[go: up one dir, main page]

JPH0488114A - Method for producing high manganese steel - Google Patents

Method for producing high manganese steel

Info

Publication number
JPH0488114A
JPH0488114A JP20370790A JP20370790A JPH0488114A JP H0488114 A JPH0488114 A JP H0488114A JP 20370790 A JP20370790 A JP 20370790A JP 20370790 A JP20370790 A JP 20370790A JP H0488114 A JPH0488114 A JP H0488114A
Authority
JP
Japan
Prior art keywords
steel
manganese
executed
blowing
decarburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20370790A
Other languages
Japanese (ja)
Inventor
Seiichi Suetsugu
末次 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20370790A priority Critical patent/JPH0488114A/en
Publication of JPH0488114A publication Critical patent/JPH0488114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To attain production of a high manganese steel, in which high decarburizing velocity is attained and a producing cost can stably be reduced, by tapping the molten steel under undeoxidizing condition from a converter, charging high carbon Mn alloy in a ladle to execute adjustment of a Mn content and a top-blowing oxygen in a vacuum degassing vessel to execute vacuum secondary refining. CONSTITUTION:By using a pre-treated molten iron beforehand desulfurized and dephosphorized, a raw decarburized low carbon steel is refined and tapped under the condition of having a little higher blowing-up C content than that in the ordinary method. During the tapping molten steel, the high carbon manganese alloy in a low cost is charged to execute adjustment of the Mn component. After that, by charging Al slag, slag reduction is executed as the aim of a Mn yield improvement. After executing the slag reduction, by top-blowing the oxygen in the vacuum degassing vessel, what is called, by rimmed-treatment, the decarburization is executed for about 10 min and after that, by killed- treatment, the decarburization and the degassing treatment are executed and adjustment of a component is executed to complete the refining.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高マンガン鋼の溶製方法に係り、特1;高炭素
マンガン合金を使用して溶製コストを低減できる溶製方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing high manganese steel, and particularly relates to a method for producing high manganese steel that can reduce production costs by using a high carbon manganese alloy.

[従来の技術〕 低炭素高マンガン鋼は今日ラインパイプ材として大量に
使用されている。炭素が0.05±0.01%の如く炭
素の許容範囲が非常に狭い高マンガン鋼の代表的な従来
の製造方法は、脱炭が非常に容易な酸素吹錬の転炉で精
錬してC= 0.05%程度で出鋼し、取鍋に出鋼中に
低炭素マンガン合金を投入してマンガン量を調整し、続
いて真空2次精錬を行い、連続鋳造にて鋳片としていた
。しかし、この方法は転炉出鋼後にC量の上昇を防止す
る必要があるので、高価な低炭素マンガン合金を使用せ
ざるを得す、そのため溶製コストが高騰する欠点があっ
た。
[Prior Art] Low carbon high manganese steels are used in large quantities today as linepipe materials. The typical conventional manufacturing method for high manganese steel, which has a very narrow carbon tolerance range of 0.05±0.01%, is to smelt it in an oxygen blowing converter, where decarburization is very easy. Steel was tapped at a concentration of about 0.05% C, and a low carbon manganese alloy was added to the ladle during tapping to adjust the amount of manganese, followed by secondary vacuum refining and continuous casting into slabs. . However, in this method, it is necessary to prevent an increase in the amount of C after steel is tapped in a converter, so an expensive low carbon manganese alloy must be used, which has the disadvantage of increasing the melting cost.

上記溶製コストを低減しようとする高Mn鋼の製造方法
として、従来多くの提案がなされている。その従来技術
の概要について説明する。
Many proposals have been made in the past as methods for manufacturing high Mn steel in an attempt to reduce the above-mentioned melting costs. An overview of the conventional technology will be explained.

特開昭62−192519 : この方法は脱りん処理した予備処理溶銑を使用し、転炉
ではスラブを少くするレススラグ吹錬を実施し。
JP-A-62-192519: This method uses dephosphorized pretreated hot metal, and performs less slag blowing to reduce the amount of slab in the converter.

炉中にMn含有物質を添加し、比較的Cの高い状態で出
鋼し、真空脱ガス槽にて脱炭する方法が示されているが
、使用ガスの種類が示されていない。
A method is disclosed in which a Mn-containing substance is added to a furnace, steel is tapped in a relatively high C state, and decarburized in a vacuum degassing tank, but the type of gas used is not disclosed.

特開昭63−293109 : この方法では転炉吹錬においては、C: 0.15〜0
゜5%溶鋼温度1640℃以上にて出鋼し、真空脱ガス
槽においてMn鉱石を添加し、C: 0.1%以下まで
脱炭する方法が示されている。
JP-A-63-293109: In this method, C: 0.15 to 0 in converter blowing.
A method is shown in which steel is tapped at a molten steel temperature of 1640° C. or higher, Mn ore is added in a vacuum degassing tank, and decarburization is performed to a C content of 0.1% or less.

特開平1−92312: この方法の要旨とするところは次の如くである。JP-A-1-92312: The gist of this method is as follows.

すなわち、rRH真空脱ガス装置の真空槽内の溶鋼に、
該真空槽の側壁に設けたノズルを通じ、不活性ガスをキ
ャリアーガスとしてマンガン鉱石粉体を吹込み、マンガ
ン鉱石中の酸素により溶鋼の脱炭を行うとともに、溶鋼
中のマンガン濃度を高めることを特徴とする高マンガン
鋼の製造方法。」である。
That is, in the molten steel in the vacuum chamber of the rRH vacuum degassing device,
The manganese ore powder is injected through a nozzle provided on the side wall of the vacuum chamber using an inert gas as a carrier gas, and the molten steel is decarburized by the oxygen in the manganese ore, and the manganese concentration in the molten steel is increased. A method for manufacturing high manganese steel. ”.

この方法では、Mn鉱石はMn含有量45〜55%の高
炭素マンガン鉱石であり、その吹込量は溶鋼を当り溶鋼
トン当り1〜5kgであって、キャリアーガスとしては
Ar 0.003〜0.04ONm/min、−を使用
することが記載されている。
In this method, the Mn ore is a high carbon manganese ore with a Mn content of 45-55%, the amount of injection is 1-5 kg per ton of molten steel, and the carrier gas is Ar 0.003-0. It is described that 04ONm/min, - is used.

しかし、これらの従来方法では、脱炭反応が必ずしも十
分行われず、従って効率的な処理が行えず、コストの低
減についても十分ではないものと考えられる。
However, in these conventional methods, the decarburization reaction is not necessarily carried out sufficiently, and therefore, efficient treatment cannot be carried out, and it is considered that cost reduction is not sufficient.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、上記従来技術の課題を解決し、安定し
て溶製コストを低減できる高マンガン鋼の溶製方法を提
供するにある。
An object of the present invention is to provide a high manganese steel melting method that solves the problems of the prior art described above and can stably reduce melting costs.

〔課題を解決するための手段および作用〕本発明の要旨
とするところは次の如くである。すなわち、転炉等の精
錬炉で溶製した粗脱炭低炭素鋼を未脱酸のまま取鍋に出
鋼するに際し高炭素マンガン合金を投入してマンガンの
成分調整を行う工程と、前記マンガンの成分調整後に真
空脱ガス槽にて酸素を上吹きして脱炭する工程と、前記
脱炭後に引続いて真空脱ガス槽にて脱ガスする工程と、
を有して成ることを特徴とする高マンガン鋼の溶製方法
である。
[Means and operations for solving the problems] The gist of the present invention is as follows. That is, a process of adjusting the composition of manganese by adding a high carbon manganese alloy when raw decarburized low carbon steel melted in a refining furnace such as a converter is tapped into a ladle without being deoxidized; a step of decarburizing by top-blowing oxygen in a vacuum degassing tank after adjusting the components; a step of degassing in a vacuum degassing tank after the decarburization;
A method for melting high manganese steel, characterized by comprising the following steps.

本発明の詳細を添付図面を参照して説明する。The details of the invention will now be described with reference to the accompanying drawings.

本発明においては、予め脱硫、脱りんされた予備処理溶
銑を使用して粗脱炭低炭素鋼を精錬し未脱酸のまま、従
来より吹止C含有量がやや高い状態で転炉から出鋼する
。出鋼中に価格の低廉な高炭素マンガン合金を投入して
マンガンの成分調整を行う。その後、AQ滓を投入して
Mnの歩留向上を目的として、スラグ還元を行う。スラ
ブ還元後、真空脱ガス槽において酸素を上吹きしていわ
ゆるリムド処理にて約10分間脱炭し、その後約20分
間キルト処理にて脱炭、脱ガス処理して成分の調整を行
って精錬を完了する。
In the present invention, crudely decarburized low carbon steel is refined using pretreated hot metal that has been desulfurized and dephosphorized in advance, and is released from the converter without being deoxidized and with a slightly higher blowout C content than before. Steel. During tapping, an inexpensive high-carbon manganese alloy is added to adjust the manganese composition. Thereafter, AQ slag is introduced to perform slag reduction for the purpose of improving the Mn yield. After slab reduction, oxygen is top-blown in a vacuum degassing tank to decarburize for about 10 minutes in a so-called rimmed process, and then decarburize and degas in a quilt process for about 20 minutes to adjust the components and refine. complete.

本発明においては、真空2次精錬において酸素上吹きを
行うので、酸素の供給が十分であり、第1図に示す如く
、脱炭は活発に行われ、停滞は起こらない。
In the present invention, since oxygen top-blowing is performed in the vacuum secondary refining, the supply of oxygen is sufficient, and as shown in FIG. 1, decarburization is actively carried out and stagnation does not occur.

第1図は本発明の実施例の真空2次精錬における溶銅中
の炭素と酸素の変化を示したものである。また、第2図
には、真空2次精錬前の炭素の含有量が0.14%の溶
鋼について、酸素上吹きをした場合としない場合につい
て、Mnの含有量を変化させて真空2次精錬を行い、そ
の脱炭係数を調査して示した。
FIG. 1 shows changes in carbon and oxygen in molten copper during vacuum secondary refining in an example of the present invention. Figure 2 also shows that molten steel with a carbon content of 0.14% before vacuum secondary refining is subjected to vacuum secondary refining by changing the Mn content with and without oxygen top blowing. The decarburization coefficient was investigated and shown.

第2図から、酸素上吹きを実施する本発明においては、
Mnの含有量が多くても脱炭速度はほぼ一定であり、高
Mn鋼でも高い脱炭速度が得られることが判明した。
From FIG. 2, in the present invention which performs oxygen top blowing,
It was found that the decarburization rate is almost constant even when the Mn content is high, and that high decarburization rates can be obtained even with high Mn steel.

また、RH処理中のMn成分中の変化は第3図に示すと
おりであって、酸素上吹き区間の約5分間につぃては、
Mn:12.5%から約12.0%へと若干の酸化がみ
られるものの、その他の脱ガス区間にはほとんど変化が
みられず、Mn歩留は良好であった。
Also, the changes in the Mn component during the RH treatment are as shown in Figure 3, and for about 5 minutes during the oxygen top blowing section,
Although some oxidation was observed from Mn: 12.5% to approximately 12.0%, almost no change was observed in other degassing sections, and the Mn yield was good.

従って本発明においては、転炉の吹止めCを高くして、
スラグの総鉄含有量(T、Fe)を低下させてMn歩留
を上昇させ、更に低廉な高炭素Mn合金を使用すること
が可能となった。
Therefore, in the present invention, the blow stop C of the converter is made high,
It has become possible to lower the total iron content (T, Fe) of the slag, increase the Mn yield, and use a cheaper high-carbon Mn alloy.

〔実施例〕〔Example〕

本発明の実施例を従来例と比較して説明する。第1表に
示す転炉吹錬条件で取鍋に出鋼し、第2表に示す如く本
発明法および従来法により、Mn調整お第1表 第 表 よび真空2次精錬を行い、同一条件で鋳片に連続鋳造を
行った。
An embodiment of the present invention will be described in comparison with a conventional example. Steel was tapped into a ladle under the converter blowing conditions shown in Table 1, and subjected to Mn adjustment and vacuum secondary refining according to the method of the present invention and the conventional method as shown in Table 2, under the same conditions. Continuous casting was performed on the slab.

その結果、本発明実施例は低廉な高炭素Mn合金を使用
するほか、Mnの歩留が良好であるので第2表に示す如
〈従来例に比して溶製コストを400円/を低減するこ
とができた。
As a result, in addition to using an inexpensive high-carbon Mn alloy, the embodiment of the present invention has a good Mn yield, so as shown in Table 2, the melting cost was reduced by 400 yen/ compared to the conventional example. We were able to.

〔発明の効果〕〔Effect of the invention〕

本発明は上記実施例からも明らかな如く、転炉から未脱
酸のまま出鋼し、取鍋に高炭素Mn合金を投入してマン
ガン調整を行い、真空脱ガス槽において酸素を上吹きし
て真空2次精錬を実施することにより、高い脱炭速度が
得られた。この脱炭速度はMn濃度によらず、はぼ一定
であることが判明した。その結果従来の高価な低炭素F
e−Mnを廃して比較的安い高炭素Fe−Mnを有効に
使用することができ、低C高Mn鋼の溶製コストを約4
00円/を低減できた。
As is clear from the above examples, in the present invention, steel is tapped from a converter without being deoxidized, a high carbon Mn alloy is charged into a ladle, manganese is adjusted, and oxygen is top-blown in a vacuum degassing tank. A high decarburization rate was obtained by performing vacuum secondary refining. It was found that this decarburization rate was almost constant regardless of the Mn concentration. As a result, conventional expensive low carbon F
It is possible to eliminate e-Mn and effectively use relatively cheap high carbon Fe-Mn, reducing the melting cost of low C high Mn steel to about 4.
00 yen/ was reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の真空2次精錬における溶鋼中の
炭素と酸素の変化を示す線図、第2図は真空2次精錬に
おいて酸素を上吹きした場合としない場合について溶鋼
中のMn含有量と脱炭係数との関係を示す線図、第3図
は本発明の実施例における真空2次精錬(RH処理)中
のRH処理時間と溶鋼中のMn含有量(1o−”  %
)との関係を示す線図である。 竿 / 1」
Fig. 1 is a diagram showing the changes in carbon and oxygen in molten steel in the vacuum secondary refining of the embodiment of the present invention, and Fig. 2 is a diagram showing the changes in Mn in molten steel with and without top-blowing of oxygen in the vacuum secondary refining. Figure 3 is a diagram showing the relationship between Mn content and decarburization coefficient.
) is a diagram showing the relationship between Rod / 1”

Claims (1)

【特許請求の範囲】[Claims] (1)転炉等の精錬炉で溶製した粗脱炭低炭素鋼を未脱
酸のまま取鍋に出鋼するに際し高炭素マンガン合金を投
入してマンガンの成分調整を行う工程と、前記マンガン
の成分調整後に真空脱ガス槽にて酸素を上吹きして脱炭
する工程と、前記脱炭後に引続いて真空脱ガス槽にて脱
ガスする工程と、を有して成ることを特徴とする高マン
ガン鋼の溶製方法。
(1) A step of adjusting the composition of manganese by adding a high carbon manganese alloy when tapping crude decarburized low carbon steel melted in a refining furnace such as a converter into a ladle without deoxidizing; It is characterized by comprising the steps of decarburizing by top-blowing oxygen in a vacuum degassing tank after adjusting the manganese composition, and decarburizing the gas in a vacuum degassing tank after the decarburization. A method for producing high manganese steel.
JP20370790A 1990-07-31 1990-07-31 Method for producing high manganese steel Pending JPH0488114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20370790A JPH0488114A (en) 1990-07-31 1990-07-31 Method for producing high manganese steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20370790A JPH0488114A (en) 1990-07-31 1990-07-31 Method for producing high manganese steel

Publications (1)

Publication Number Publication Date
JPH0488114A true JPH0488114A (en) 1992-03-23

Family

ID=16478522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20370790A Pending JPH0488114A (en) 1990-07-31 1990-07-31 Method for producing high manganese steel

Country Status (1)

Country Link
JP (1) JPH0488114A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153328A (en) * 2010-01-26 2011-08-11 Jfe Steel Corp Method for smelting low-carbon high-manganese steel
CN103556061A (en) * 2013-11-12 2014-02-05 湖南华菱湘潭钢铁有限公司 Production method of quenched and tempered high-strength Q690E super-thick steel plate
WO2017145877A1 (en) 2016-02-24 2017-08-31 Jfeスチール株式会社 Method for refining molten steel in vacuum degassing equipment
CN107794434A (en) * 2016-09-06 2018-03-13 鞍钢股份有限公司 Method for increasing carbon, silicon and manganese contents of molten steel of medium-high carbon steel by utilizing molten iron
KR20190077754A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Method for Refining Low Carbon and High Manganese Steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153328A (en) * 2010-01-26 2011-08-11 Jfe Steel Corp Method for smelting low-carbon high-manganese steel
CN103556061A (en) * 2013-11-12 2014-02-05 湖南华菱湘潭钢铁有限公司 Production method of quenched and tempered high-strength Q690E super-thick steel plate
WO2017145877A1 (en) 2016-02-24 2017-08-31 Jfeスチール株式会社 Method for refining molten steel in vacuum degassing equipment
KR20180102179A (en) 2016-02-24 2018-09-14 제이에프이 스틸 가부시키가이샤 Refining method of molten steel in vacuum degassing facility
US10745771B2 (en) 2016-02-24 2020-08-18 Jfe Steel Corporation Method for refining molten steel in vacuum degassing equipment
CN107794434A (en) * 2016-09-06 2018-03-13 鞍钢股份有限公司 Method for increasing carbon, silicon and manganese contents of molten steel of medium-high carbon steel by utilizing molten iron
KR20190077754A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Method for Refining Low Carbon and High Manganese Steel

Similar Documents

Publication Publication Date Title
CN112813229B (en) Nitrogen increasing and controlling method for vanadium microalloyed deformed steel bar and manufacturing method
CN109252010B (en) Smelting method for controlling oxidability of IF steel top slag
CN115595397B (en) Accurate nitrogen control method for nitrogen-containing high-strength steel
JP6551626B2 (en) Method of melting high manganese steel
CN107502704B (en) Method for reducing alumina inclusions in semisteel steelmaking casting blank
JP4736466B2 (en) Method for producing high chromium molten steel
JPH0488114A (en) Method for producing high manganese steel
JP2958848B2 (en) Hot metal dephosphorization method
JPH06240338A (en) Method for desulfurizing molten steel
JP3002593B2 (en) Melting method of ultra low carbon steel
US4592778A (en) Steelmaking of an extremely low carbon steel in a converter
JPS6358203B2 (en)
JP2912963B2 (en) Slag reforming method as desulfurization pretreatment
JPH0472009A (en) Method for refining high cleanliness steel
JP3548273B2 (en) Melting method of ultra low carbon steel
JPH11106823A (en) Method for refining extra-low carbon and extra-low nitrogen stainless steel
JP3411220B2 (en) Refining method of high nitrogen low oxygen chromium-containing molten steel
CN115369308B (en) A method for producing high-strength IF steel
JPS5925007B2 (en) Method of refining hot metal and molten steel
JPH01252753A (en) Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere
JPH06256836A (en) Production of high cleanliness and ultra-low carbon steel
CN119464950A (en) Smelting method of RH light treatment cold rolling base material steel
CN119685686A (en) Ultra-low nitrogen and ultra-low sulfur steel and smelting method thereof
JPH05239537A (en) Method for melting cleanliness and extreme-low carbon steel
JPH04224612A (en) Method for refining in converter