JPH0510751A - Evaluating method for measured value - Google Patents
Evaluating method for measured valueInfo
- Publication number
- JPH0510751A JPH0510751A JP18924591A JP18924591A JPH0510751A JP H0510751 A JPH0510751 A JP H0510751A JP 18924591 A JP18924591 A JP 18924591A JP 18924591 A JP18924591 A JP 18924591A JP H0510751 A JPH0510751 A JP H0510751A
- Authority
- JP
- Japan
- Prior art keywords
- design
- value
- coordinate system
- coordinate
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000013461 design Methods 0.000 claims abstract description 53
- 238000005259 measurement Methods 0.000 claims abstract description 42
- 238000011156 evaluation Methods 0.000 claims abstract description 34
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 238000003754 machining Methods 0.000 abstract description 4
- 238000009434 installation Methods 0.000 abstract 1
- 238000012545 processing Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 239000000523 sample Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば三次元測定機等
で測定された被測定自由曲面の三次元測定データが設計
値通りの値になっているかどうかを評価するための測定
値評価方式に関し、特に測定値照合処理の前処理に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measurement value evaluation method for evaluating whether or not the three-dimensional measurement data of a free-form surface to be measured, which is measured by, for example, a three-dimensional measuring machine, is a value as designed. In particular, the present invention relates to preprocessing of measurement value matching processing.
【0002】[0002]
【従来の技術】近年、CAD/CAM(Computer Aided
Design /Computer Aided Manufacturing)システムに
よる設計・加工効率の向上及びNC工作機械の高性能化
等に伴い、複雑な形状の製品を高精度に加工することが
可能になってきた。このため、製品評価の測定工程にお
いても、自由曲面を含む複雑な三次元形状の測定を高精
度に行えることが要求され、そのための高精度な三次元
測定機が開発されるようになってきた。2. Description of the Related Art In recent years, CAD / CAM (Computer Aided)
With the improvement of design / processing efficiency by Design / Computer Aided Manufacturing) system and the high performance of NC machine tools, it has become possible to machine products with complicated shapes with high precision. Therefore, even in the measurement process of product evaluation, it is required to accurately measure a complicated three-dimensional shape including a free-form surface, and a high-precision three-dimensional measuring machine for that purpose has been developed. .
【0003】[0003]
【発明が解決しようとする課題】しかしながら、長さ、
厚さ、半径等の一次元座標系における測定値を設計値と
照合させて製品評価を行うことは比較的簡単であるが、
三次元座標系の座標値として求められる測定値が設計公
差範囲内に含まれているかどうかの評価はきわめて難し
い。これは、測定時や加工時に発生するワークの取り付
け誤差等に起因して、測定値の座標系自体が評価すべき
座標系からずれてしまうからである。このため、従来
は、三次元座標値として求められる測定値と設計値とを
正しく照合することができず、正しい評価が行えないと
いう問題点があった。However, the length,
It is relatively easy to evaluate the product by comparing the measured values in the one-dimensional coordinate system such as thickness and radius with the design values.
It is extremely difficult to evaluate whether or not the measured value obtained as the coordinate value of the three-dimensional coordinate system falls within the design tolerance range. This is because the coordinate system itself of the measured value deviates from the coordinate system to be evaluated due to a work mounting error or the like that occurs during measurement or machining. For this reason, conventionally, there has been a problem that the measured value obtained as the three-dimensional coordinate value cannot be correctly collated with the design value, and correct evaluation cannot be performed.
【0004】本発明は、このような点に鑑みなされたも
ので、測定時や加工時にワークの取り付け誤差が発生し
ても、これによる設計値照合への影響を取り除くことが
可能であり、常に正しい測定値の評価を行うことが可能
な設計値評価方式を提供することを目的とする。The present invention has been made in view of such a point, and even if a work mounting error occurs during measurement or machining, it is possible to eliminate the influence on design value verification due to the error. It is an object of the present invention to provide a design value evaluation method capable of evaluating a correct measured value.
【0005】[0005]
【課題を解決するための手段】本発明に係る設計値評価
方式は、既知形状の自由曲面を測定することによって得
られた測定座標値と設計座標値との間の誤差を評価する
測定値評価方式において、前記測定座標値によって特定
される自由曲面と前記設計座標値との間の最短距離を評
価関数とし、この評価関数が最小値に収束する測定座標
値の第1座標系と設計座標値の第2座標系との間の相対
位置関係を求め、得られた両座標系の間の相対位置関係
に基づいて前記両座標系のうちの一方に対して他方を整
合させる座標変換処理を行なったのち、前記測定座標値
と設計座標値との間の誤差を評価することを特徴とす
る。A design value evaluation method according to the present invention is a measurement value evaluation for evaluating an error between a measurement coordinate value obtained by measuring a free-form surface of a known shape and a design coordinate value. In the method, the shortest distance between the free-form surface specified by the measurement coordinate value and the design coordinate value is used as an evaluation function, and the first coordinate system and the design coordinate value of the measurement coordinate value at which this evaluation function converges to the minimum value. And a coordinate conversion process for matching one of the two coordinate systems with the other based on the obtained relative positional relationship between the two coordinate systems. After that, the error between the measured coordinate value and the design coordinate value is evaluated.
【0006】[0006]
【作用】本発明によれば、測定座標値によって特定され
る自由曲面と設計座標値との間の最短距離を評価関数と
し、この評価関数が最小値に収束するような測定座標系
(第1座標系)と設計座標系(第2座標系)との間の相
対位置関係が求められる。そして、求められた両座標系
の相対位置関係に基づいて、一方の座標系に他方の座標
系が一致するように両座標値の座標変換が行われる。こ
の結果、本発明によれば、測定時や加工時のワークの取
り付け誤差等による影響が排除され、正しい測定値の評
価を行うことが可能になる。According to the present invention, the shortest distance between the free-form surface specified by the measurement coordinate value and the design coordinate value is used as the evaluation function, and the measurement coordinate system (first measurement function) such that the evaluation function converges to the minimum value (first A relative positional relationship between the coordinate system) and the design coordinate system (second coordinate system) is obtained. Then, based on the obtained relative positional relationship between both coordinate systems, coordinate conversion of both coordinate values is performed so that one coordinate system matches the other coordinate system. As a result, according to the present invention, it is possible to eliminate the influence of a work attachment error during measurement or machining, and to correctly evaluate the measured value.
【0007】なお、測定座標値によって特定される自由
曲面を順次小さいパッチに絞り込んでいきながら、設計
座標値に最も近いパッチを選択していく、或いは更に選
択されたパッチの内部に複数の点を発生させ、設計座標
値に近い点の選択処理と、選択された点の周囲に更に複
数の点を発生させる処理とを繰り返す等の処理を行うよ
うにすると、処理すべきデータ量を大幅に削減すること
ができ、処理速度を高めることができる。The free-form surface specified by the measured coordinate values is successively narrowed down to smaller patches, and the patch closest to the design coordinate values is selected, or a plurality of points are added to the inside of the selected patch. If you repeat the process of generating and selecting points close to the design coordinate value and the process of generating multiple points around the selected point, the amount of data to be processed will be greatly reduced. It is possible to increase the processing speed.
【0008】[0008]
【実施例】以下、添付の図面を参照して本発明の実施例
を説明する。図1は、本発明の一実施例に係る測定値評
価方式において、特に設計値との照合に先立つ評価座標
系(測定座標系;第1座標系)と設計座標系(第2座標
系)との間の座標系整合処理の部分を示すフローチャー
トである。ここでの座標系整合処理は、具体的には、図
2に示すように、与えられた各設計点Qと自由曲面Sと
の最短距離を計算し、例えばその二乗和が最小になる評
価座標系G1に対する設計座標系G2の位置関係を求
め、その位置関係に基づいて設計点Qを座標変換する処
理である。Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows an evaluation coordinate system (measurement coordinate system; first coordinate system) and a design coordinate system (second coordinate system), particularly prior to collation with a design value, in a measurement value evaluation method according to an embodiment of the present invention. 5 is a flowchart showing a part of coordinate system matching processing between the two. Specifically, the coordinate system matching process here calculates the shortest distance between each given design point Q and the free-form surface S, as shown in FIG. This is a process of obtaining the positional relationship of the design coordinate system G2 with respect to the system G1 and performing coordinate conversion of the design point Q based on the positional relationship.
【0009】先ず、本実施例の処理の説明に先立ち、三
次元測定機の測定データから自由曲面(プローブ中心曲
面)を生成する方法について簡単に説明する。First, prior to the description of the processing of this embodiment, a method of generating a free-form surface (probe center curved surface) from measurement data of a coordinate measuring machine will be briefly described.
【0010】即ち、三次元測定機を使用した測定工程で
は、図3に示すように、各測定断面MS毎にプローブ中
心点群データ(以下、「測定点群データ」と呼ぶ)Dを
求める。このとき、測定ピッチ及び測定点数は任意で良
い。従って、三次元測定機から得られた測定点群データ
Dは、まちまちの間隔となっている。That is, in the measuring process using the coordinate measuring machine, as shown in FIG. 3, probe center point group data (hereinafter referred to as "measurement point group data") D is obtained for each measurement cross section MS. At this time, the measurement pitch and the number of measurement points may be arbitrary. Therefore, the measurement point group data D obtained from the coordinate measuring machine has various intervals.
【0011】この測定点群データDに対し、次に第1の
自由曲線C1 の当てはめ処理を行う。この第1の自由曲
線C1 の当てはめ処理は、各測定断面の測定点列毎に行
われる。この第1の自由曲線C1 は、図4に示すよう
に、測定点間を微小値εの範囲をはみださないような複
数の曲線からなり、隣り合う曲線は、その接続点におい
て接線が共通であるように決定する。A first free curve C 1 fitting process is then performed on this measurement point group data D. The fitting process of the first free curve C 1 is performed for each measurement point sequence of each measurement cross section. As shown in FIG. 4, the first free curve C 1 is composed of a plurality of curves that do not extend the range of the minute value ε between the measurement points, and adjacent curves are tangents at their connecting points. Decide to be common.
【0012】次に、求められた各測定点列に対応する第
1の自由曲線C1 を、例えば弦長を基準として各々n等
分(nは任意の整数)した後、得られた等分点を滑らか
に通るように第1の自由曲線を再び算出する。ここで、
第j番目の測定点列におけるi番目((iは0〜n)の
分割点のベクトルデータをPijとする。Next, the first free-form curve C 1 corresponding to each of the obtained measurement point sequences is divided into n equal parts (n is an arbitrary integer) based on, for example, the chord length, and the obtained equal parts are obtained. The first free-form curve is calculated again so as to smoothly pass through the points. here,
The vector data of the i-th ((i is 0 to n) division point in the j-th measurement point sequence is P ij .
【0013】次に、図5に示すように、iを共通とする
分割点を通る自由曲線、即ち、上記の処理で求められた
第1の自由曲線C1 (この第1の自由曲線C1 の方向を
以下u方向とする)と交差する第2の自由曲線C2 (こ
の第2の自由曲線C2 の方向を以下v方向とする)を決
定する。この第2の自由曲線C2 は、通過点Pijを通
り、通過点Pijにおける接線が共通になることを条件と
して決定される。この自由曲線の決定アルゴリズムとし
ては、例えばC1 級接続又はC2 級接続の3次ベジェ曲
線の生成アルゴリズムを使用することができる。Next, as shown in FIG. 5, a free curve passing through a division point having a common i, that is, the first free curve C 1 (the first free curve C 1 obtained by the above process A second free curve C 2 (hereinafter, the direction of the second free curve C 2 is hereinafter referred to as the v direction) is determined. The second free curve C 2 is passed through the pass point P ij, tangent in the pass point P ij is determined as a condition to become in common. As an algorithm for determining the free curve, for example, an algorithm for generating a cubic Bezier curve of class C 1 connection or class C 2 connection can be used.
【0014】次に、このようなアルゴリズムによって生
成された自由曲線で各々囲まれた範囲に接平面が共通に
なる自由曲面を生成する。接平面が共通であるように張
ったパッチを生成するには、例えば、共通の境界曲線を
有し、且つその両端点で接平面が一致する条件を満たす
2枚のパッチを生成すればよい。この条件を満たせば、
境界曲線上の全ての点で接平面が一致することになる。
以上の処理により、単位自由曲面が夫々生成され、これ
らの単位自由曲面の集合によってプローブ中心曲面を生
成することができる。Next, a free-form surface having a common tangent plane in a range surrounded by free-form curves generated by such an algorithm is generated. In order to generate a patch stretched so that the tangent planes are common, for example, two patches having a common boundary curve and satisfying the condition that the tangent planes match at both end points may be generated. If this condition is met,
The tangent planes match at all points on the boundary curve.
By the above processing, unit free-form surfaces are generated, and the probe center curved surface can be generated by a set of these unit free-form surfaces.
【0015】求められたプローブ中心曲面に対しては、
プローブ半径分のオフセット処理を行うことにより実曲
面を算出することができるが、本処理で対象とする自由
曲面は、実曲面でも、プローブ中心曲面でもよい。For the obtained probe center curved surface,
Although a real curved surface can be calculated by performing offset processing for the probe radius, the free curved surface targeted in this processing may be the real curved surface or the probe center curved surface.
【0016】自由曲面が求められたら、自由曲面と各設
計点との最短距離を評価関数として求めるため、先ず、
設計点に最も近い自由曲面上の位置Pを算する(S
1)。ここでは、データ量を削減して計算の高速化を図
るため、図6に示すように、パッチ全体をいくつかのパ
ッチ群にグループ分けする。次に、図7に示すように、
指定された設計点に最も近いn個のパッチ群を抽出し、
抽出されたパッチ群に含まれるパッチの中から、図8に
示すように、設計点に最も近いm個のパッチを抽出す
る。次に、図9に示すように、抽出されたパッチの中に
内点を発生させ、指定された設計点に最も近い点をl点
だけ抽出する。そして、図10に示すように、抽出され
た内点の周囲を更に分割して、最も近い点をk点だけ抽
出する。このk点の抽出処理をs回繰り返すことによ
り、設計値に最も近い1点を求める。なお、ここで、
n,m,l,k,sは、チューニングパラメータであ
り、処理の効率と精度とを考慮して任意に設定可能であ
る。When the free-form surface is obtained, the shortest distance between the free-form surface and each design point is obtained as an evaluation function.
The position P on the free-form surface closest to the design point is calculated (S
1). Here, in order to reduce the data amount and speed up the calculation, the entire patch is divided into several patch groups as shown in FIG. Next, as shown in FIG.
Extract the n patch groups that are closest to the specified design point,
As shown in FIG. 8, m patches closest to the design point are extracted from the patches included in the extracted patch group. Next, as shown in FIG. 9, an internal point is generated in the extracted patch, and only one point, which is the closest to the designated design point, is extracted. Then, as shown in FIG. 10, the periphery of the extracted inner point is further divided, and only the closest k points are extracted. By repeating this k-point extraction processing s times, one point closest to the design value is obtained. Here,
n, m, l, k, and s are tuning parameters, which can be arbitrarily set in consideration of processing efficiency and accuracy.
【0017】自由曲面上の位置Pが算出されたら、次に
評価関数fを算出する(S2)。評価関数fは、図11
に示すように、求められた各点の位置Pから各設計点Q
までの最短距離Lによって表される。もし、自由曲面が
プローブ中心曲面であれば、上記自由曲面をプローブ先
端球の半径r分だけ補正すればよい。図12(a)は、
設計点Qがプローブ中心曲面Sに対し、実面側に存在す
る場合、図12(b)は、設計点Qがプローブ中心曲面
Sに対し、実面とは反対側に存在する場合をそれぞれ示
している。After the position P on the free-form surface is calculated, the evaluation function f is then calculated (S2). The evaluation function f is shown in FIG.
As shown in, each design point Q is calculated from the obtained position P of each point.
It is represented by the shortest distance L to. If the free curved surface is the probe center curved surface, the free curved surface may be corrected by the radius r of the probe tip sphere. FIG. 12A shows
When the design point Q exists on the real surface side with respect to the probe center curved surface S, FIG. 12B shows the case where the design point Q exists on the opposite side to the probe center curved surface S with respect to the real surface. ing.
【0018】続いて、非線形最小二乗法により設計基準
座標系の最適位置と姿勢を求める(S3)。非線形最小
二乗法の可変パラメータとしては、原点の平行移動パラ
メータ(Δx,Δy,Δz)〔図13(a)〕と、Z軸
の倒れ量パラメータ(Δl,Δm)〔図13(b)〕
と、Z軸の回転パラメータ(Δω)〔図13(c)〕と
を使用する。即ち、Δl,ΔmによってZ軸,X軸及び
Y軸の方向は、数1のように求められる。Then, the optimum position and orientation of the design reference coordinate system are obtained by the nonlinear least squares method (S3). Variable parameters of the nonlinear least squares method include a translational parameter of the origin (Δx, Δy, Δz) [FIG. 13 (a)] and a tilt amount parameter of the Z axis (Δl, Δm) [FIG. 13 (b)].
And the Z-axis rotation parameter (Δω) [Fig. 13 (c)]. That is, the directions of the Z-axis, the X-axis, and the Y-axis can be calculated by Δl and Δm as shown in Equation 1.
【0019】[0019]
【数1】 [Equation 1]
【0020】パラメータは、(Δx,Δy,Δz),
(Δl,Δm),Δωの順に座標系に適用する。但し、
()内は同時に適用する。最適位置を算出するには、次
の方程式を繰り返し適用する非線形最小二乗法を使用す
る。The parameters are (Δx, Δy, Δz),
(Δl, Δm) and Δω are applied to the coordinate system in this order. However,
The values in parentheses apply at the same time. To calculate the optimum position, a non-linear least squares method is used which repeatedly applies the following equation.
【0021】[0021]
【数2】 [Equation 2]
【0022】ここで、Δx,Δy,Δzはチューニング
パラメータとする。Δl,Δm,Δωは、設計基準座標
系の原点から各設計点までの平均距離Rによって、下記
数3のように設定し、L,M,Ωをチューニングパラメ
ータとする。Here, Δx, Δy, and Δz are tuning parameters. Δl, Δm, and Δω are set according to the following equation 3 according to the average distance R from the origin of the design reference coordinate system to each design point, and L, M, and Ω are used as tuning parameters.
【0023】[0023]
【数3】Δl=L/R Δm=M/R Δω=Ω/R[Formula 3] Δl = L / R Δm = M / R Δω = Ω / R
【0024】下記数2を変形Cholesky法によって解いて
a1 〜a6 を求める(S4)。次に非線形最小二乗法の
収束判定処理を行う(S5)。収束判定では、数4の3
つの条件のいずれか一つを使用し、これを満足したかど
うかを判定する。The following expression 2 is solved by the modified Cholesky method to obtain a1 to a6 (S4). Next, a convergence determination process of the nonlinear least squares method is performed (S5). In the convergence determination, the number 3 of 4
Use one of the two conditions to determine if this is met.
【0025】[0025]
【数4】 [Equation 4]
【0026】もし、条件が満足されたら、処理を終了
し、そうでない場合には、下記数5により新しい座標系
位置と姿勢とを求め、再度同様な処理を実行する(S
5)。If the conditions are satisfied, the process is terminated, and if not, a new coordinate system position and orientation are obtained by the following equation 5, and the same process is executed again (S).
5).
【0027】[0027]
【数5】x=x+a1 y=y+a2 z=z+a3 l=l+a4 m=m+a5 ω=ω+a6[Expression 5] x = x + a1 y = y + a2 z = z + a3 l = l + a4 m = m + a5 ω = ω + a6
【0028】そして、収束するまで、この処理を繰り返
すと、最終的に評価座標系を基準した設計座標系の最適
位置及び姿勢を算出することができる。なお、上記実施
例では、評価座標系(第1座標系)に対する設計座標系
(第2座標系)の位置及び姿勢を求めるようにしたが、
設計座標系に対する評価座標系の位置及び姿勢を求め、
測定値を座標変換するようにしてもよい。但し、この場
合には、自由曲面に対する座標変換を行う必要があるた
め、先の実施例よりもややデータ処理量が増すことにな
る。By repeating this process until convergence, the optimum position and orientation of the design coordinate system based on the evaluation coordinate system can be finally calculated. In the above embodiment, the position and orientation of the design coordinate system (second coordinate system) with respect to the evaluation coordinate system (first coordinate system) are obtained.
Obtain the position and orientation of the evaluation coordinate system with respect to the design coordinate system,
You may make it coordinate-convert the measured value. However, in this case, since it is necessary to perform coordinate conversion on the free-form surface, the amount of data processing will be slightly increased compared to the previous embodiment.
【0029】[0029]
【発明の効果】以上述べたように、本発明によれば、測
定座標値によって特定される自由曲面と測定座標値との
間の最短距離を評価関数とし、この評価関数が最小値に
収束するような測定座標系(第1座標系)と設計座標系
(第2座標系)との間の相対位置関係が求めると共に、
求められた両座標系の相対位置関係に基づいて、一方の
座標系に他方の座標系が一致するように両座標値の座標
変換を行うようにしているので、測定時や加工時のワー
クの取り付け誤差等による影響が排除され、測定値を正
しく評価することが可能になる。As described above, according to the present invention, the shortest distance between the free-form surface specified by the measurement coordinate value and the measurement coordinate value is used as the evaluation function, and this evaluation function converges to the minimum value. While the relative positional relationship between the measurement coordinate system (first coordinate system) and the design coordinate system (second coordinate system) is obtained,
Based on the obtained relative positional relationship between both coordinate systems, the coordinate conversion of both coordinate values is performed so that the one coordinate system matches the other coordinate system. The influence of mounting error etc. is eliminated, and it becomes possible to evaluate the measured value correctly.
【図面の簡単な説明】[Brief description of drawings]
【図1】 本発明の一実施例に係る測定評価方式におけ
る座標系整合処理のフローチャートである。FIG. 1 is a flowchart of coordinate system matching processing in a measurement / evaluation method according to an embodiment of the present invention.
【図2】 本実施例に係る座標系整合処理の概要を説明
するための模式図である。FIG. 2 is a schematic diagram for explaining an outline of coordinate system matching processing according to the present embodiment.
【図3】 三次元測定機から得られる測定点群データを
示す模式図である。FIG. 3 is a schematic diagram showing measurement point cloud data obtained from a coordinate measuring machine.
【図4】 測定点群データを第1の自由曲線で当てはめ
た様子を示す模式図である。FIG. 4 is a schematic diagram showing a state in which measured point cloud data is fitted with a first free curve.
【図5】 第1の自由曲線を等分して各等分点を第2の
自由曲線で滑らかに結合した様子を示す模式図である。FIG. 5 is a schematic diagram showing a state in which a first free curve is equally divided and respective equally divided points are smoothly connected by a second free curve.
【図6】 設計点に最短の自由曲面上の位置を求める処
理のため複数のパッチをグループ化した様子を示す模式
図である。FIG. 6 is a schematic diagram showing a state in which a plurality of patches are grouped for the process of obtaining the shortest free-form surface position at a design point.
【図7】 同処理においてパッチ群を絞り込む様子を示
す模式図である。FIG. 7 is a schematic diagram showing how patch groups are narrowed down in the same process.
【図8】 同処理において最終的に絞り込まれたパッチ
を示す模式図である。FIG. 8 is a schematic diagram showing patches finally narrowed down in the same process.
【図9】 同処理において選択されたパッチに内点を発
生させた様子を示す模式図である。FIG. 9 is a schematic diagram showing a state in which inner points are generated in a patch selected in the same process.
【図10】 同処理において選択された点の周囲に複数
の点を発生させた様子を示す模式図である。FIG. 10 is a schematic diagram showing how a plurality of points are generated around the selected point in the same process.
【図11】 選択された自由曲面上の点と設計点との距
離を示す模式図である。FIG. 11 is a schematic diagram showing the distance between a selected point on the free-form surface and the design point.
【図12】 プローブ半径分のオフセットをした場合の
自由曲面上の点と設計点との距離を示す模式図である。FIG. 12 is a schematic diagram showing a distance between a point on a free-form surface and a design point when the probe radius is offset.
【図13】 非線形最小二乗法における可変パラメータ
を説明するための評価座標系と設計座標系とを示す模式
図である。FIG. 13 is a schematic diagram showing an evaluation coordinate system and a design coordinate system for explaining variable parameters in the nonlinear least squares method.
MS…測定断面、D…測定点群データ、C1 …第1の自
由曲線、C2 …第2の自由曲線、S…プローブ中心曲
面、Q…設計点。MS ... measurement section, D ... measurement point group data, C1 ... first free curve, C2 ... second free curve, S ... probe center curved surface, Q ... design point.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 有我 幸三 東京都文京区湯島1丁目3番4号 KTお 茶の水聖橋ビル6階 株式会社システムテ クノロジーインステイテユート内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Kozo Ariga 1-3-4 Yushima, Bunkyo-ku, Tokyo KT Chanomizu Seihashi Building 6th floor Systemte Co., Ltd. In the kunology in status
Claims (3)
って得られた測定座標値と設計座標値との間の誤差を評
価する測定値評価方式において、前記測定座標値によっ
て特定される自由曲面と前記設計座標値との間の最短距
離を評価関数とし、この評価関数が最小値に収束する測
定座標値の第1座標系と設計座標値の第2座標系との間
の相対位置関係を求め、得られた両座標系の間の相対位
置関係に基づいて前記両座標系のうちの一方に対して他
方を整合させる座標変換処理を行なったのち、前記測定
座標値と設計座標値との間の誤差を評価することを特徴
とする測定値評価方式。1. In a measurement value evaluation method for evaluating an error between a measurement coordinate value obtained by measuring a free-form surface of a known shape and a design coordinate value, a free-form surface specified by the measurement coordinate value is used. The shortest distance from the design coordinate value is used as an evaluation function, and the relative positional relationship between the first coordinate system of the measurement coordinate value and the second coordinate system of the design coordinate value at which the evaluation function converges to the minimum value is obtained. Between the measured coordinate value and the design coordinate value after performing a coordinate conversion process for matching one of the coordinate systems with the other based on the obtained relative positional relationship between the coordinate systems. A measurement value evaluation method characterized by evaluating the error of.
曲面を順次小さいパッチに絞り込んでいきながら、前記
設計座標値に最も近いパッチを選択していくことによ
り、前記評価関数を算出することを特徴とする請求項1
記載の測定値評価方式。2. The evaluation function is calculated by sequentially narrowing down the free-form surface specified by the measurement coordinate value into smaller patches and selecting the patch closest to the design coordinate value. Claim 1
Measured value evaluation method described.
生させたのち、前記設計座標値に最も近い点を選択する
処理と、選択された点の周囲に更に複数の点を発生させ
る処理とを複数回繰り返すことにより、前記評価関数を
算出することを特徴とする請求項2記載の測定値評価方
式。3. A process of generating a plurality of points inside a selected patch, a process of selecting a point closest to the design coordinate value, and a process of generating a plurality of points around the selected point. The measurement value evaluation method according to claim 2, wherein the evaluation function is calculated by repeating and a plurality of times.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3189245A JP2520202B2 (en) | 1991-07-03 | 1991-07-03 | Measured value evaluation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3189245A JP2520202B2 (en) | 1991-07-03 | 1991-07-03 | Measured value evaluation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0510751A true JPH0510751A (en) | 1993-01-19 |
JP2520202B2 JP2520202B2 (en) | 1996-07-31 |
Family
ID=16238057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3189245A Expired - Fee Related JP2520202B2 (en) | 1991-07-03 | 1991-07-03 | Measured value evaluation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2520202B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002016868A1 (en) * | 2000-08-18 | 2002-02-28 | Educational Foundation Chuo University | Positional error evaluation method for mobile device and movement accuracy improving method based on the evaluation result |
JP2002107107A (en) * | 2000-07-20 | 2002-04-10 | Biosense Inc | Calibration method with stationary metal compensation for medical system |
EP1239263A3 (en) * | 2001-03-05 | 2003-07-23 | Mitutoyo Corporation | Position measuring apparatus and working apparatus using the same |
JP2005227104A (en) * | 2004-02-12 | 2005-08-25 | Honda Motor Co Ltd | Sheet thickness measuring method |
JP2007017436A (en) * | 2005-06-29 | 2007-01-25 | Snecma | Appearance check method of coupling zone between roller body and taper of turbo machine roller bearing |
JP2009047470A (en) * | 2007-08-15 | 2009-03-05 | Nippon Telegr & Teleph Corp <Ntt> | Magnetic three-dimensional position detector |
JP2009150822A (en) * | 2007-12-21 | 2009-07-09 | Mitsutoyo Corp | Shape measuring device, shape measuring method, and shape measuring program |
JP2009539113A (en) * | 2006-06-01 | 2009-11-12 | クオリティー ヴィジョン インターナショナル インコーポレイテッド | Adaptation of multidimensional measurement data to tolerance range considering measurement uncertainty |
JP2010525357A (en) * | 2007-04-24 | 2010-07-22 | レニショウ パブリック リミテッド カンパニー | Surface measuring apparatus and method |
JP2010169395A (en) * | 2008-07-08 | 2010-08-05 | Samsung Heavy Ind Co Ltd | System and method for evaluating degree of completion of processing of curve-shaped member |
JP2012255674A (en) * | 2011-06-08 | 2012-12-27 | Mitsutoyo Corp | Alignment method |
KR101284857B1 (en) * | 2012-03-09 | 2013-07-09 | 삼성중공업 주식회사 | Method for analyzing the manufacturing error of rudder |
JP2013250074A (en) * | 2012-05-30 | 2013-12-12 | Canon Inc | Shape measurement device |
US9689655B2 (en) | 2008-10-29 | 2017-06-27 | Renishaw Plc | Measurement method |
CN113701985A (en) * | 2021-08-16 | 2021-11-26 | 武汉一冶钢结构有限责任公司 | Wind tunnel contraction section ribbed plate curved surface measuring method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4564632B2 (en) * | 2000-07-25 | 2010-10-20 | キヤノン株式会社 | Shape evaluation method and component manufacturing method |
JP5281918B2 (en) * | 2009-02-19 | 2013-09-04 | オリンパス株式会社 | Surface shape measuring machine, surface shape measuring method, and method of analyzing surface shape measurement value |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS531552A (en) * | 1976-06-25 | 1978-01-09 | Honda Motor Co Ltd | Coordinate selffestimating calculation system with multiipoint measurement |
JPS57132015A (en) * | 1981-02-09 | 1982-08-16 | Kosaka Kenkyusho:Kk | Coordinate transformation device |
-
1991
- 1991-07-03 JP JP3189245A patent/JP2520202B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS531552A (en) * | 1976-06-25 | 1978-01-09 | Honda Motor Co Ltd | Coordinate selffestimating calculation system with multiipoint measurement |
JPS57132015A (en) * | 1981-02-09 | 1982-08-16 | Kosaka Kenkyusho:Kk | Coordinate transformation device |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002107107A (en) * | 2000-07-20 | 2002-04-10 | Biosense Inc | Calibration method with stationary metal compensation for medical system |
US6694634B2 (en) | 2000-08-18 | 2004-02-24 | Educational Foundation Chuo University | Position error evaluation method of moving device and method of improving movement accuracy based on evaluation results thereof |
WO2002016868A1 (en) * | 2000-08-18 | 2002-02-28 | Educational Foundation Chuo University | Positional error evaluation method for mobile device and movement accuracy improving method based on the evaluation result |
EP1239263A3 (en) * | 2001-03-05 | 2003-07-23 | Mitutoyo Corporation | Position measuring apparatus and working apparatus using the same |
US6671650B2 (en) | 2001-03-05 | 2003-12-30 | Mitutoyo Corporation | Position measuring apparatus and working apparatus using the same |
JP2005227104A (en) * | 2004-02-12 | 2005-08-25 | Honda Motor Co Ltd | Sheet thickness measuring method |
JP4667752B2 (en) * | 2004-02-12 | 2011-04-13 | 本田技研工業株式会社 | Thickness measurement method |
JP2007017436A (en) * | 2005-06-29 | 2007-01-25 | Snecma | Appearance check method of coupling zone between roller body and taper of turbo machine roller bearing |
JP2009539113A (en) * | 2006-06-01 | 2009-11-12 | クオリティー ヴィジョン インターナショナル インコーポレイテッド | Adaptation of multidimensional measurement data to tolerance range considering measurement uncertainty |
JP2010525357A (en) * | 2007-04-24 | 2010-07-22 | レニショウ パブリック リミテッド カンパニー | Surface measuring apparatus and method |
US8908901B2 (en) | 2007-04-24 | 2014-12-09 | Renishaw Plc | Apparatus and method for surface measurement |
JP2009047470A (en) * | 2007-08-15 | 2009-03-05 | Nippon Telegr & Teleph Corp <Ntt> | Magnetic three-dimensional position detector |
JP2009150822A (en) * | 2007-12-21 | 2009-07-09 | Mitsutoyo Corp | Shape measuring device, shape measuring method, and shape measuring program |
JP2010169395A (en) * | 2008-07-08 | 2010-08-05 | Samsung Heavy Ind Co Ltd | System and method for evaluating degree of completion of processing of curve-shaped member |
US9689655B2 (en) | 2008-10-29 | 2017-06-27 | Renishaw Plc | Measurement method |
JP2012255674A (en) * | 2011-06-08 | 2012-12-27 | Mitsutoyo Corp | Alignment method |
KR101284857B1 (en) * | 2012-03-09 | 2013-07-09 | 삼성중공업 주식회사 | Method for analyzing the manufacturing error of rudder |
JP2013250074A (en) * | 2012-05-30 | 2013-12-12 | Canon Inc | Shape measurement device |
CN113701985A (en) * | 2021-08-16 | 2021-11-26 | 武汉一冶钢结构有限责任公司 | Wind tunnel contraction section ribbed plate curved surface measuring method |
CN113701985B (en) * | 2021-08-16 | 2023-08-29 | 武汉一冶钢结构有限责任公司 | Method for measuring curved surface of rib plate of wind tunnel contraction section |
Also Published As
Publication number | Publication date |
---|---|
JP2520202B2 (en) | 1996-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2520202B2 (en) | Measured value evaluation method | |
Ainsworth et al. | CAD-based measurement path planning for free-form shapes using contact probes | |
Li et al. | Geometric algorithms for workpiece localization | |
Menq et al. | Curve and surface approximation from CMM measurement data | |
JPH0644361A (en) | Surface identification device | |
CN103777570A (en) | Machining error rapid detection and compensation method based on NURBS curved surface | |
Ravishankar et al. | Automated inspection of aircraft parts using a modified ICP algorithm | |
JPH04243487A (en) | Three-dimensional contour processing method | |
Gou et al. | On the symmetric location problem | |
Wójcik et al. | Assessment of free-form surfaces’ reconstruction accuracy | |
Chen et al. | Fast registration of 3D point clouds with offset surfaces in precision grinding of free-form surfaces | |
CN114187276A (en) | Carbon tube array honeycomb surface shape precision calculation method based on G code processing guidance | |
Khameneifar et al. | A new methodology for evaluating position and orientation errors of airfoil sections | |
Yu et al. | Repair of defective 3D blade model based on deformation of adjacent non-defective cross-sectional curve | |
CN109725595A (en) | Compensation method, processing method and the workpiece of the machining path of workpiece | |
Backhaus et al. | Validation methods for 3D digitizing precision concerning jet engine blisks | |
CN114332173B (en) | Three-dimensional reconstruction method for propeller blade curved surface based on point cloud data | |
JP2520202C (en) | ||
CN114299079A (en) | A method for acquiring engine blade section line data for dense point cloud data | |
CN115358435A (en) | Five-axis adaptive scanning measurement path planning method for model unknown workpiece | |
Ruzanov et al. | The model for estimating the measurement error in geometric parameters of complex surfaces | |
JP2971596B2 (en) | Free-form surface measurement method | |
Ristic et al. | A framework for non-contact measurement and analysis of NURBS surfaces | |
Wang et al. | Geometry design model of a precise form-milling cutter based on the machining characteristics | |
CN119048541B (en) | A method for searching gap edge feature data in scanning point cloud data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110517 Year of fee payment: 15 |
|
LAPS | Cancellation because of no payment of annual fees |