[go: up one dir, main page]

JPH0494771A - 耐食性,溶接性に優れた潤滑性薄膜樹脂鋼板 - Google Patents

耐食性,溶接性に優れた潤滑性薄膜樹脂鋼板

Info

Publication number
JPH0494771A
JPH0494771A JP21262990A JP21262990A JPH0494771A JP H0494771 A JPH0494771 A JP H0494771A JP 21262990 A JP21262990 A JP 21262990A JP 21262990 A JP21262990 A JP 21262990A JP H0494771 A JPH0494771 A JP H0494771A
Authority
JP
Japan
Prior art keywords
resin
steel sheet
lubricant
corrosion resistance
solid lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21262990A
Other languages
English (en)
Other versions
JPH0659455B2 (ja
Inventor
Yoshihiro Kawanishi
義博 川西
Nobukazu Suzuki
鈴木 信和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2212629A priority Critical patent/JPH0659455B2/ja
Publication of JPH0494771A publication Critical patent/JPH0494771A/ja
Publication of JPH0659455B2 publication Critical patent/JPH0659455B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、自動車、家電製品、建材製品等の素材とし
て適用されるところの、樹脂薄膜をコティングした薄膜
樹脂鋼板に関するものである。
〈従来技術とその課題〉 一般に、自動車、家電製品、建材製品等の素材鋼板には
優れた耐食性、塗装密着性、溶接性等が必要とされてい
るが、近年、製品の高性能化傾向に伴ってその要求品質
レベルは一段と厳しいものとなってきている。
ところで、通常、上記用途に供する鋼板では耐食性改善
のために亜鉛又は亜鉛系合金メッキが施されるが、この
ようなメッキ鋼板でも無塗装のままで長時間放置すると
錆が発生ずるので、1次防錆のため更にクロメート処理
を施される場合が多い。しかしながら、一般のクロメー
ト処理では塩水噴霧試験で精々48時間程度の耐食性し
か確保できず、最終素材製品として十分な耐食性を有し
ているとは言えなかった。そこで、この問題を解決すべ
くシリカゾル等を添加した特殊な処理液を用いる塗布型
クロメート処理法が開発されたが、それでも適用環境が
厳しい場合の耐食性や塗装密着性が十分とは言えず、こ
れを適用したメッキ鋼板もやはり最終素材製品として十
分に満足できるものではなかった。
また、厳しい環境にも対処できるよう、リン酸塩処理を
施したメッキ鋼板に樹脂塗料を厚く(膜厚:数十ミクロ
ン程度に)コーティングする手段も検討されているが、
このような処理を施した鋼板は溶接が不可能である上、
塗料コストが嵩むと言う問題点があって採用が躊躇され
るものであった。
ところが、最近、亜鉛又は亜鉛系合金メッキ鋼板にクロ
メ−1・処理を施し、更にその上に有機樹脂を薄くコー
ティングした薄膜樹脂鋼板が開発され(特公昭60−3
3192号、特開昭64−8034号)、耐食性、塗装
密着性が良好で溶接も可能な表面処理鋼板として注目を
浴びている。
一方、鋼板のプレス成形では一般に“潤滑油の塗布−プ
レス−脱脂”と言う工程が採られるが、近年になって「
潤滑油を使用しないプレス加工」に対するユーザーの要
望が日増しに強まる傾向を見せている。これは、潤滑油
の不使用や脱脂工程の省略がコストダウンを可能にする
と言う理由によるだけでなく、潤滑油を使用しないこと
による作業環境の改善、更には脱脂液を使用しないこと
による大気環境の改善にもつながるからであった。
従って、潤滑油の使用なしに十分なプレス成形性を示す
と共に、耐食性や塗装密着性にも優れ、しかも溶接が可
能な表面処理鋼板に対する要求は、今後径々切実なもの
となってくることが予想される。
しかるに、耐食性、塗装密着性、溶接性の点から大きな
期待が持たれる前述の薄膜樹脂鋼板では、無塗油でのプ
レス加工は殆んど不可能であるか、或いはダイスでのカ
ジリが激しくて製品外観に問題を来たすばかりでなく、
加工後の耐食性が著しく劣化してしまうため、プレス成
形素材鋼板としてそれほど満足できるものではなかった
もっとも、プレス加工性向上のため高分子樹脂中に潤滑
剤を添加し、これをクロメート処理鋼板上に薄くコーテ
ィングした潤滑性薄膜樹脂鋼板も開発されている(特公
昭62−24505号、特公昭6325032号、特開
昭63−195282号)。そして、確かにこの潤滑性
薄膜樹脂鋼板は室温近傍でのスピードが比較的遅いプレ
ス加工の場合には非常に良好な性能を発揮した。
しかしながら、実際のプレス作業では、プレススピード
が非常に速い上、連続してプレス成形が行われるため、
プレス型や成形鋼板(製品)の温度は相当に高い値とな
ってしまう。例えば、10段のトランスファープレスマ
シンを使用して、絞り比=2.0の製品を2段でプレス
した場合には最終製品の温度が1000個成形した段階
で80℃程度まで上昇し、また絞り比=4.0の製品を
3段でプレスした場合には500個成形した段階で製品
温度が120℃にまで達した例もある。そして、このよ
うに成形鋼板温度が非常に高くなる実際のプレス作業に
おいては、従来の薄膜樹脂鋼板では樹脂の軟化による鋼
板と型とのメタルタッチが起こりやすく、樹脂剥離、メ
ッキ剥離を起こして樹脂が型に付着するため連続プレス
成形性が悪くなると言う問題のほか、樹脂剥離、メ・シ
キ剥離のために製品がかじられてしまい製品外観や加工
後耐食性の悪化を招くとの問題が十分に解決されていな
かった。
このようなことから、本発明が目的としたのは、加工の
前後を通じて優れた耐食性を示すと共に、溶接も可能で
あり、しかも鋼板温度が高温となる実際のプレス作業で
潤滑油の使用なしに良好な連続プレス成形を実施できて
、十分に満足できる加工後外観が得られる成形用耐食鋼
板を提供することであった。
く課題を解決するための手段〉 本発明者等は、上記目的を達成すべく、特に亜鉛又は亜
鉛系合金メッキ鋼板にクロメート処理と薄い樹脂塗装を
施した前記“薄膜樹脂鋼板”の耐食性、塗装密着性、溶
接性に注目し、その高温度下における加工性(潤滑性)
の改善策を求めて鋭意研究を重ねた結果、次のような知
見を得ることができた。即ち、 a) 薄膜樹脂鋼板の潤滑性改善には樹脂皮膜中への特
定の固形潤滑剤添加が不可欠であるが、その粒径の違い
が潤滑性に大きな影響を与え、この影響は高温下におい
て特に顕著に現れる。ところが、添加する固形潤滑剤の
粒径を特定の範囲に調整すると樹脂皮膜の高温下におけ
る潤滑性能が極めて良好な領域で安定化するようになる
b)一方、高温下においても良好な潤滑性を維持するた
めには樹脂皮膜中へ添加する固形潤滑剤として融点の高
いものを選ぶのが好ましいが、高融点潤滑剤のみでは鋼
板の加工後外観に悪影響を与える。しかし、樹脂皮膜中
に高融点固形潤滑剤と低融点固形潤滑剤を共存させれば
、高温下での良好な潤滑性と十分に満足できる加工後外
観とを同時に確保することも可能である。
C) また、上記樹脂皮膜の下地としてのクロメト処理
皮膜も、樹脂皮膜の密着性改善効果を通じて鋼板の加工
性に少なからぬ影響を与えるが、良好な加工性を確保す
るには該クロメート処理皮膜の形成量も特定の範囲内と
なるように調整する必要がある。
C)そこで、亜鉛又は亜鉛系合金メッキ鋼板上に形成す
るクロメート処理皮膜の形成量を特定の範囲に調整する
と共に、その上にコーティングする有機樹脂の中へ添加
する固形潤滑剤の種別選定と粒径調整を適正に行うと、
実際のプレス作業において予想される120〜120℃
程度の温度上昇が生じたとしても潤滑剤の使用なしに良
好なプレス成形を行うことが可能となり、環境への悪影
響を懸念することなく十分に満足できる品質の製品を低
コストで提供できるようになる。
本発明は、上記知見事項等に基づいてなされたもので、 [亜鉛又は亜鉛系合金メッキ鋼板上に、クロム付着量が
金属Cr換算で片面当り200mg/m2以下のクロメ
ート皮膜と、粒径が3〜100μmの結晶性固形潤滑剤
を含む塗布量:0.2〜4.0g/ rdの樹脂被覆層
とをこの順序で有して成ると共に、前記結晶性固形潤滑
剤中において 1次分散粒子径:20μm以上 融点:120℃以上 の高融点潤滑剤が潤滑剤全量の10重量%以上を占める
如くに薄膜樹脂鋼板を構成することにより、自動車、家
電製品、建材製品等の素材として好適な優れた耐食性、
塗装密着性、潤滑性、加工熱による昇温下でのプレス成
形性、加工後外観並びに加工後耐食性と、十分な溶接性
とを兼備せしめた点」に特徴を有している。
本発明での対象素材たる亜鉛又は亜鉛系合金メッキ鋼板
としては、亜鉛メッキ鋼板、亜鉛−鉄合金メッキ鋼板、
亜鉛−ニッケル合金メッキ鋼板。
亜鉛−マンガン合金メッキ鋼板、亜鉛−アルミ合金メッ
キ鋼板、亜鉛−コバルト−クロム合金メッキ鋼板、或い
はこれら任意の鋼板のメッキ成分にNi+ Fe、 M
n+ Mo+ Go、^l、 Cr等の元素を1種又は
2種以上添加したものを挙げることができる。勿論、上
記メッキのうちの同種又は異種のものを2層以上施した
複合メッキ鋼板(例えばFe含有量の異なるFe−Zn
合金メッキを2層以上施したメッキ鋼板等)であっても
差し支えない。ただ、これらのうち、特に耐食性の見地
からは亜鉛−ニッケル合金メッキ鋼板や亜鉛〜マンガン
合金メッキ鋼板が好ましく、また亜鉛−ニッケル合金メ
ッキ皮膜中を使用する場合にはメッキ皮膜中のNi含有
量を5〜20重量%の範囲に、亜鉛−マンガン合金メッ
キ鋼板を使用する場合にはメッキ皮膜中のMn含有量を
30〜85重量%の範囲にそれぞれ調整することが好ま
しい。
なお、これら亜鉛系メッキ鋼板を製造する際のメッキ手
段としては、電解法、溶融法、気相法等のうちの実施可
能な何れによっても良いことは言うまでもない。
上述の素材メッキ鋼板の表面には、耐食性向上と樹脂と
の密着性向上のためにクロメート皮膜が形成せしめられ
るが、その膜厚はクロム付着量として金属Cr換算で2
00 mg/m”以下とする必要がある。なぜなら、ク
ロム付着量が200mg/m”を超えるとクロメート皮
膜層内での凝集破壊が起こって加工性が劣化する恐れが
ある上、溶接性も劣化するためである。ただ、クロム付
着量が10mg/m2を下回るとクロメート皮膜の均一
性に難ができがちとなるため、好ましくはクロム付着量
を10〜200mg/m2に調整するのが良い。なお、
クロメート皮膜を形成させるためのクロメート処理とし
ては反応型、塗布型、電解型等の何れの方法によっても
構わないが、形成されるクロメート皮膜中に6価のCr
(Cr”)が存在するように図るのが望ましい。なぜな
ら、このCr6“はセルフヒーリンク効果を有している
ため、加工等で鋼板に傷が付いた場合でも腐食を抑制す
る作用を発揮するためである。
さて、本発明に係る複合鋼板は、素材メッキ鋼板上にク
ロメ−1・処理を施して特定膜厚のクロメト皮膜を形成
させ、更にその」二に潤滑性向上等のための有機複合樹
脂を薄膜にコーティングしたことを特徴としているが、
この有機複合樹脂はベス樹脂に特定の固形潤滑剤を含ん
で成る組成を有している。
ベース樹脂は、鋼板の耐食性、塗装密着性を向上させる
ほか、固形潤滑剤を強固に保持するために必要なもので
ある。このベース樹脂としては、例えばエポキシ基、カ
ルボキシル基、エステル基アルデヒド基、水酸基、アミ
ノ基等の官能基の1種又は2種以上を側鎖及び/又は主
鎖に有する樹脂を挙げることができ、このような樹脂と
してアクリル樹脂、アルキド樹脂、ウレタン樹脂、エポ
キシ樹脂、フェノール樹脂、アミノ樹脂、不飽和ポリエ
ステル樹脂、ビニル樹脂等を例示できる。
また、固形潤滑剤は樹脂皮膜層の潤滑性を向上させるた
めに添加するが、有機系の結晶性固形潤滑剤が選ばれ、
例えばパラフィン系やポリオレフィン系のワックス、或
いはフッ素樹脂が好ましく、これらの内の1種又は2種
以上から成るものを選ぶのが良い。
即ち、固形潤滑剤として一般には fa)  ワックス (パラフィンワックスのような天
然ワックスやポリエチレンワックス、ステアリン酸エス
テルのような合成ワックス等がある)。
fbl  層間の剪断強さが弱く、結晶層間が滑ること
によって摩擦を低下させる層状固体潤滑剤(例えば黒鉛
、二硫化モリブデン、二硫化タングステン、窒化ホウ素
、フン化黒鉛等がある)。
(C1摩擦特性が良く、低い摩擦係数値を有するプラス
チック (例えばテフロンと言う商品名で呼ばれている
フッ素樹脂やナイロン、ポリエチレン、塩化ビニル等が
ある)。
fd+  金属表面の境界潤滑に効果的に作用する金属
せっけん(ステアリン酸ナトリウム、ステアリン酸カル
シウム等がある)。
等の数多くのものが知られているが、前記ベース樹脂中
へ混入してクロメート処理鋼板表面に塗布する場合、特
にワックス或いはプラスチックのような有機系の結晶性
固形潤滑剤を採用することによって初めて「皮膜中に均
一に分散し、がっ加工後の外観・加工後の耐食性に優れ
る」と言う所望の効果がもたらされる。これは、有機系
の結晶性固形潤滑剤は他のものに比べて柔らかく、ベー
ス樹脂となじみやすいことによるものと推測される。
これに対して、例えば黒鉛、二硫化モリブデン等の層状
固形潤滑剤は良好な加工性を示しはするが、結晶が硬い
上、ベース樹脂中に保持されにくくて鋼板とプレス型と
の摺動により潤滑剤が剥離を起こしやすく、この潤滑剤
が鋼板のメッキ表面にキズを入れかじってしまうために
、加工後外観に劣ると言う問題を生じる。また、ステア
リン酸カルシウムのような金属石けんも、同様の理由で
加工後外観に問題が生じて不適当である。
ここで、樹脂皮膜層が高温下でも良好な潤滑性(低い動
摩擦係数値)を保持するためには、潤滑剤の粒径及び融
点が非常に重要となる。
つまり、本発明に係る薄膜樹脂鋼板では樹脂膜厚が薄い
ので、潤滑剤が均一に分散すれば鋼板表面にかなり微細
な凹凸が形成される。このため、該樹脂層は潤滑剤自身
が持つ摩擦係数よりも低い摩擦係数値を有することとな
る。このように、鋼板表面状態が潤滑性に大きな影響を
及ぼすが、固形潤滑剤の粒径が3μm未満であると樹脂
皮膜層が潤滑剤をカバーしてしまって鋼板表面に微細な
凹凸が形成されなくり、そのため潤滑剤を添加した効果
が殆んど認められな(なる。一方、潤滑剤の粒径が10
0μmを超えると樹脂が潤滑剤を保持できな(なって潤
滑剤の!、11離が起きることから、やはり良好な潤滑
性が得られなくなる。従って、固形潤滑剤の粒径を3〜
100μmと限定した。
また、固形潤滑剤の融点も樹脂皮膜層の潤滑性に影響を
及ぼすが、高温下でも所望の潤滑性を発揮させるために
は、融点が120〜120℃以上のものを固形潤滑剤全
量に対して少なくとも10重量%以上含んでいなければ
ならない。そして、この場合、融点120〜120℃以
上の固形潤滑剤は粒径が20μm以上でないとその性能
を十分に引き出すことができない。
即ち、実際のプレス作業においては、加工が進むにつれ
て素材銅板は加工熱にて常温から120〜120℃程度
まで温度上昇する。従って、120〜120℃と言う高
温下でも樹脂皮膜層が良好な潤滑性を維持するためには
、潤滑剤が120℃でも融解しないで鋼板表面(樹脂層
表面)に成る程度の徽細な凹凸を保っておくことが重要
となる。本発明者等は、このためには全固形潤滑剤中に
融点が120℃以上でかつ粒径が201Km以上のもの
を配合するのが有効であることを種々の研究によって見
出し、本発明を完成するに至ったのである。
ただ、非常に融点の高い有機系固形潤滑剤は一般に常温
付近での硬度も高いため、プレス加工初期に型との摺動
で固形潤滑剤の剥離を起こしやすく、加工外観を劣化さ
せると言う問題が生じがちである。そのため、融点が非
常に高い固形潤滑剤だけを使用することは好ましくない
。従って、樹脂皮膜層に常温から120℃までの温度範
囲で良好な潤滑性、動摩擦係数を発揮させるためには、
15〜 固形潤滑剤として“融点が120℃以上の高融点潤滑剤
”と“融点が120〜120℃未満の低融点潤滑剤”を
組み合わせることが好ましい。但し、低融点固形潤滑剤
を多量に使用、すると、プレス加工段階で鋼板温度が融
点以上になり固形潤滑剤が溶融して鋼板や型に付着して
いくため、連続プレス成形性が劣化すると言う問題を生
じる。そこで、固形潤滑剤の全量中に“融点が120℃
以上の高融点固形潤滑剤”が占める割合が重量比で10
%以上、好ましくは10〜90%となるように成分調整
するのが良い。
また、ベース樹脂への固形潤滑剤の添加量としては 有機高分子(ベース樹脂):固形潤滑剤=〔1:0.0
2〕〜〔1:0.4) の範囲が好ましい。この理由は ベース樹脂:固形潤滑剤−1:0.02の比率よりも潤
滑剤添加量が少ないと十分な潤滑性を得ることができず
、一方、 ベース樹脂:固形潤滑剤−1:0.4 の比率よりも潤滑剤添加量が多いとベース樹脂が潤滑剤
を保持できなくなり、加工時の型との摺動で潤滑剤の剥
離を起こしやすくなって潤滑性が劣化するからである。
また、潤滑剤の添加量を多くすることは塗装密着性を劣
化させると言う問題も引き起こす。
更に、樹脂皮膜層の潤滑性に関しては、該樹脂層のガラ
ス転移点Tg (樹脂がガラス状態からゴム状態へ変化
する温度)も少なからぬ影響を与え、Tgがプレス温度
から大きく離れる条件の場合には良好な潤滑性が発揮さ
れない恐れがある。つまり、薄膜樹脂銅板が120℃程
度にまで温度が上昇するような苛酷な実プレス作業にお
いてもなお良好な潤滑性を示し、連続プレス成形が可能
な状態を維持するためには、高温下であっても小さな摩
擦係数値を有していることが必要であり、具体的には1
20℃程度の温度下で0.15以下の摩擦係数値でない
と十分とは言えない。
この高温下における摩擦係数値には樹脂被覆層の熱特性
が影響し、特に樹脂がガラス状態がらゴ入状態へ移る“
ガラス転移点(Tg)”が重要であって、このTg近傍
では潤滑性が非常に良好となり小さな動摩擦係数値を示
す。そして、多くの実験結果から、[Tg±30〜12
0℃〕の温度範囲では殆んど動摩擦係数値に変化が認め
られず、この範囲であれば極めて良好な潤滑性を示すこ
とが確認された。
しかし、(Tg430℃〕を超える温度になると樹脂が
軟化して完全にゴム状態或いは流動状態となり、プレス
型とメッキ層とのメタルタッチが起こりやすくなってか
じりを生じ動摩擦係数値が急激に上昇する。また、この
ように樹脂がゴム状態或いは流動状態になった場合には
固形潤滑剤の保持も困難となり、潤滑剤による潤滑効果
が期待できなくなってくる。一方、(Tg−30℃〕を
下回る温度では樹脂が完全にガラス状態となっており、
樹脂がプレス型に接触すると徐々に削られる現象を起こ
すのでやはり動摩擦係数値は上昇する。もっとも、この
場合には潤滑剤が強固に保持され、鋼板表面に微細な凹
凸を形成しているため、動摩擦係数値の上昇は防止でき
る。
従って、120℃まで被加工材温度が上昇するような苛
酷なプレス条件下でも良好な潤滑性を保持するためには
、被覆する樹脂としてTgが20〜120℃のものを選
択することが望ましいと言える。即ち、’rgが20℃
を下回る樹脂では、いくら良好な潤滑剤を使用しても1
20℃の高温下では高融点固形潤滑剤も保持できなくな
り、潤滑効果が認められな(なる。一方、Tgが120
〜120℃を超える場合には、平板での潤滑性は潤滑剤
を選択すれば良好となるものの、樹脂皮膜が非常に硬い
ために塗膜の内部応力が高く、加工を行うと型とのこす
れによる外観不良を生じたり、樹脂層中にクラックが入
って耐食性を劣化する等の問題が懸念されるようになる
ところで、薄膜樹脂鋼板の樹脂層中へ固形潤滑の他にシ
リカを添加することは、鋼板の耐食性を更に向上させる
上で非常に好ましいことである。
シリカとしては、水分散性のコロイダルシリカ(例えば
酸性側で安定化したスノーテックス−0やスノーテック
ス−OL、或いは塩基性側で安定化し1つ 2 〇− たスノーテックス−N〔何れも日産化学工業−の商品名
〕等)や有機溶剤中にコロイド状に分散させたオルガノ
シリカゾル(例えばメタノールシリカゾルやn−ブタノ
ールシリカゾル等)が適用でき、また粉末タイプの乾式
シリカ(例えばデグサ社の商品名ABRO3I L等)
も使用できる。このようなシリカの粒径としては、樹脂
中に均一に分散させるために5〜100mμに調整する
のが適当である。
このシリカは、シリカ表面にある水酸基(シラノール基
)がベース樹脂と反応して、或いはシランカップリング
剤(γ−アミノプロピルトリエトキシシラン、ビニルト
リエトキシシラン、γ−グリシドキシプロピルトリメト
ギシシラン、T−メタクリロキシプロピルトリメトキシ
シラン、ビニルトリス(βメトキシエトキシ)シラン等
)を用いてシリカ粒子表面を変性させることによりベー
ス樹脂と反応させることで、更なる耐食性向上効果を発
揮する。また、シリカはベース樹脂と反応して有機−無
機複合樹脂を形成するが、これを通じて樹脂の硬度、ガ
ラス転移点(Tg)を上昇させる効果も奏する。
なお、樹脂中へのシリカの添加量は 有機高分子(ベース樹脂)ニジリカ =(1: 0.05〕〜〔1: 1) の範囲とするのが好ましく、シリカ添加量がベース樹脂
ニジリカー1:0.05 の比率以上になると耐食性向上効果が顕著となって、近
年ユーザーから要求されるようになった最終製品(例え
ば絞り比:2.0の円筒絞り品)での耐食性が塩水噴霧
200hr以上と言った性能を安定して満足するように
なる。しかし、シリカ添加量がベース樹脂ニジリカー1
=1 の比率を超えて多くなると形成される有機−無機複合樹
脂皮膜は透水性が大きくなって耐食性の劣化を招くほか
、樹脂皮膜が非常に硬くかつ脆くなって加工時に剥離し
やすくなり、固形潤滑剤を添加しても十分な潤滑性が得
られなくなる恐れが出てくる。
ここで、樹脂−シリカの反応性を高め、シリカの分散性
を向上させるために前述した如くシランカップリング剤
等の反応促進剤を共に添加したり、固形潤滑剤の樹脂液
中での分散性を上げるために界面活性剤等の安定剤や分
散剤をベース樹脂に添加することは、塗工性や製品性能
の安定化につながるので好ましいことである。また、樹
脂皮膜の架橋密度を向上させて皮膜の硬度やTgを上げ
、耐食性、潤滑性の向上を図るため、クロム酸、アンモ
ニア等の架橋促進触媒を添加することも好ましい平文て
である。特に、クロム酸の添加は、Cr”の持つセルフ
ヒーリング効果によって加工後耐食性の向上が期待でき
るので非常に望ましい。なお、クロム酸の添加量として
は、皮膜乾燥重量当り30%以下であることが好ましく
、これよりも多く添加すると樹脂薬液中の安定性が悪く
なると同時に、未反応のクロム酸が溶出して逆に耐食性
が劣化する懸念が出てくる。
このように、ベース樹脂、固体潤滑剤、シリカ等を均一
に分散させた樹脂をメ・7キ鋼板上に薄くコーティング
するに当り、形成する樹脂被覆層の厚さは塗布量で0.
2〜4.0g/ボに調整すべきである。
なぜなら、該樹脂被覆層の塗布量が0.2g/ m未満
であるとメッキ鋼板を全面コーティングすることが困難
であり、また加工によってメッキ層とプレス型とのメタ
ルタッチを防止するだけの十分な膜厚が確保できないの
で潤滑性、加工後外観、加工後耐食性が劣化する。一方
、4.0g/m2を超える塗布量とした場合には、耐食
性ば向」ニし加工後外観も良好となるが、樹脂層表層が
固形潤滑剤で殆んど覆われるため、表層の凹凸は大きく
なるもののヘ−ス樹脂が固形潤滑剤を保持できなくなっ
て剥離を生じやすくなり、このための潤滑低下や塗装密
着性の劣化を招く。その上、絶縁皮膜である樹脂層が厚
くなるので溶接性が悪化して特に抵抗溶接ができなくな
ると言う問題を引き起こす上、経済的にも好ましくない
なお、本発明に係る薄膜樹脂鋼板の製造に際し、各被覆
層の形成には公知の通常の方法が十分採用でき、その処
理方法については特に規定されるものではない。また、
このような被覆層構造の形成は鋼板の両面であっても片
面のみであっても良く、使用目的に応じて決定すれば良
い。例えば、加工性の面からすると、片面に本発明に係
る皮膜構造を形成すると共に、他面を樹脂コーティング
しないか或いは潤滑剤を含んでいない樹脂をコーティン
グし、鋼板の表裏間で潤滑性能を変えることが好ましい
。しかし、この場合には本発明に係る皮膜構造を形成し
なかった面の耐食性が悪くなるので、両面に良好な加工
後耐食性が求められるときには両面共に本発明に係る皮
膜構造を形成するのが良い。
続いて、本発明の効果を実施例によって更に具体的に説
明する。
〈実施例〉 実施例 1 第1表に示すメッキ鋼板を準備し、これら各メッキ鋼板
に、Cr”/Cr”−2/3となるように還元剤を添加
したCrO:+:20g/j!を含むクロメート処理液
(p H:1.8)をCr付着量が250mg/n?以
下となるように回転塗布し、最高到達温度:100℃で
20秒間オーブン乾燥した。
次いで、第2表に示す組成の樹脂、潤滑剤、シリカを均
一に分散させた樹脂液を、乾燥重量にて0.1〜5.0
g/%の塗布量範囲となるようにバーコターで塗布し、
第2表に示す条件で焼付・乾燥した。
このようにして得られた樹脂被覆複合鋼板について、各
種温度における潤滑性、加工後外観、加工後耐食性、並
びに平板耐食性を調査したが、その結果を第3表に示す
なお、上記各特性の調査と評価は下記の手法にによって
行った。
(八) 加工性 室温下において無塗油の試験片に下記条件の円筒絞りを
施し、その限界絞り比を求めた。その際、実用できるレ
ベルとしては、同一の材質の冷延鋼板に潤滑油を塗油し
た場合の限界絞り比が2.3あるため、限界絞り比は2
.3以上と考えられる。
プy入条件 しわ抑え圧:1トン。
ポンチ径:40龍φ ダイス径:42++iΦ ブランク径:80〜]、 OO**中。
(B)  高温潤滑性 ハウデン試験機(先端子:鋼球)を用い、無塗油で20
℃、60〜120℃,120〜120℃の試験片温度で
の動摩擦係数値を測定した。なお、このとき加えた荷重
は500gで、摺動回数は10回とした。そして、評価
結果は ◎:動摩擦係数が0.10未満。
○:動摩擦係数が0.10以上0.15未満△:動摩擦
係数が0.15以上0.20未満×:動摩擦係数が0.
20以上。
で表示した。
(C)  加工後外観 室温下において無塗油の試験片を下記試験条件で円筒絞
りし、その時の加工後外観を観察した。
プレス条件 しわ抑え圧:1トン、   ポンチ径:40mmφ。
ダイス径:42vsvaφ、 絞り比=2.0゜そして
、評価結果は ◎:カジリ無し ○:カシリ僅かに有り。
△:カシワやや多い。
×:カジリ多い。
で表示した。
(D)  加工後耐食性 前記円筒絞り試験と同一条件で無塗油の試験片を加工し
、試験片の摺動部に温水が当たるように加工品を設置し
て塩水噴霧試験(JTSZ 2371準拠)を行い、白
錆発生時間を観察した。
そして、評価結果は ◎:白錆発生時間500hr以上。
○:白錆発生時間200hr以上500hr未満△:白
錆発生時間100hr以上200hr未満×:白錆発生
時間100hr未満。
で表示した。
(E)  平板耐食性 試験片を平板で塩水噴霧試験(JTS Z2371)に
供し、白錆発生時間を観察した。
そして、評価結果は ◎:白錆発生時間1000hr以上。
○:白錆発生時間500hr以上1000hr未満△:
白錆発生時間200hr以上500hr未満×:白錆発
生時間200hr未満。
で表示した。
第3表に示される結果からも明らかなように、本発明に
係る薄膜樹脂鋼板は優れた加工性高温潤滑性と平板耐食
性を示し、かつ加工後外観及び加工後耐食性とも十分に
満足できるものであることが分かる。
実施例 2 第1表のAで示される電気Znメッキ鋼板を準備し、こ
の電気Znメッキ鋼板にCr”/Cr6“−273とな
るように還元剤を添加したCrCL+:20g#!を含
むクロメート処理液(pH:1.8)をCr付着量が8
01ng/m”以下となるように回転塗布し、最高到達
温度:100℃で20秒間オーブン乾燥した。
次いで、ベース樹脂としてのアクリルエステル共重合体
、平均粒径が1〜110叩の範囲内での各種粒径で融点
の異なるポリエチレンワックスを組み合わせた固形潤滑
剤(配合比:0.10+ 全ワックス量に対する融点1
20℃以上のポリエチレンワックス量:60重量%)、
シリカ分としてのコロイダルシリカ(配合比: 0.2
0)を均一に分散させた樹脂液を、乾燥重量にて0.1
〜5.0g/ gの塗布量範囲となるようにバーコータ
ーで塗布し、最高到達温度:100℃で10秒間焼付・
乾燥した。なお、このとき形成された樹脂層のTgは6
0℃であった。
このようにして得られた薄膜樹脂鋼板について、加工性
、高温における潤滑性、加工後外観、並びにスポット溶
接性を調査し、その結果を第1図乃至第6図に整理して
示した。
なお、加工性については、実施例1におけると同様のプ
レス条件にて円筒絞りを行い、限界絞り比が2.3以上
を○、限界絞り比が2.3未満を×として表示した。高
温における潤滑性は実施例1と同様のハウデン試験によ
り、また加工後外観も実施例1と同様の円筒絞り試験に
よってそれぞれ調査した。そして、スポット溶接性につ
いては電極チップ・・・6φWR型 溶接電流・・・9kA。
加圧力・・・200kgf 通電■寺間・・・ 10サイクル の条件にて試験片のスポット溶接を行い、○:溶接可能
×:溶接不可能。
の評価基準で評価した。
さて、第1図は、融点120℃以上のワックス(高融点
ワックス)粒径及びその配合量(配合比)と加工性との
関係を示したグラフである。なお、第1図における[高
融点ワックス比率]とはで表わされるものである。そし
て、この際のワックス全量は0.12g/ n(、樹脂
被覆層へのワックス配合比は0.10で、120 ’c
未満のワックス(低融点ワックス)粒径は25μIのも
のに、また樹脂膜厚は1.5g/mに統一した。この第
1図に示される結果からも、薄膜樹脂鋼板が優れた加工
性を発揮するには、高融点ワックスの粒径が20μm以
上で、その配合比率を10以−ヒにする必要のあること
が確認できる。
第2図は、ハウデン試験によって確かめられたワックス
粒子径と動摩擦係数との関係を示したものである。この
際における高融点ワックス粒径は35卿に、その配合比
を60%に、そして樹脂膜厚は1.6g/%に統一した
。この第2図に示される結果からも、本発明に係る薄膜
樹脂鋼板は優れた高温潤滑性を示すのに対して、融点が
120〜120℃未満の低融点ワックスの粒径が3μm
を下回ると潤滑性が急激に低下することが分かる。
第3図は、円筒絞り試験によって確かめられたワックス
平均粒子径と加工後外観との関係を示したものである。
この際における高融点ワックス粒径は35μmに、その
配合比を60%に、そして樹脂膜厚は1.6g/mに統
一した。この第3図に示される結果からも、本発明に係
る薄膜樹脂鋼板は加工後外観に優れるのに対して、低融
点ワックスの粒径が3〜100μmの範囲から外れると
加工後外観の悪化を招くことが分かる。
第4図は、ハウデン試験によって確かめられた樹脂膜厚
と動摩擦係数との関係を示したものである。この際に用
いた固形潤滑剤は、粒径35陣の高融点ワックスを60
%、粒径25μmの低融点ワックスを40%組み合わせ
たものに統一した。この第4図に示される結果からも、
本発明に係る薄膜樹脂銅板は優れた高温潤滑性を示すの
に対して、樹脂膜厚が塗布量で0.2g/m2を下回る
と潤滑性が急激に低下することが分かる。
第5図は、円筒絞り試験によって確かめられた樹脂膜厚
と加工後外観との関係を示したものである。この際に用
いた固形潤滑剤は、粒径35μmの高融点ワックスを6
0%、粒径25μmの低融点ワックスを40%組み合わ
せたものに統一した。この第5図に示される結果からも
、本発明に係る薄膜樹脂鋼板は加工後外観に優れるのに
対し、樹脂膜厚が塗布量で0.2〜4.0g/m”の範
囲から外れると加工後外観の悪化を招くことが分かる。
第6図は、スポット溶接試験によって確かめられた樹脂
膜厚とスポット溶接性との関係を示したものである。こ
の際に用いた固形潤滑剤は、粒径35μmの高融点ワッ
クスを60%、粒径25μmの低融点ワックスを40%
組み合わせたものに統一した。この第5図に示される結
果からも、本発明に係る薄膜樹脂鋼板はスポット溶接が
可能であるのに対して、樹脂膜厚が塗布量で4.0g/
m”を上回るとスボソHtr接が不可能になることが分
かる。
〈効果の総括〉 以上に説明した如く、この発明によれば、高温下でも良
好な潤滑性を発揮するためプレススピドを十分に速くす
ることができ、より苛酷なプレス条件においても良好な
連続プレス成形が潤滑油を使用することなく可能である
耐食性に優れた樹脂被覆複合鋼板が提供され、ユーザー
でのプレス油塗油工程や脱脂工程の省略、それによるコ
スI・低減、プレス油を使用しないための作業環境の向
上、脱脂液を使用しないための環境衛生改善等の便益が
享受できるようになるなど、産業上極めて有用な効果が
もたらされる。
【図面の簡単な説明】
第1図は、実施例で確認された高融点ワックス粒径及び
その配合比率と加工性との関係を示すグラフである。 第2図は、実施例で確認された固形潤滑剤粒径と高温下
での潤滑性との関係を示すグラフである。 第3図は、実施例で確認された固形潤滑剤粒径と加工後
外観との関係を示すグラフである。 第4図は、実施例で確認された樹脂被覆層厚と潤滑性と
の関係を示すグラフである。 第5図は、実施例で確認された樹脂被覆層厚と加工後外
観との関係を示すグラフである。 第6図は、実施例で確認された樹脂被覆層厚とスポット
溶接性との関係を示すグラフである。

Claims (2)

    【特許請求の範囲】
  1. (1)亜鉛又は亜鉛系合金メッキ鋼板上に、クロム付着
    量が金属Cr換算で片面当り200mg/m^2以下の
    クロメート皮膜と、粒径が3〜100μmの結晶性固形
    潤滑剤を含む塗布量:0.2〜4.0g/m^2の樹脂
    被覆層とをこの順序で有して成ると共に、前記結晶性固
    形潤滑剤中において 1次分散粒子径:20μ以上, 融点:120℃以上 の高融点潤滑剤が潤滑剤全量の10重量%以上を占めて
    いることを特徴とする、潤滑性,耐食性,溶接性に優れ
    た薄膜樹脂鋼板。
  2. (2)前記樹脂被覆層が、乾燥重量比で 有機高分子:固形潤滑剤 =〔1:0.02〕〜〔1:0.4〕, 有機高分子:シリカ=〔1:0.05〕〜〔1:1〕の
    割合で固形潤滑剤及びシリカを含み、かつ20〜120
    ℃のガラス転移点を有したものである、請求項1に記載
    の潤滑性,耐食性,溶接性に優れた薄膜樹脂鋼板。
JP2212629A 1990-08-10 1990-08-10 耐食性,溶接性に優れた潤滑性薄膜樹脂鋼板 Expired - Fee Related JPH0659455B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2212629A JPH0659455B2 (ja) 1990-08-10 1990-08-10 耐食性,溶接性に優れた潤滑性薄膜樹脂鋼板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2212629A JPH0659455B2 (ja) 1990-08-10 1990-08-10 耐食性,溶接性に優れた潤滑性薄膜樹脂鋼板

Publications (2)

Publication Number Publication Date
JPH0494771A true JPH0494771A (ja) 1992-03-26
JPH0659455B2 JPH0659455B2 (ja) 1994-08-10

Family

ID=16625833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2212629A Expired - Fee Related JPH0659455B2 (ja) 1990-08-10 1990-08-10 耐食性,溶接性に優れた潤滑性薄膜樹脂鋼板

Country Status (1)

Country Link
JP (1) JPH0659455B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149860A (ja) * 1999-11-30 2001-06-05 Nisshin Steel Co Ltd 自己潤滑性に優れた塗装鋼板
JP3702870B2 (ja) * 2002-07-23 2005-10-05 三菱電機株式会社 空調用機器の箱体とその製造方法
JP3990663B2 (ja) * 2002-10-25 2007-10-17 新日本製鐵株式会社 表面処理金属板、及びその製造方法、並びにこの製造方法に用いる潤滑樹脂と潤滑樹脂塗料組成物
JP3965144B2 (ja) * 2003-01-09 2007-08-29 新日本製鐵株式会社 潤滑性金属板、及びその製造方法、並びに潤滑性樹脂水分散体と潤滑樹脂塗料組成物

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243040A (ja) * 1988-05-31 1990-02-13 Kawasaki Steel Corp 耐食性に優れた潤滑樹脂処理鋼板

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243040A (ja) * 1988-05-31 1990-02-13 Kawasaki Steel Corp 耐食性に優れた潤滑樹脂処理鋼板

Also Published As

Publication number Publication date
JPH0659455B2 (ja) 1994-08-10

Similar Documents

Publication Publication Date Title
KR910009984B1 (ko) 성형성 및 내식성이 우수한 윤활수지 처리강판
JP5188090B2 (ja) 塗布液およびクリヤーコート鋼板
JPH0339485A (ja) 成形時の耐パウダリング性に優れた潤滑樹脂処理鋼板
JPH0577357A (ja) 加工後外観に優れた樹脂被覆複合鋼板
JPH0494771A (ja) 耐食性,溶接性に優れた潤滑性薄膜樹脂鋼板
JP2511497B2 (ja) 成形性に優れた潤滑樹脂処理鋼板
JPH0444840A (ja) 潤滑性に優れた樹脂被覆複合鋼板
JPH0243040A (ja) 耐食性に優れた潤滑樹脂処理鋼板
JPH0316726A (ja) 成型性の優れた潤滑樹脂処理鋼板
JP2002012983A (ja) 耐食性、潤滑性、塗料密着性に優れたリン酸塩複合被覆鋼板
JPH062161A (ja) 成形性、成形後外観性および耐食性に優れた亜鉛系めっき鋼板
JPH0999517A (ja) 潤滑処理鋼板とそれに用いる皮膜形成性組成物
JP4041368B2 (ja) 耐熱性および耐食性に優れた亜鉛系メッキ鋼板
JP4424305B2 (ja) クリヤーコート鋼板とそれに用いる水系塗布液
JP2002012982A (ja) 耐食性、潤滑性、塗料密着性に優れたリン酸塩複合被覆鋼板
JPH07186321A (ja) 高速連続プレス成形性、加工部耐食性に優れた有機被覆鋼板
JP4298575B2 (ja) 耐食性に優れたクロメートフリー表面処理Al−Zn系合金めっき鋼板及びその製造方法
JPH01301333A (ja) 成形性、耐食性に優れた潤滑樹脂処理鋼板
JPH05237449A (ja) プレス成形性、加工部耐食性に優れた潤滑樹脂処理鋼板
JP3600759B2 (ja) 加工性に優れたリン酸塩処理亜鉛系メッキ鋼板およびその製造方法
JPH0741962A (ja) プレス成形性、耐食性に優れた潤滑樹脂処理鋼板
JPH07258895A (ja) プレス加工性および耐食性に優れた複層亜鉛系めっき鋼板
JP2004052073A (ja) リチウムシリケート系潤滑処理鋼帯
JPH03284942A (ja) 有機樹脂被覆合金化溶融亜鉛めつき鋼板
JP2857989B2 (ja) 溶接性及び深絞り加工性にすぐれる表面処理金属板及びその製造方法

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees