosting control device
EP3851775B1 (en) * 2020-01-17 2023-09-27 Carrier Corporation Method of defrosting a freezer cabinet

Similar Documents

Publication Publication Date Title
KR100827039B1 (en) Refrigerator quick chill and thaw control methods and apparatus
US4638644A (en) Circulating air refrigerator with removable divider shelf
US4304101A (en) Circulating air refrigerator with removable divider shelf
JPH04260771A (en) Refrigerator and its thermal control
JPH0252974A (en) Refrigerator
JPH05126458A (en) High-humidity cooling/storing device
KR100593632B1 (en) Method of controlling defrost cycle of refrigerator and its device
KR19980086632A (en) Refrigerator
JP3461531B2 (en) refrigerator
JP3354165B2 (en) Refrigerator refrigerator temperature control device
JP3426500B2 (en) Cooling storage
JP2567764B2 (en) High humidity cooling storage
JP3361038B2 (en) refrigerator
KR950000270B1 (en) Kimchi Fermentation and Storage Device and Method of Refrigerator
JPH10288441A (en) Refrigerator
JP3188083B2 (en) Cold storage
JPH02130381A (en) Control device for refrigerator
JP2771590B2 (en) Cooling storage
JP2008075963A (en) Defrosting device for cooling device
JP2777398B2 (en) Cooling storage
JPH0791803A (en) Refrigerator
JPH07107951A (en) Thawing device
JP3494906B2 (en) refrigerator
JP2008107068A (en) Cooling storage
JP2001133098A (en) Cold insulation box