[go: up one dir, main page]

JP2567764B2 - High humidity cooling storage - Google Patents

High humidity cooling storage

Info

Publication number
JP2567764B2
JP2567764B2 JP3291603A JP29160391A JP2567764B2 JP 2567764 B2 JP2567764 B2 JP 2567764B2 JP 3291603 A JP3291603 A JP 3291603A JP 29160391 A JP29160391 A JP 29160391A JP 2567764 B2 JP2567764 B2 JP 2567764B2
Authority
JP
Japan
Prior art keywords
temperature
duct
storage
storage chamber
set value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3291603A
Other languages
Japanese (ja)
Other versions
JPH05126454A (en
Inventor
克也 小林
健 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP3291603A priority Critical patent/JP2567764B2/en
Publication of JPH05126454A publication Critical patent/JPH05126454A/en
Application granted granted Critical
Publication of JP2567764B2 publication Critical patent/JP2567764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Control Of Temperature (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生鮮食品等を高湿度状
態で冷却保存するための高湿冷却貯蔵庫に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-humidity cold storage for refrigerating and storing fresh foods in a high humidity condition.

【0002】[0002]

【従来の技術】肉や鮮魚或いは野菜等の生鮮食品を保存
する場合は、乾燥を避け高湿度で且つ冷却して保存する
必要があり、従来では例えば実開昭64−24993号
公報の如く、断熱箱体内部に伝熱性の収納箱を間隔を存
して設置し、この間隔内をダクトとし、ダクト内には冷
凍装置を設けてダクト内に冷気を循環し、収納箱壁面よ
り収納箱内部の貯蔵室を間接的に冷却する構造の高湿冷
却貯蔵庫を構成している。
2. Description of the Related Art When storing fresh food such as meat, fresh fish, vegetables, etc., it is necessary to avoid drying and keep it at high humidity and by cooling, and conventionally, for example, as disclosed in Japanese Utility Model Laid-Open No. 64-24993. A heat-conducting storage box is installed inside the heat-insulating box at intervals, with a duct inside this interval, and a refrigerating device is installed in the duct to circulate cold air in the duct, and the inside of the storage box from the wall of the storage box The high-humidity cooling storage cabinet is constructed so as to indirectly cool the storage room.

【0003】係る構造によれば、収納箱内には直接冷気
が侵入しないので内部の除湿作用は行われず、食品から
蒸散した水分或いは外部から進入した水分等により収納
箱内は高湿に保たれ、それによって食品の乾燥を防ぎ、
高湿状態で且つ冷却保存することが可能となる。このよ
うな高湿冷却貯蔵庫では、貯蔵室内は間接的に冷却され
るため、貯蔵室内の温度を検出するセンサーによって直
接冷凍装置を制御すると応答性が遅くなるため制御がき
わめて不安定となり、貯蔵室内の温度を一定に保つこと
ができない。そのため、従来では貯蔵室内の温度は貯蔵
室内の温度を検出して表示する温度表示部により表示
し、使用者が前記温度表示部を見ながら貯蔵室の温度と
して所望する目標温度を設定するように構成する一方、
温度制御については貯蔵室内の温度状況は無視し、ダク
ト内にこのダクト内の温度を検出するセンサーを設け、
ダクト内と貯蔵室内との間にできる温度差と前記使用者
による設定値から所定のダクト内温度設定値を想定し、
制御装置によってこのダクト内温度設定値とセンサーか
らの出力とを比較して冷凍装置を制御し、ダクト内の温
度を一定にする方法が取られていた。
According to this structure, since cold air does not directly enter the storage box, the internal dehumidifying action is not performed, and the inside of the storage box is kept at high humidity due to water evaporated from food or water entering from the outside. , Thereby preventing food from drying,
It becomes possible to store in a high humidity state with cooling. In such a high-humidity cooled storage cabinet, the inside of the storage room is indirectly cooled.Therefore, if the sensor that detects the temperature inside the storage room directly controls the refrigeration system, the response becomes slow and the control becomes extremely unstable. Can't keep the temperature constant. Therefore, conventionally, the temperature in the storage chamber is displayed by the temperature display unit that detects and displays the temperature in the storage chamber, and the user sets the desired target temperature as the temperature of the storage chamber while looking at the temperature display unit. While configuring
Regarding temperature control, ignore the temperature inside the storage room, and install a sensor inside the duct to detect the temperature inside the duct.
Assuming a predetermined temperature setting value in the duct from the temperature difference between the inside of the duct and the storage room and the setting value by the user,
A method of controlling the refrigerating device by comparing the temperature set value in the duct with the output from the sensor by the control device to keep the temperature in the duct constant has been adopted.

【0004】図6にこのような従来の高湿冷却貯蔵庫の
各部の温度推移を示す。図中L1は前記貯蔵室内の温
度、L5は前記貯蔵室内の温度として使用者が所望する
目標温度、L3はダクト内の温度、L4はダクト内温度
設定値である。この場合ダクト内温度設定値L4は前記
ダクト内と貯蔵室内の間にできる温度差を一律に想定
し、制御装置によって目標温度L5より所定温度低い値
として決定されている。
FIG. 6 shows the temperature transition of each part of such a conventional high humidity cooling storage cabinet. In the figure, L1 is the temperature inside the storage chamber, L5 is the target temperature desired by the user as the temperature inside the storage chamber, L3 is the temperature inside the duct, and L4 is the temperature setting value inside the duct. In this case, the temperature set value L4 in the duct is assumed as a value lower than the target temperature L5 by a predetermined temperature by uniformly assuming a temperature difference between the inside of the duct and the storage chamber.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、貯蔵室
内は扉の開閉等によって外気温度の影響を強く受けるこ
とになる。即ち、外気温度がダクト内の温度L3より高
い場合は貯蔵室内の温度L1はダクト内の温度L3より
高くなり、逆に外気温度がダクト内の温度L3より低い
場合は貯蔵室内の温度L1はダクト内の温度L3より低
くなる傾向となる。また、外気温度による貯蔵室内への
影響は外気温度自体の高低のみに因らず、扉の断熱性能
や開閉回数等によっても異なって来るので、貯蔵室内と
ダクト内の温度差を一律に決定して制御すると図6の目
標温度L5と貯蔵室内の温度L1との差に示されるよう
に貯蔵室内を使用者が所望する温度に保ことができなく
なる。そのため、従来では使用者が温度表示部に表示さ
れている貯蔵室内の温度L1の状況を見ながらその都度
ダクト内の温度L3と比較するダクト内温度設定値L4
を変更し、冷凍装置の運転を調整する必要があった。
However, the inside of the storage chamber is strongly affected by the outside air temperature due to the opening and closing of the door. That is, when the outside air temperature is higher than the temperature L3 in the duct, the temperature L1 in the storage chamber is higher than the temperature L3 in the duct. Conversely, when the outside air temperature is lower than the temperature L3 in the duct, the temperature L1 in the storage chamber is the duct. The temperature tends to be lower than the internal temperature L3. In addition, the influence of the outside air temperature on the storage room depends not only on the level of the outside air temperature itself but also on the heat insulation performance of the door and the number of times of opening and closing.Therefore, the temperature difference between the storage room and the duct is uniformly determined. If controlled in this manner, it becomes impossible to maintain the temperature inside the storage chamber at the temperature desired by the user as indicated by the difference between the target temperature L5 and the temperature L1 inside the storage chamber in FIG. Therefore, conventionally, the user sets the duct temperature set value L4, which is compared with the temperature L3 in the duct each time while the user watches the situation of the temperature L1 in the storage chamber displayed on the temperature display section.
Had to be changed to adjust the operation of the refrigeration system.

【0006】本発明は、係る従来の技術的課題を解決
し、貯蔵室内の温度状況によって自動的にダクト内温度
設定値を変更することができる高湿冷却貯蔵庫を提供す
ることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned conventional technical problems and to provide a high-humidity cooling storage cabinet capable of automatically changing the duct internal temperature set value according to the temperature condition in the storage chamber.

【0007】[0007]

【課題を解決するための手段】本発明の高湿冷却貯蔵庫
は、断熱箱体内に断熱箱体と所定の間隔を存して熱伝導
性の貯蔵箱を設け、この貯蔵箱内を貯蔵室と成すと共
に、前記間隔をダクトとし、このダクト内に冷気を循環
することにより貯蔵室内を間接的に冷却するよう構成し
たものであって、前記ダクト内に冷気を循環するための
冷凍装置と、ダクト内の温度を検出するコントロールセ
ンサーと、貯蔵室内の温度を検出する庫内温度センサー
と、貯蔵室内の温度を設定する温度設定手段と、コント
ロールセンサーの出力に基づくダクト内温度と所定のダ
クト内温度設定値とを比較して冷凍装置を制御する制御
手段とを具備しており、この制御手段は庫内温度センサ
ーに基づく貯蔵室内温度と温度設定手段に基づく貯蔵室
内温度設定値との差に応じて前記ダクト内温度設定値を
変更するように構成されている。
The high-humidity cooling storage cabinet of the present invention is provided with a heat-conductive storage box at a predetermined distance from the heat-insulating box, and the storage box serves as a storage chamber. And a cooling device for circulating the cool air in the duct, which is configured to indirectly cool the storage chamber by circulating the cool air in the duct. A control sensor that detects the temperature inside, a temperature sensor that detects the temperature inside the storage chamber, a temperature setting means that sets the temperature inside the storage chamber, a duct internal temperature based on the output of the control sensor, and a predetermined duct internal temperature. And a control means for controlling the refrigerating device by comparing the set value with the set value, and the control means controls the difference between the temperature inside the storage room based on the temperature sensor inside the storage room and the set value inside the storage room based on the temperature setting means. It is configured to change the duct temperature setpoint accordingly.

【0008】本発明は更に、前記制御手段が貯蔵室内温
度と貯蔵室内温度設定値との差をサンプリングし、所定
期間のサンプリング結果により変化する値に基づき貯蔵
室内温度を貯蔵室内温度設定値に近づける方向にダクト
内温度設定値を変更するように構成したものである。
Further, according to the present invention, the control means samples the difference between the temperature in the storage chamber and the set value in the storage chamber, and brings the temperature in the storage chamber close to the set temperature in the storage chamber based on the value that changes depending on the sampling result for a predetermined period. It is configured to change the temperature setting value in the duct in the direction.

【0009】[0009]

【作用】制御手段はコントロールセンサーの出力に基づ
いてダクト内温度を検出し、ダクト内温度設定値と比較
して冷凍装置を制御する。更に、制御手段は庫内温度セ
ンサーの出力に基づく貯蔵室内温度と温度設定手段に基
づく貯蔵室内温度設定値との差を検出し、この差に基づ
いて前記ダクト内温度設定値を変更する。これによっ
て、冷凍装置の運転状況は変更され、貯蔵室内の冷却能
力が変化して貯蔵室内温度は貯蔵室内温度設定値に近づ
けられる。
The control means detects the temperature inside the duct on the basis of the output of the control sensor, and controls the refrigeration system by comparing it with the set temperature inside the duct. Further, the control means detects a difference between the temperature inside the storage room based on the output of the internal temperature sensor and the temperature inside the storage room based on the temperature setting means, and changes the temperature inside the duct based on the difference. As a result, the operating condition of the refrigerating apparatus is changed, the cooling capacity in the storage chamber is changed, and the temperature in the storage chamber is brought close to the set temperature in the storage chamber.

【0010】更に、制御手段は貯蔵室内温度をサンプリ
ングすると共に、所定期間のサンプリング結果によりダ
クト内温度設定値を変更する。従って、扉の開閉等によ
る瞬時的な貯蔵室内温度の変動により制御が不安定にな
らない。
Further, the control means samples the temperature in the storage chamber and changes the set temperature in the duct according to the sampling result for a predetermined period. Therefore, the control does not become unstable due to the instantaneous fluctuation of the temperature in the storage chamber due to the opening and closing of the door.

【0011】[0011]

【実施例】次に、図面に基づき本発明の実施例を詳述す
る。図1は本発明の高湿冷却貯蔵庫1の制御手段として
の制御装置40のブロック図、図2は本発明の高湿冷却
貯蔵庫1の正面図、図3は高湿冷却貯蔵庫1の縦断面図
をそれぞれ示している。図2及び図3において、高湿冷
却貯蔵庫1は前面に開口を有する断熱箱体2の本体内部
に所定間隔を存して熱伝導性の貯蔵箱3を収納配設して
構成されている。この貯蔵箱3は鋼板等の熱伝導板をビ
ス止めし、接合面をシール材にてシールして形成されて
おり、貯蔵箱3内部は仕切部4によって上下に区画さ
れ、上方に上貯蔵室5、下方に下貯蔵室6が構成されて
いる。この貯蔵箱3と断熱箱体2間の間隔及び仕切部4
内は一連の冷気通路としてのダクト8とされ、このダク
ト8内は分割板9によって吐出側ダクト8Aと帰還側ダ
クト8Bとに分割されている。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a block diagram of a control device 40 as a control means of the high humidity cooling storage cabinet 1 of the present invention, FIG. 2 is a front view of the high humidity cooling storage cabinet 1 of the present invention, and FIG. 3 is a vertical sectional view of the high humidity cooling storage cabinet 1. Are shown respectively. 2 and 3, the high-humidity cooling storage cabinet 1 is constructed by accommodating and arranging a heat conductive storage box 3 at a predetermined interval inside a main body of a heat insulating box body 2 having an opening on the front surface. The storage box 3 is formed by screwing a heat conductive plate such as a steel plate and sealing the joint surface with a sealing material. The inside of the storage box 3 is vertically divided by a partition portion 4 and the upper storage room is upward. 5, a lower storage room 6 is formed below. The space between the storage box 3 and the heat insulating box 2 and the partition 4
The inside is a duct 8 as a series of cold air passages, and the inside of the duct 8 is divided by a dividing plate 9 into a discharge side duct 8A and a return side duct 8B.

【0012】断熱箱体2の前面開口には上下に渡る支柱
10が取り付けられると共に、開口は更に仕切部4前方
において上下に仕切られ、これらによって仕切られた上
下貯蔵室5、6の前面開口は上下それぞれ一対づつの観
音開き式の断熱扉11、11及び12、12によってそ
れぞれ開閉自在に閉塞されている。断熱箱体2の天壁2
Aには矩形状の窓孔14が開口しており、この窓孔14
を上方から閉塞するように取付架台15が取り付けられ
ている。この取付架台15の上面には冷凍装置16を構
成する圧縮機17、凝縮器18及び凝縮器用ファン19
が設置されており、これらの前方はコントロールパネル
20等を配したグリル21によって隠蔽されている。取
付架台15の下面には前記冷凍装置16を構成する冷却
器22が取り付けられて貯蔵箱3上方のダクト8内に臨
んでおり、冷却器22下方のドレンパン23に形成した
図示しないファンカバー部に対応して冷却器22の前方
のダクト8内に冷却ファン24が取り付けられている。
A vertical strut 10 is attached to the front opening of the heat insulating box 2, and the opening is further divided into upper and lower parts in front of the partition part 4, and the front opening of the upper and lower storage chambers 5 and 6 partitioned by these is defined. A pair of upper and lower heat insulating doors 11, 11 and 12, 12 are openably closed. Top wall 2 of heat insulation box 2
A is provided with a rectangular window hole 14.
The mounting base 15 is attached so as to close the above. A compressor 17, a condenser 18, and a condenser fan 19 which constitute the refrigeration system 16 are provided on the upper surface of the mounting base 15.
Are installed, and the front of these is hidden by a grill 21 having a control panel 20 and the like. A cooler 22 constituting the refrigeration unit 16 is attached to the lower surface of the mounting base 15 and faces the duct 8 above the storage box 3. The fan 22 is formed on a fan cover (not shown) formed in a drain pan 23 below the cooler 22. Correspondingly, a cooling fan 24 is mounted in the duct 8 in front of the cooler 22.

【0013】冷却ファン24が運転されると、冷却器2
2にて冷却された冷気は図3中矢印の如くダクト8の吐
出側ダクト8Aに吹き出され、貯蔵箱3の上面から背方
に流下し、仕切部4に流入した後Uターンして下部背方
を流下し、貯蔵箱3の底面下方を流れて帰還側ダクト8
Bに流入し、帰還側ダクト8Bを上昇して冷却器22の
吸込側に帰還する循環を行う。係る冷気循環によって貯
蔵箱3壁面が冷却され、上下貯蔵室5、6内は貯蔵箱3
の壁面から間接的に冷却される。
When the cooling fan 24 is operated, the cooler 2
The cool air cooled in 2 is blown out to the discharge side duct 8A of the duct 8 as shown by the arrow in FIG. 3, flows down from the upper surface of the storage box 3 to the back, flows into the partition 4, and then makes a U-turn to form a lower back. To the return side duct 8
Circulation is carried out by flowing into B and raising the return duct 8B to return to the suction side of the cooler 22. The wall surface of the storage box 3 is cooled by the cold air circulation, and the storage boxes 3 and 5 are stored in the upper and lower storage chambers 5 and 6.
Cooled indirectly from the wall of

【0014】一方、支柱10内部には断熱箱体2の天壁
2A前端の連通部25にて外部と連通する外気導入ダク
ト26が形成されている。この外気導入ダクト26は上
下貯蔵室5、6内と吹出口27、28にてそれぞれ連通
しており、ここから水分を含んだ外気が上下貯蔵室5、
6内に図中矢印の如く導入される構造とされている。こ
のように上下貯蔵室5、6は貯蔵箱3壁面から間接冷却
を受けると共に、外気導入ダクト26から水分を多く含
んだ外気が導入されることにより、その内部は後述する
制御装置40によって例えば−5℃乃至+13℃の範囲
内で80%乃至90%の高湿度にて冷却維持されように
なる。
On the other hand, inside the column 10, an outside air introducing duct 26 communicating with the outside is formed at a communicating portion 25 at the front end of the ceiling wall 2A of the heat insulating box 2. The outside air introducing duct 26 communicates with the insides of the upper and lower storage chambers 5 and 6 and the outlets 27 and 28, respectively, from which outside air containing water is connected.
6, the structure is introduced as indicated by an arrow in the figure. As described above, the upper and lower storage chambers 5 and 6 receive indirect cooling from the wall surface of the storage box 3 and the outside air containing a large amount of water is introduced from the outside air introduction duct 26, so that the inside thereof is controlled by the control device 40 described later, for example. Cooling is maintained at a high humidity of 80% to 90% within a range of 5 ° C to + 13 ° C.

【0015】貯蔵箱3の上面は後方に低く傾斜してお
り、上貯蔵室5内上部にはこの傾斜にそって傾斜した露
受板30が配置されている。また、下貯蔵室6内上部に
も後方に低く傾斜した露受板31が配置されると共に、
仕切部4には上下貯蔵室5、6を連通して露受板31上
方に開口する連通管32が取り付けられている。更に、
下貯蔵室6底部の貯蔵箱3にはドレン水を排出するため
の排水経路33が構成されている。
The upper surface of the storage box 3 is inclined rearwardly low, and a dew receiving plate 30 inclined along this inclination is arranged in the upper part of the upper storage chamber 5. In addition, a dew receiving plate 31 that is inclined rearward and low is disposed also in the upper part of the lower storage room 6,
A communication pipe 32 communicating with the upper and lower storage chambers 5 and 6 and opening above the dew receiving plate 31 is attached to the partition 4. Furthermore,
The storage box 3 at the bottom of the lower storage room 6 is provided with a drain passage 33 for discharging drain water.

【0016】図1において、制御装置40は1チップC
PUから成るマイクロコンピュータ41にて構成され、
このマイクロコンピュータ41には温度設定手段として
の設定切換スイッチ42及び設定値可変部43の出力が
入力され、更に、上貯蔵室5内の温度を検出するよう露
受板30上側に設けられた庫内温度センサー44と、帰
還側ダクト8B内の温度を検出するように冷却器22の
吸込側に設けられたコントロールセンサー45の出力が
センサー信号増幅部46を介して入力される。前記設定
切換スイッチ42及び設定値可変部43はコントロール
パネル20に配置される。同じくコントロールパネル2
0には温度表示部47が設けられ、この温度表示部47
はマイクロコンピュータ41の出力側に接続される。マ
イクロコンピュータ41の出力側には前記冷凍装置16
の圧縮機17の通電を制御する出力リレー48が接続さ
れている。また、マイクロコンピュータ41はプログラ
ムを内蔵したROM50と、メモリとしてのRAM51
を内蔵している。
In FIG. 1, the controller 40 is a one-chip C
Comprised of a microcomputer 41 composed of PU,
The outputs of a setting changeover switch 42 as a temperature setting means and a set value varying section 43 are input to the microcomputer 41, and a storage provided above the dew receiving plate 30 to detect the temperature in the upper storage chamber 5. Outputs of the internal temperature sensor 44 and the control sensor 45 provided on the suction side of the cooler 22 so as to detect the temperature in the return duct 8B are input via the sensor signal amplification section 46. The setting changeover switch 42 and the set value varying section 43 are arranged on the control panel 20. Also control panel 2
0 is provided with a temperature display unit 47, and this temperature display unit 47
Is connected to the output side of the microcomputer 41. On the output side of the microcomputer 41, the refrigerating device 16
An output relay 48 for controlling the energization of the compressor 17 is connected. Further, the microcomputer 41 includes a ROM 50 containing a program and a RAM 51 as a memory.
Built in.

【0017】次に、図4及び図5を参照してマイクロコ
ンピュータ41の動作を説明する。尚、図5においてL
1は上貯蔵室5内の温度、L2は貯蔵室内温度設定値、
L3はダクト8内の温度、L4はダクト内温度設定値を
それぞれ示している。マイクロコンピュータ41は常に
は温度表示部47に庫内温度センサー44の出力に基づ
く現在の上貯蔵室5内の温度L1を表示している。この
状態から使用者が設定切換スイッチ42を操作すると、
マイクロコンピュータ41は設定モードに切り換わり、
次に設定値可変部43にて例えば前述の−5℃乃至+1
3℃の範囲内で所望の貯蔵室内温度設定値L2を設定す
る。この設定モードは所定時間後に解除されるが、設定
モード中マイクロコンピュータ41は温度表示部47に
設定値L2を表示し,それ以外の時は上貯蔵室5内の温
度L1を表示する。
Next, the operation of the microcomputer 41 will be described with reference to FIGS. In addition, in FIG.
1 is the temperature in the upper storage room 5, L2 is the set temperature in the storage room,
L3 indicates the temperature inside the duct 8, and L4 indicates the temperature set value inside the duct. The microcomputer 41 always displays the current temperature L1 in the upper storage compartment 5 on the temperature display unit 47 based on the output of the inside temperature sensor 44. When the user operates the setting changeover switch 42 from this state,
The microcomputer 41 switches to the setting mode,
Next, in the set value varying unit 43, for example, -5 ° C to +1 described above.
A desired storage chamber temperature set value L2 is set within the range of 3 ° C. This setting mode is canceled after a predetermined time, but during the setting mode, the microcomputer 41 displays the setting value L2 on the temperature display section 47, and otherwise displays the temperature L1 in the upper storage chamber 5.

【0018】マイクロコンピュータ41は、上記の如く
設定された貯蔵室内温度設定値L2に基づき、例えば所
定の温度差でもってダクト内温度設定値L4の初期値を
自ら決定し、このダクト内温度設定値L4とコントロー
ルセンサー43に基づくダクト8内の温度L3とを比較
し、所定の上限温度と下限温度の間で出力リレー48を
ON−OFFすることにより、圧縮機17を運転・停止
制御してダクト8内の温度L3を平均してダクト内温度
設定値L4に制御する。
The microcomputer 41 itself determines the initial value of the duct internal temperature set value L4 based on the storage chamber temperature set value L2 set as described above, for example, with a predetermined temperature difference, and the duct internal temperature set value is set. The temperature L3 in the duct 8 based on the control sensor 43 is compared with L4, and the output relay 48 is turned on and off between a predetermined upper limit temperature and a lower limit temperature to control the operation of the compressor 17 to stop the duct. The temperature L3 in 8 is averaged and controlled to the duct internal temperature set value L4.

【0019】一方、マイクロコンピュータ41は庫内温
度センサー44の出力に基づき、例えば3秒に1回上貯
蔵室5内の温度L1をサンプリングし、3分に1回それ
以前30回分(即ち、1分30秒前まで)のサンプリン
グ結果の温度L1を平均して平均温度L10を算出し、
この平均温度L10と貯蔵室内温度設定値L2との差
(L10−L2)を算出して偏差を導き、この偏差をR
AM51に記憶している。図4の棒1個が1回分の偏差
を示している。この偏差は10回分RAM51に記憶
し、30分(T)に1回これら偏差10個分の総和を求
める。図4の例の場合は外気温度が高い状況を示し、上
貯蔵室5内の温度L1の平均温度L10が貯蔵室内温度
設定値L2より高く、偏差の総和は+15℃となってい
る。
On the other hand, the microcomputer 41 samples the temperature L1 in the upper storage chamber 5 once every 3 seconds based on the output of the internal temperature sensor 44, and once every 3 minutes, 30 times before that (that is, 1). The temperature L1 of the sampling result (up to 30 seconds before the minute) is averaged to calculate the average temperature L10,
The difference (L10-L2) between the average temperature L10 and the set value L2 for the temperature inside the storage chamber is calculated to derive the deviation, and the deviation is R
It is stored in AM51. One bar in FIG. 4 shows the deviation for one time. This deviation is stored in the RAM 51 for 10 times, and the sum total of 10 deviations is calculated once every 30 minutes (T). In the case of the example in FIG. 4, the outside air temperature is high, the average temperature L10 of the temperature L1 in the upper storage chamber 5 is higher than the storage chamber temperature set value L2, and the total deviation is + 15 ° C.

【0020】更に、マイクロコンピュータ41は例えば
前記偏差の総和が+20℃以上の場合は、ダクト内温度
設定値L4を−2℃、偏差の総和が+10℃以上+19
℃以下の場合は、ダクト内温度設定値L4を−1℃だけ
現在の値から変更する。尚、偏差の総和が−9℃以上+
9℃以下の場合は、ダクト内温度設定値L4を変更しな
い。また、偏差の総和が−19℃以上−10℃以下の場
合は、ダクト内温度設定値L4を+1℃、偏差の総和が
−20℃以下の場合は、ダクト内温度設定値L4を+2
℃だけ現在の値から変更する。
Further, the microcomputer 41, for example, when the sum of the deviations is + 20 ° C. or more, the duct temperature setting value L4 is −2 ° C., and the sum of the deviations is + 10 ° C. or more +19.
When the temperature is equal to or lower than 0 ° C, the duct temperature setting value L4 is changed from the current value by -1 ° C. In addition, the sum of deviations is -9 ° C or more +
When the temperature is 9 ° C. or lower, the duct temperature set value L4 is not changed. Further, when the total deviation is −19 ° C. or higher and −10 ° C. or lower, the duct internal temperature setting value L4 is + 1 ° C., and when the total deviation is −20 ° C. or lower, the duct internal temperature setting value L4 is +2.
Change from the current value only in ° C.

【0021】この制御の様子を図5で説明する。図4の
例の場合には偏差の総和は+15℃であったから、上述
の制御よりマイクロコンピュータ41は偏差の総和が判
明した時点tにてダクト内温度設定値L4を現在の設定
値から−1℃だけ変更する。即ち、ダクト内温度設定値
L4を1℃だけ下げる。これによって、ダクト内の温度
L3が低下するので、貯蔵箱3はより強力に冷却される
ようになり、図5に示す如く上貯蔵室5の温度L1も低
下して貯蔵室内温度設定値L2に近づいて行く。
The state of this control will be described with reference to FIG. In the case of the example in FIG. 4, since the total deviation is + 15 ° C., the microcomputer 41 sets the duct internal temperature setting value L4 to −1 from the current setting value at the time t when the total deviation is found from the above control. Change only ℃. That is, the set temperature L4 in the duct is lowered by 1 ° C. As a result, the temperature L3 in the duct decreases, so that the storage box 3 is cooled more strongly, and as shown in FIG. 5, the temperature L1 of the upper storage chamber 5 also decreases to the storage chamber temperature set value L2. Go closer.

【0022】逆に、偏差の総和が(−)値である場合に
はダクト内温度設定値L4を(+)方向に変更すること
によってダクト内の温度L3を上げ、上貯蔵室5内の温
度L1を上げて貯蔵室内温度設定値L2に近づけるよう
動作する。従って、夜間等外気温度が低い場合はダクト
内温度設定値L4を上げて圧縮機17の運転率を下げる
よう制御するので、省エネルギーに寄与することにな
る。
On the contrary, when the sum of the deviations is a (-) value, the temperature L3 in the duct is increased by changing the temperature set value L4 in the duct to the (+) direction, and the temperature in the upper storage chamber 5 is increased. It operates so as to raise L1 and bring it closer to the set temperature L2 in the storage chamber. Therefore, when the outside air temperature is low such as at night, the duct internal temperature setting value L4 is increased to control the operation rate of the compressor 17, which contributes to energy saving.

【0023】また、上述の如く3分毎に上貯蔵室5内の
温度L1の平均温度L10を導き、これと貯蔵室内温度
設定値L2との差を偏差とし、これの10回分の総和に
よってダクト内温度設定値L4を変更するので、扉11
の開閉等による上貯蔵室5内の温度L1の瞬時的な変動
による影響を受け難くなり、制御が安定化する。更に、
マイクロコンピュータ41は圧縮機17の運転時間を積
算しており、所定の時間に達した時点で冷却器22の除
霜を行うが、この除霜開始から例えば1時間は前記ダク
ト内温度設定値L4の変更制御を行わず、除霜開始時の
データを保持する。これによって冷却器22の除霜によ
る上貯蔵室5内の温度上昇と外気温度の変化による上貯
蔵室5内の温度上昇を区別し、除霜による一時的な温度
変動によって制御が不安定となるのを防止している。
Further, as described above, the average temperature L10 of the temperature L1 in the upper storage chamber 5 is derived every 3 minutes, and the difference between the average temperature L10 and the storage chamber temperature set value L2 is defined as a deviation. Since the internal temperature set value L4 is changed, the door 11
The temperature becomes less likely to be affected by the instantaneous fluctuation of the temperature L1 in the upper storage chamber 5 due to the opening and closing of the control chamber, and the control is stabilized. Furthermore,
The microcomputer 41 integrates the operating time of the compressor 17, and defrosts the cooler 22 when a predetermined time is reached. For example, one hour after the start of defrosting, the duct internal temperature set value L4 is set. The change control of No. is not performed, and the data at the start of defrosting is retained. This distinguishes the temperature rise in the upper storage chamber 5 due to the defrosting of the cooler 22 from the temperature rise in the upper storage chamber 5 due to the change in the outside air temperature, and the control becomes unstable due to the temporary temperature fluctuation due to the defrosting. Are prevented.

【0024】尚、RAM51内の偏差に関するデータは
ダクト内温度設定値L4の変更操作後クリヤされ、再
び、前記サンプリングが開始される。また、マイクロコ
ンピュータ41による上貯蔵室5内の温度L1のサンプ
リングタイミング、偏差を算出する間隔及び平均値を算
出する期間は実施例に限られるものではなく、機器の性
能に応じて適宜変更可能である。
The data on the deviation in the RAM 51 is cleared after the operation of changing the duct internal temperature set value L4, and the sampling is started again. Further, the sampling timing of the temperature L1 in the upper storage chamber 5, the interval for calculating the deviation, and the period for calculating the average value by the microcomputer 41 are not limited to those in the embodiment, and can be appropriately changed according to the performance of the device. is there.

【0025】[0025]

【発明の効果】本発明の高湿冷却貯蔵庫によれば、ダク
ト内の温度とダクト内温度設定値を比較して冷凍装置を
制御すると共に、貯蔵室内温度と貯蔵室内温度設定値の
差に応じて前記ダクト内温度設定値を変更するので、外
気温度の変動等に係わらず貯蔵室内温度を設定値に近づ
けることが可能となり、間接冷却方式の高湿冷却貯蔵庫
の貯蔵室内の温度制御性能を向上させることができる。
According to the high humidity cooling storage of the present invention, the temperature in the duct and the temperature set value in the duct are compared to control the refrigerating device, and the temperature in the storage chamber is adjusted according to the difference between the temperature in the storage chamber and the set value in the storage chamber. By changing the duct internal temperature setting value, it is possible to bring the temperature inside the storage room closer to the set value regardless of changes in the outside air temperature, etc., and improve the temperature control performance in the storage room of the indirect cooling type high humidity cooling storage cabinet. Can be made.

【0026】また、所定期間の貯蔵室内温度のサンプリ
ング結果によってダクト内温度設定値を変更することに
より、扉の開閉等による瞬時的な貯蔵室内温度の変動に
よって制御が不安定となることを防止することができる
ものである。
Further, by changing the temperature setting value in the duct according to the sampling result of the temperature inside the storage chamber for a predetermined period, it is possible to prevent the control from becoming unstable due to the instantaneous change in the temperature inside the storage chamber due to the opening and closing of the door. Is something that can be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高湿冷却貯蔵庫の制御装置のブロック
図である。
FIG. 1 is a block diagram of a controller for a high-humidity cooled storage according to the present invention.

【図2】本発明の高湿冷却貯蔵庫の正面図である。FIG. 2 is a front view of the high-humidity cooling storage cabinet of the present invention.

【図3】本発明の高湿冷却貯蔵庫の縦断面図である。FIG. 3 is a vertical cross-sectional view of the high-humidity cold storage of the present invention.

【図4】制御装置の上貯蔵室内の温度のサンプリング動
作を説明する図である。
FIG. 4 is a diagram illustrating a sampling operation of temperature in the upper storage chamber of the control device.

【図5】制御装置の制御に基づく各部の温度推移を示す
図である。
FIG. 5 is a diagram showing a temperature transition of each part under the control of the control device.

【図6】従来の高湿冷却貯蔵庫の各部の温度推移を示す
図である。
FIG. 6 is a diagram showing a temperature transition of each part of a conventional high humidity cooling storage cabinet.

【符号の説明】[Explanation of symbols]

1 高湿冷却貯蔵庫 2 断熱箱体 3 貯蔵箱 5 上貯蔵室 6 下貯蔵室 8 ダクト 16 冷凍装置 17 圧縮機 40 制御装置 41 マイクロコンピュータ 42 設定切換スイッチ 43 設定値可変部 44 庫内温度センサー 45 コントロールセンサー 1 High-humidity cooling storage cabinet 2 Insulation box body 3 Storage box 5 Upper storage room 6 Lower storage room 8 Duct 16 Refrigerator 17 Compressor 40 Control device 41 Microcomputer 42 Setting change switch 43 Set value varying unit 44 Internal temperature sensor 45 Control sensor

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 断熱箱体内に該断熱箱体と所定の間隔を
存して熱伝導性の貯蔵箱を設け、該貯蔵箱内を貯蔵室と
成すと共に、前記間隔をダクトとし、該ダクト内に冷気
を循環することにより前記貯蔵室内を間接的に冷却する
よう構成した高湿冷却貯蔵庫において、前記ダクト内に
冷気を循環するための冷凍装置と、前記ダクト内の温度
を検出するコントロールセンサーと、前記貯蔵室内の温
度を検出する庫内温度センサーと、前記貯蔵室内の温度
を設定する温度設定手段と、前記コントロールセンサー
の出力に基づく前記ダクト内温度と所定のダクト内温度
設定値とを比較して前記冷凍装置を制御する制御手段と
を具備して成り、該制御手段は前記庫内温度センサーに
基づく貯蔵室内温度と前記温度設定手段に基づく貯蔵室
内温度設定値との差に応じて前記ダクト内温度設定値を
変更することを特徴とする高湿冷却貯蔵庫。
1. A heat-conductive storage box is provided in the heat-insulating box at a predetermined distance from the heat-insulating box, a storage chamber is formed in the storage box, and the space is a duct. In a high humidity cooling storage configured to indirectly cool the storage chamber by circulating cold air in the refrigeration device for circulating cold air in the duct, and a control sensor for detecting the temperature in the duct. Comparing the inside temperature sensor for detecting the temperature inside the storage chamber, the temperature setting means for setting the temperature inside the storage chamber, and the temperature inside the duct based on the output of the control sensor with a predetermined temperature inside the duct. And a control means for controlling the refrigerating apparatus, wherein the control means is a difference between a temperature inside the storage chamber based on the temperature sensor inside the storage and a temperature inside the storage room set based on the temperature setting means. A high-humidity cooling storage cabinet, wherein the set temperature in the duct is changed according to the above.
【請求項2】 制御手段は貯蔵室内温度と貯蔵室内温度
設定値との差をサンプリングし、所定期間のサンプリン
グ結果により変化する値に基づき前記貯蔵室内温度を前
記貯蔵室内温度設定値に近づける方向にダクト内温度設
定値を変更することを特徴とする請求項1の高湿冷却貯
蔵庫。
2. The control means samples the difference between the temperature in the storage chamber and the set value in the storage chamber, and based on a value that changes according to the sampling result for a predetermined period, the temperature in the storage chamber approaches the temperature set value in the storage chamber. The high-humidity cooling storage cabinet according to claim 1, wherein the set temperature in the duct is changed.
JP3291603A 1991-11-07 1991-11-07 High humidity cooling storage Expired - Fee Related JP2567764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3291603A JP2567764B2 (en) 1991-11-07 1991-11-07 High humidity cooling storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3291603A JP2567764B2 (en) 1991-11-07 1991-11-07 High humidity cooling storage

Publications (2)

Publication Number Publication Date
JPH05126454A JPH05126454A (en) 1993-05-21
JP2567764B2 true JP2567764B2 (en) 1996-12-25

Family

ID=17771086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3291603A Expired - Fee Related JP2567764B2 (en) 1991-11-07 1991-11-07 High humidity cooling storage

Country Status (1)

Country Link
JP (1) JP2567764B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022103154A1 (en) * 2020-11-10 2022-05-19 엘지전자 주식회사 Refrigerator and method for controlling same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4934302B2 (en) * 2005-09-09 2012-05-16 ホシザキ電機株式会社 Cooling storage
JP4809944B2 (en) * 2006-09-01 2011-11-09 ホシザキ電機株式会社 Indirect cooling storage
WO2008105055A1 (en) 2007-02-26 2008-09-04 Hoshizaki Denki Kabushiki Kaisha Cooling storage and method for controlling compressor for the cooling storage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022103154A1 (en) * 2020-11-10 2022-05-19 엘지전자 주식회사 Refrigerator and method for controlling same

Also Published As

Publication number Publication date
JPH05126454A (en) 1993-05-21

Similar Documents

Publication Publication Date Title
US7942014B2 (en) Reduced energy refrigerator defrost method and apparatus
KR0129521B1 (en) Refrigerator having a store room for fermentation of kimchi
EP2116796B1 (en) Refrigerating storage cabinet
US6606870B2 (en) Deterministic refrigerator defrost method and apparatus
US6631620B2 (en) Adaptive refrigerator defrost method and apparatus
US5816060A (en) Air flow control in a side-by-side refrigerator
US20030182952A1 (en) Methods and apparatus for controlling compressor speed
CA2551386A1 (en) Damper assembly and methods for a refrigeration device
US6655158B1 (en) Systems and methods for boosting ice rate formation in a refrigerator
TWI391618B (en) Control method of cooling storage and its compressor
KR20070081672A (en) Kimchi refrigerator and its control method
JP2567764B2 (en) High humidity cooling storage
KR100323340B1 (en) Refrigerator
JP5604903B2 (en) Food cold storage
JP3461531B2 (en) refrigerator
JP3354165B2 (en) Refrigerator refrigerator temperature control device
CN1100975C (en) Cooling storage box
JPH04302976A (en) Control method of electric refrigerator
JP3361038B2 (en) refrigerator
JPH05126458A (en) High-humidity cooling/storing device
JPH07305937A (en) Refrigerator
CA2551401A1 (en) Damper for refrigeration apparatus
JP3474889B2 (en) Refrigerator freezer temperature control device
KR100321243B1 (en) Control method for operation of drawer type kimch'i store house
KR960006014B1 (en) Refrigerator thermostat

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees