[go: up one dir, main page]

JPH01252753A - Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere - Google Patents

Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere

Info

Publication number
JPH01252753A
JPH01252753A JP63076448A JP7644888A JPH01252753A JP H01252753 A JPH01252753 A JP H01252753A JP 63076448 A JP63076448 A JP 63076448A JP 7644888 A JP7644888 A JP 7644888A JP H01252753 A JPH01252753 A JP H01252753A
Authority
JP
Japan
Prior art keywords
scrap
melting
slag
tuyere
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63076448A
Other languages
Japanese (ja)
Other versions
JPH0431016B2 (en
Inventor
Yasuo Kishimoto
康夫 岸本
Yoshihide Kato
嘉英 加藤
Toshikazu Sakuratani
桜谷 敏和
Tetsuya Fujii
徹也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63076448A priority Critical patent/JPH01252753A/en
Publication of JPH01252753A publication Critical patent/JPH01252753A/en
Publication of JPH0431016B2 publication Critical patent/JPH0431016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To obtain the title stainless mother molten metal having excellent purity in high yield by charging molten iron and scrap into a reactor, melting the scrap, successively adding Cr and C thereto, melting and reducing it and thereafter subjecting the same to final reducing by oxygen blowing. CONSTITUTION:Molten iron and scrap are charged into a reactor in which slag is present, and the scrap is melted while C-contg. material and O-contg. material are supplied. The molten metal is heated and is subjected to melting and reducing by adding Cr-contg. material and C-contg. material thereto while supplying an O-contg. gas to reduce the Cr content into the objective value. The material is then subjected to final reducing by the blowing of an O-contg. gas and is poured as the molten metal while suitable amt. of slag is left. At the time of scrap melting, the amt. of the slag is preferably regulated to at least about >=50kg/t, to >=100mm thickness on the surface of the molten iron bath, and a stirring gas of about >=1.0Nm<3>/min/t is preferably blown from the bottom of the reactor. As for the bottom blowing tuyeres of the reactor, the structure in which each one is arranged in rows at intervals at the furnace bottom is suitable.

Description

【発明の詳細な説明】 (産業上の利用分野) ステンレス鋼を高効率にかつ安価に溶製するためのステ
ンレス鋼製造用の含クロムステンレス高炭素溶湯(この
明細書では[ステンレス鋼母溶湯」という)を製造する
プロセスの改善に関する。
[Detailed Description of the Invention] (Industrial Application Field) A chromium-containing stainless steel high-carbon molten metal (hereinafter referred to as "stainless steel mother molten metal") for producing stainless steel in order to melt stainless steel highly efficiently and inexpensively. related to the improvement of the manufacturing process.

(従来の技術) ステンレス鋼の溶製方法としてスクラップやFeCr、
 FeNi等合金鉄を主原料として電気炉で溶解し、そ
の後AODやVODで脱炭と還元精錬を行いステンレス
鋼を溶製するプロセスすなわち電気炉−AOD(VOD
)プロセスが最も一般的でする。しかし電気炉を用いる
このプロセスは高価なエネルギーである電気エネルギー
を用いる必要があることや原料選択の上で制限がある点
でステンレス鋼の安価な製造法として問題がある。
(Conventional technology) Scrap, FeCr,
The process of melting FeNi and other ferroalloys as the main raw material in an electric furnace, followed by decarburization and reduction refining using AOD or VOD to produce stainless steel.
) process is the most common. However, this process using an electric furnace has problems as an inexpensive method for producing stainless steel because it requires the use of expensive electrical energy and there are restrictions on the selection of raw materials.

一方、電気炉を用いずに上底吹き転炉内に溶銑を装入し
、ステンレス鋼の成分となるように脱炭吹錬中または吹
錬前にスクラップや合金鉄(FeCrやFeN1)を添
加して所定の成分とし、脱炭工程終了後FeS i等の
合金鉄を投入して還元工程に移行し、しかる後出鋼して
連続鋳造するプロセスが例えば文献(鉄と鋼(1985
)、 Vol、 71. S 180 ) ニ記されて
いる。しかしながらこの方法でも熱バランス上溶銑に投
入可能なスクラップや合金鉄は制限される。またその制
約を除くように熱源として炭材を添加する方法では吹錬
時間が延長されるためにダスト発生量が増加して、歩止
まりの面で支障をきたすことや連続鋳造とのマツチング
の面で困難なことがあり、さらには安価材料を用いる効
率的なステンレス鋼溶製という面では不充分といわざる
を得ない。
On the other hand, hot metal is charged into a top-bottom blowing converter without using an electric furnace, and scrap and ferroalloys (FeCr and FeN1) are added during or before decarburization blowing to become the components of stainless steel. For example, a process is described in the literature (Tetsu to Hagane (1985
), Vol. 71. S180) D is written. However, even with this method, the amount of scrap and ferroalloy that can be input into the hot metal is limited due to heat balance. In addition, in the method of adding carbonaceous material as a heat source to remove this restriction, the blowing time is extended and the amount of dust generated increases, causing problems in terms of yield and in terms of matching with continuous casting. Furthermore, it cannot be said that efficient stainless steel melting using inexpensive materials is sufficient.

近年ステンレス鋼の溶製プロセスの一部にフェロクロム
の代わりにクロム鉱石または、一部還元を行ったクロム
鉱石のベレット(以下「予備還元ペレット」という)を
溶融、還元してステンレス鋼を溶製する技術が開発され
ているが、これに関し例えば文献鉄とm(1987)、
 VoA、73+ S 875t’は上底吹き転炉にお
いて脱Pした溶銑を装入した後戻材を添加昇熱させその
後クロム鉱石または予備還元ペレットと炭材を投入し溶
融還元を行い更に吹酸と炭材投入の供給を続けて含クロ
ム溶湯を溶製し、スラグと除滓した後引き続き脱炭を行
う技術が開示されている。一方特公昭62−50545
号公報においても同一炉で鉱石の溶融還元を行い、含ク
ロム溶湯を溶製した後スラグのみ除滓を行い引き続き脱
炭を行う技術に関する改善が開示されている。これらの
方法では同一炉内で溶融還元と酸化精錬を行うために、
途中でスラグ除去するとしても十分な除去が行われると
は限らず、不純物の硫黄が脱炭精錬後も大量に残るとい
う問題があり、また、炉内の耐火物の溶損が著しいとい
う欠点もあった。なお特公昭62−50545号公報に
おいては、含クロム溶湯の脱炭においてスクラップを使
用する技術が引用されているようにこうしたステンレス
溶湯の脱炭に際して適宜ステンレススクラップを投入し
、スクラップを原料として使用できることも従来既知の
技術である。
In recent years, chromium ore or partially reduced chromium ore pellets (hereinafter referred to as "pre-reduced pellets") have been melted and reduced to produce stainless steel instead of ferrochrome as part of the stainless steel melting process. The technology has been developed, for example, in the literature Tetsu and M (1987),
VoA, 73+ S 875t' is a top-bottom blowing converter in which dephosphorized hot metal is charged and heated by adding backing material, then chromium ore or pre-reduced pellets and carbon material are charged and melted and reduced, and then blowing acid and A technique has been disclosed in which a chromium-containing molten metal is melted by continuing to supply carbonaceous material, and after removing slag and slag, decarburization is subsequently performed. On the other hand, special public service Sho 62-50545
This publication also discloses an improvement in the technology of melting and reducing ore in the same furnace, melting a chromium-containing molten metal, removing only the slag, and subsequently decarburizing the slag. In these methods, smelting reduction and oxidation refining are performed in the same furnace.
Even if slag is removed during the process, it is not always sufficient to remove it, and there is a problem that a large amount of sulfur, an impurity, remains even after decarburization and smelting, and there is also the disadvantage that the refractories in the furnace are severely eroded. there were. In addition, Japanese Patent Publication No. 62-50545 cites a technique for using scrap in decarburizing chromium-containing molten metal, and it is possible to appropriately input stainless steel scrap and use the scrap as a raw material when decarburizing molten stainless steel. This is also a conventionally known technique.

しかしながらステンレス溶湯の脱炭に際してステンレス
スクラップを合材として投入する場合でも当然ながらそ
の使用量は限られたものにならざるを得す、そうした観
点からは安価な原料を使用できるプロセスとしてはなお
不充分な点を残している。
However, even when stainless steel scrap is used as a composite material when decarburizing molten stainless steel, the amount used must of course be limited, and from that point of view, it is still insufficient as a process that can use inexpensive raw materials. It leaves a mark.

特にステンレス溶製においては安価な含クロム、含ニッ
ケルのスクラップを大量に使用できるプロセスが必要で
そうした点でこれまでの技術ではスクラップを大量に使
用できる電気炉がどうしても必要とされたのである。
Particularly in stainless steel melting, a process that can use large amounts of inexpensive chromium- and nickel-containing scrap is necessary, and in this respect, with conventional technology, an electric furnace that can use large amounts of scrap was absolutely necessary.

(発明が解決しようとする課題) 上に述べたような従来技術に対して抜本的な解決を図り
、ステンレス溶製に対する効率的でしかも高品質を保証
するプロセスに提供すること、すなわち、原料ソースに
関しては溶銑、Cr鉱石と多量のスクラップ及び合金鉄
を使用し、安価原料の使用の上で選択幅の大きいプロセ
スであり、しかも不純物成分である燐、硫黄に対しても
十分に制御でき、加えて炉の耐火物溶損が少な(て洗浄
度にすぐれ、不純物としてのガス成分濃度も著しく低い
、ステンレス鋼母溶湯の溶製方法を与えることが第1の
目的である。
(Problem to be solved by the invention) It is an object to provide a fundamental solution to the conventional technology as described above, and to provide an efficient process for stainless steel melting that guarantees high quality. The process uses hot metal, Cr ore, large amounts of scrap and ferroalloy, and has a wide range of choices in terms of the use of inexpensive raw materials. Moreover, impurity components such as phosphorus and sulfur can be sufficiently controlled, and The first object of the present invention is to provide a method for melting a stainless steel mother metal, which causes less erosion of refractories in the furnace, has excellent cleanliness, and has a significantly low concentration of gas components as impurities.

特に高価な電気エネルギーを必要とするスクラップの電
気炉溶解に代わって上底吹き転炉のみで安価な炭材のエ
ネルギーを用いて大量のスクラップを使用でき、しかも
フェロクロムの代わりに安価なりロム鉱石や半還元ペレ
ットを使用可能なプロセスを提供するものである。
In particular, instead of melting scrap in an electric furnace, which requires expensive electrical energy, a top-bottom blowing converter alone can use the energy of cheap carbonaceous materials, making it possible to use a large amount of scrap.Moreover, instead of ferrochrome, it is possible to use inexpensive rom ore. This provides a process that can use semi-reduced pellets.

またこのプロセスの実行に有利に活用され得る反応容器
底部羽口配列及び底部羽目を与えることが、その余の目
的である。
It is a further object to provide a reaction vessel bottom tuyere arrangement and bottom lining that can be advantageously utilized in carrying out this process.

(課題を解決するための手段) 上記目的は次の構成によって成就される。(Means for solving problems) The above purpose is achieved by the following configuration.

クロム含有物質と炭素含有物質と共に溶銑とからステン
レス鋼母溶湯を溶製するにあたり、溶滓の存在する反応
容器中に溶銑と共にスクラップを装入し、炭素含有物質
と酸素含有ガスを供給しながら該スクラップを溶かす溶
解工程に引続き昇温を行い、更に、酸素含有ガスを供給
しながらクロム含有物質と炭素含有物質とを溶銑に加え
クロム含有量が目標値になるまで溶融還元工程を行い、
次に酸素含有ガスの吹諌で仕上還元工程を行い、溶滓を
適量残して出湯することを特徴とするステンレス鋼母溶
湯の溶製方法。(第1発明)。
When melting a stainless steel mother metal from hot metal together with chromium-containing substances and carbon-containing substances, the scrap is charged together with the hot metal into a reaction vessel containing slag, and the carbon-containing substances and oxygen-containing gas are supplied. Following the melting process of melting the scrap, the temperature is raised, and further, a chromium-containing substance and a carbon-containing substance are added to the hot metal while supplying an oxygen-containing gas, and a melting reduction process is performed until the chromium content reaches the target value.
A method for producing a stainless steel mother molten metal, which is characterized in that a finishing reduction process is then performed by blowing oxygen-containing gas, and the molten metal is tapped leaving an appropriate amount of slag. (First invention).

この方法はスクラップ溶解工程において反応容器中に存
在する溶滓の量が、少なくとも50kg八以上でかつ溶
銑浴面上に100 mm厚以上であること、スクラップ
溶解工程において、反応容器底から1.ONm!/mi
n/t以上の撹拌ガスを吸込むことがよりのぞましい。
This method requires that the amount of slag present in the reaction vessel in the scrap melting process is at least 50 kg or more and has a thickness of 100 mm or more on the surface of the hot metal bath; ONm! /mi
It is more desirable to suck in stirring gas of n/t or more.

次に専ら第1発明の方法に用いる反応容器の底部羽口配
列であって底吹き羽口が炉底で互いに間隔をおき列状に
並んで配列され、その配列本数が4本以上で、かつ中心
より最も近接する2本の羽口間の距離dと反応容器炉底
部分の直径りとの比d/Dが0.1〜0.5、また該羽
口群との距離の和が最小となる直線とこの直線に平行な
直径との距離!と炉底部分の直径りとの比!!、/Dが
0.1以下とからなるステンレス鋼母溶湯溶製用の反応
容器底部羽口配列。(第2発明)。
Next, the bottom blowing tuyere arrangement of the reaction vessel exclusively used in the method of the first invention is such that the bottom blowing tuyeres are arranged in rows at intervals from each other at the bottom of the furnace, and the number of the arrangement is four or more, and The ratio d/D between the distance d between the two tuyeres closest to the center and the diameter of the bottom of the reactor vessel is 0.1 to 0.5, and the sum of the distances to the tuyere group is minimum. The distance between the straight line and the diameter parallel to this straight line! The ratio between that and the diameter of the bottom of the hearth! ! , /D is 0.1 or less. (Second invention).

専ら第1発明の方法に用いる反応容器の底部羽口であっ
て外管と外管に内挿された内管とよりなる同心二重管で
あり、少なくとも内管の先端部で複数の酸素ガスジェッ
トがらせん状に噴出する構造を有することからなるステ
ンレス鋼母溶湯溶製用の反応容器の底吹き羽目。(第3
発明)。
The bottom tuyere of the reaction vessel used exclusively in the method of the first invention is a concentric double tube consisting of an outer tube and an inner tube inserted into the outer tube, and at least at the tip of the inner tube, a plurality of oxygen gases are A bottom blown surface of a reaction vessel for melting a stainless steel mother melt, which has a structure in which jets are ejected in a spiral manner. (3rd
invention).

第1発明の方法ではまず混銑車(トピードカー)で溶銑
の脱Stと脱Pを行い、処理後のSi、  P:a度を
それぞれ0.02重量%以下、0.015重量%以下と
して第1の上底吹き転炉に1180〜1270″Cの温
度で装入する。
In the method of the first invention, first, the hot metal is deSted and dephosphorized in a torpedo car, and the Si and P:a degrees after treatment are set to 0.02% by weight or less and 0.015% by weight or less, respectively. A top-bottom blowing converter is charged at a temperature of 1180-1270''C.

その際にそれよりも事前にあるいは事後にスクラップを
反応容器内に装入し上吹きランスと底吹き羽口より酸素
を供給すると共にコークスなどの炭材を添加することに
よってスクラップを溶解する期間(第1期)を設けた後
、それに引き続き炭材と酸素の供給により反応容器内の
溶銑中の炭素濃度を常に少なくとも4%以上である状態
を保ちながら該溶銑を1550°C以上、1620°C
以下の状態にまで昇温する期間(第■期)を設ける。
At that time, before or after that, the scrap is charged into the reaction vessel, oxygen is supplied from the top blowing lance and the bottom blowing tuyere, and a carbon material such as coke is added to melt the scrap ( After the first stage), the hot metal is heated to 1550°C or higher and 1620°C while continuously maintaining the carbon concentration in the hot metal in the reaction vessel at least 4% by supplying carbonaceous materials and oxygen.
A period (period ■) is provided in which the temperature is raised to the following conditions.

さらにそれに引き続いてクロム鉱石または予備還元ペレ
ット、炭材および酸素を供給しクロム鉱の溶融還元を行
う。その溶融還元ではスラグ中の(%CaO) / (
%5i(h)を1.5以上3.5以下に保ち、かつ((
MgO) +(Aj!z03) ) / ((CaO)
+ (SiO□) + (MgO) + (八1203
))を45%以上55%以下に保つ(その期間を第■期
と呼ぶ)。
Subsequently, chromium ore or prereduced pellets, carbonaceous material, and oxygen are supplied to melt and reduce the chromium ore. In the melt reduction, (%CaO) / (
Keep %5i(h) between 1.5 and 3.5, and ((
MgO) + (Aj!z03) ) / ((CaO)
+ (SiO□) + (MgO) + (81203
)) is maintained at 45% or more and 55% or less (this period is referred to as period Ⅰ).

所定のクロム濃度にするためのクロム鉱石を投入し終え
ると酸素ガスを上吹きランスと底吹き羽口より供給する
時期を設ける(その期間を第■期と呼ぶ)。
After the introduction of chromium ore to achieve a predetermined chromium concentration, a period is set in which oxygen gas is supplied from the top blowing lance and the bottom blowing tuyere (this period is called the second period).

第■期が終了した時点で上吹きランスと底吹き羽口から
の酸素供給を停止し、まず第1の上底吹き転炉からスラ
グおよび含クロム溶鉄を排出する。
At the end of the third period, the supply of oxygen from the top blowing lance and the bottom blowing tuyere is stopped, and first, the slag and chromium-containing molten iron are discharged from the first top and bottom blowing converter.

その際に第1の上底吹き転炉の操業を繰り返し行うにあ
って、前チャージのスラグ量を少なくとも10%以上残
存させる。
At this time, when the first top-bottom blowing converter is repeatedly operated, at least 10% or more of the slag amount of the previous charge remains.

さらに第1期の操業における底吹きガス流量範囲Qを1
.0 (Nm’/min/l)以上とする。ただし、Q
O2:底吹き酸素流!(Nm’/win)QI:底吹キ
ネ活性ガス流量(Nm3/m1n)Q、1:底吹きプロ
パン流fl(Nm’/win)上に述べた第1発明の工
程手順は第1図に示すとおりである。
Furthermore, the bottom blowing gas flow rate range Q in the first stage operation was set to 1.
.. 0 (Nm'/min/l) or more. However, Q
O2: Bottom-blown oxygen flow! (Nm'/win) QI: Bottom-blown active gas flow rate (Nm3/m1n) Q, 1: Bottom-blown propane flow fl (Nm'/win) The process procedure of the first invention described above is shown in FIG. That's right.

(作 用) ステンレス鋼母溶湯を効率的に溶製するに際して第1発
明に従いまず、混銑車(トピードカー)によって脱珪、
脱りん処理した後、溶銑を溶融還元炉に装入する。
(Function) When efficiently melting stainless steel mother metal, according to the first invention, first, desiliconization is performed using a torpedo car.
After dephosphorization, the hot metal is charged into a smelting reduction furnace.

この際に次工程以降のCrjff、石、合金、スクラッ
プの使用によって所定のステンレス鋼母溶湯が得られる
ようにRH脱ガス装置出鋼量の65%以下の溶銑装入量
とする。ここで従来法に比して安価なスクラップの使用
量を大幅に増加させることができ、必要に見合う量のス
クラップを使用する。
At this time, the amount of hot metal charged is set to be 65% or less of the amount of steel tapped in the RH degasser so that a predetermined stainless steel mother metal can be obtained by using Crjff, stones, alloys, and scraps in the next process and subsequent steps. Here, the amount of inexpensive scrap used can be significantly increased compared to the conventional method, and the amount of scrap used is commensurate with the need.

したがって溶融還元炉で使用する溶銑重量はRH脱ガス
装置出atの65%から、溶融還元炉で使用するスクラ
ップ量を差し引いた重量でよい。また脱りん処理後のP
濃度は次工程での投入原料からのりん上昇に対処できる
よう0.015重量%以下とする。
Therefore, the weight of hot metal used in the smelting reduction furnace may be the weight obtained by subtracting the amount of scrap used in the smelting reduction furnace from 65% of the output at of the RH degasser. In addition, P after dephosphorization treatment
The concentration is set to 0.015% by weight or less in order to cope with the increase in phosphorus from input raw materials in the next process.

また処理後の溶銑は脱りん効率を高く保つために118
0〜1270°Cに温度を制御する。
In addition, in order to maintain high dephosphorization efficiency, the hot metal after treatment is
Control the temperature between 0 and 1270°C.

以上の配慮の下に溶銑を溶融還元炉に装入するが、それ
よりも前に予めあるいは溶銑装入後にスクラップを経済
的なコストを考えて装入することができ、通常は15〜
25tonのスクラップを使用するのが効率的である。
Hot metal is charged into the smelting reduction furnace with the above considerations in mind, but scrap can be charged in advance or after charging the hot metal, taking into consideration economical costs.
It is efficient to use 25 tons of scrap.

しかしながらさらに大量のスクラップを使用する場合も
もちろん適用可能である。
However, it is of course also applicable to cases where a larger amount of scrap is used.

上記のスクラップを装入した後戻材と酸素ガスのみを供
給する第1期を必要とする。何故ならばただちにクロム
酸化物の投入を行うと、スクラップの溶解が遅れ、かつ
鋼浴温度の上昇が遅れるためクロム酸化物の還元の悪化
、スクラップ未溶解による吹錬時間の延長を引き起こす
からである。
The first stage is required to supply only the above-mentioned scrap material and oxygen gas. This is because if chromium oxide is added immediately, the melting of the scrap will be delayed, and the rise in steel bath temperature will also be delayed, which will worsen the reduction of the chromium oxide and extend the blowing time due to unmelted scrap. .

さらにその際鋼浴中の炭素濃度は常に4%以上に保つこ
とも必要である。スクラップの溶解には単に熱供給のみ
でなく鋼浴中炭素による浸炭を行い溶解させるのが迅速
な溶解手段となるからである。またクロムを含むスクラ
ップ溶解に際してはスクラップ溶解期の炭素濃度を高め
、スクラップ溶解期のクロム酸化を抑制し、次の溶融還
元期を有利にすることも必要だからである。
Furthermore, at that time, it is also necessary to always maintain the carbon concentration in the steel bath at 4% or higher. This is because a quick means of melting scrap is not only by simply supplying heat, but also by carburizing it with carbon in a steel bath. In addition, when melting scrap containing chromium, it is necessary to increase the carbon concentration during the scrap melting stage, suppress chromium oxidation during the scrap melting stage, and make the next smelting reduction stage advantageous.

さらに発明者らはスクラップを溶解させる際に種々の改
良を試みスクラップの溶解時に迅速に溶解させるために
は底吹き羽目流量の好適な条件があることを見出した。
Furthermore, the inventors have tried various improvements when melting scrap and have found that there is a suitable condition for the bottom-blowing flow rate in order to quickly melt the scrap.

すなわちスクラップを溶解する第1期における送酸量と
スクラップ溶解率の関係を第2図に示すさらに例えば送
酸量10100N/nl1nを経過した時期のサンプリ
ングを行うと底吹き羽口流量Qが1.0 )Lm3/m
in/t以上であればスクラップ溶解率(スクラップ投
入量の内溶解が完了した割合)がほぼ100%完了して
いることがわかった。
That is, the relationship between the amount of oxygen supplied and the scrap melting rate in the first stage of melting scrap is shown in FIG. 2. Furthermore, if sampling is performed after the amount of oxygen supplied is 10,100 N/nl1n, the bottom blowing tuyere flow rate Q is 1. 0) Lm3/m
In/t or more, it was found that the scrap melting rate (the percentage of scrap input that has been completely melted) is approximately 100%.

これはスクラップ溶解時においては底吹き撹拌力を増加
させスクラップ面と溶鋼面の接触機会を増加させること
が肝要であるからである。
This is because when melting scrap, it is important to increase the bottom blowing stirring force to increase the chances of contact between the scrap surface and the molten steel surface.

次に表1に示したように各種羽口配列の実験を行った結
果、スクラップを迅速に溶解を行う上で第3図に示すよ
うに、羽口は4本以上、望ましくは6本〜8本でかつ最
も内側にある羽口間の距離dと炉底部分直径りの比d/
Dが0.1〜0.5、より好ましくは0.2〜0.4に
設定すること、さらには該羽口群との距離の和が最小と
なる直線りとこの直線りに平行な直径との距離2とDの
比1/Dが0.1以下、望ましくは0.006以下に設
定することが必要であることがわかった。
Next, as shown in Table 1, we conducted experiments with various tuyere arrangements, and found that the number of tuyeres is 4 or more, preferably 6 to 8, as shown in Figure 3, in order to quickly melt scrap. The ratio of the distance d between the innermost tuyeres and the diameter of the hearth bottom d/
D is set to 0.1 to 0.5, more preferably 0.2 to 0.4, and furthermore, the straight line that minimizes the sum of the distances to the tuyere group and the diameter parallel to this straight line. It has been found that it is necessary to set the ratio 1/D of distance 2 and D to 0.1 or less, preferably 0.006 or less.

表 1  送酸100 Nm’/lon  (溶銑+ス
クラップ)経過後スクラップ溶解条件 ×ニスクラップ未溶解有り ○ スクラップ溶解完了 これは羽目が4本より少ないと、溶湯中に撹拌が不充分
な箇所が局部的に存在するためで、送酸量が100 N
m’/11in/lon  (溶銑+スクラップ)経過
した時点で炉内を観察するとスクラップの溶は残りが観
察された。
Table 1 Oxygen supply 100 Nm'/lon (hot metal + scrap) Scrap melting conditions after elapse of time This is because the amount of oxygen supplied is 100 N.
m'/11 in/lon (molten pig iron + scrap) When the inside of the furnace was observed, it was observed that only some scrap was melted.

またスクラップの熔は残りは主に中央部に存在すること
が多く、羽口本数を4本以上としても、中央部にある羽
口間の距離dがDに対して0.5をこえると、羽口間で
スクラップの溶は残りが観察された。またd/Dが0.
1に満たない場合はスクラップの溶は残りはないものの
、羽口溶損が第4図のように上昇した。これは羽口間の
距離が小さくなると羽口相互の干渉効果により溶損が大
きくなったものと思われる。また羽口を偏心させ、2/
Dを0.1よりも大きくするとやはりスクラップの溶は
残りが生じf/Dを大きくとることもスクラップの迅速
な溶解には適しない。羽口の配列に関しては、溶融還元
の特徴としてスラグボリュームが大であることから勘案
し、さらに炉体振動が炉壁の耐火物を損傷させることを
最小にするために一直線上や該直線を中立線とするちど
り配列とし、さらに炉体を傾動させた際に羽目にスラグ
がカバーすることがないよう中心部から若干ずらすよう
な配列が望ましい。
In addition, the rest of the scrap melt often exists mainly in the center, and even if the number of tuyeres is 4 or more, if the distance d between the tuyere in the center exceeds 0.5 with respect to D, Remaining scrap melting was observed between the tuyeres. Also, d/D is 0.
When the value was less than 1, there was no scrap remaining, but the tuyere melting loss increased as shown in Figure 4. This is thought to be because as the distance between the tuyeres became smaller, the interference between the tuyeres increased the erosion loss. Also, the tuyere is eccentric, and 2/
If D is larger than 0.1, some scrap will remain after being melted, and setting f/D to a large value is also not suitable for rapid melting of scrap. Regarding the arrangement of the tuyeres, we took into account the large slag volume that is a characteristic of smelting reduction, and also arranged the tuyeres in a straight line or in a neutral position to minimize damage to the refractories on the furnace wall caused by vibration of the furnace body. It is desirable to have a horizontal arrangement, and also an arrangement that is slightly offset from the center so that the slag does not cover the slag when the furnace body is tilted.

またスクラップ溶解期の歩止まりを検討したところ、ダ
スト(特に上吹きランス起因によるヒユーム)の発生を
抑制することが必要なこともわかった。すなわちスクラ
ップ溶解期(第1期)では1.5〜2.5()cg/w
in/lon  溶銑+スクラップ)ものダストが発生
し、歩止まりに大きな悪影響を与える。そこで発明者ら
は種々の改良を行った結果スクラップ溶解期にスラグの
厚みを100 mm以上に常に保ち、上吹きランスの形
成するホットスポット部(火点)からのヒユームの発生
をスラグのカバーにより抑制するのが有効であることを
見出した。
In addition, when we examined the yield during the scrap melting stage, we found that it was necessary to suppress the generation of dust (particularly fume caused by the top-blown lance). In other words, 1.5 to 2.5 ()cg/w in the scrap melting stage (first stage)
(in/lon hot metal + scrap) dust is generated, which has a large negative impact on yield. Therefore, the inventors made various improvements, and as a result, the thickness of the slag was always maintained at 100 mm or more during the scrap melting period, and the generation of fume from the hot spot formed by the top blowing lance was prevented by covering the slag. We have found that it is effective to suppress it.

さら社後工程で行うクロム鉱石の溶融還元においても底
吹き羽口による撹拌力の強化はクロム鉱石の還元速度向
上が図れるため、底吹きガス流量の確保が肝要となるが
、一方クロム鉱石の溶融還元ではスラグ中の炭材により
クロム鉱石から直接還元される細かな金属粒がスラグ中
に懸濁する。
In the melting and reduction of chromium ore in the post-sarasha process, strengthening the stirring power with the bottom-blowing tuyere can improve the reduction rate of chromium ore, so securing a bottom-blowing gas flow rate is essential. In reduction, fine metal particles that are directly reduced from chromium ore by the carbonaceous material in the slag are suspended in the slag.

この金属粒は底吹き撹拌ガスにより撹拌を強くすれば溶
融還元終了時で増加することになる。その結果そのまま
溶融還元終了後のスラグを全量排滓すると金属粒が排出
され歩止まり低下をきたす。
If the stirring is strengthened using a bottom-blown stirring gas, the number of metal particles will increase at the end of melting and reduction. As a result, if the entire amount of slag after melting and reduction is directly removed, metal particles will be discharged and the yield will decrease.

そこでスラグの排出を全量行わず、一部分のスラグのみ
を排出する試みを行った。その結果を表2に示す。
Therefore, instead of discharging the entire amount of slag, an attempt was made to discharge only a portion of the slag. The results are shown in Table 2.

表 2   スラグ残し操業時のダスト発生量とスラグ
への粒鉄によるクロムロス 第1期のスラグ厚みを100 am以上に保ち、スラグ
残し量を50kg/t以上にすればスクラップ溶解時の
ダスト発生量を抑制し、かつ排滓時のスラグ中の金属粒
によるスラグへのクロムロスを低くテキることがわかる
。また底吹きガス量を低減させればスラグ中の金属粒に
よるスラグへのクロムロスは低減できるが、スクラップ
溶解自体は記述の通り底吹きガス量を増加させ強かくは
んを行う方が有利であるため、スラグの排出を全量行わ
すスラグ量で50kg/lon以上前チャージのスラグ
を残し次のスクラップ溶解時のスラグ厚を100胴以上
に保つ方法が最も有効である。
Table 2 Amount of dust generated during operation with slag left behind and chromium loss due to granulated iron in slag If the slag thickness in the first stage is kept at 100 am or more and the amount of slag left is 50 kg/t or more, the amount of dust generated during scrap melting can be reduced. It can be seen that it is possible to suppress chromium loss to the slag due to metal particles in the slag during slag discharge. Furthermore, if the amount of bottom-blown gas is reduced, the loss of chromium to the slag due to metal particles in the slag can be reduced, but as mentioned above, it is more advantageous to increase the amount of bottom-blown gas and perform strong agitation for scrap melting. The most effective method is to discharge the entire amount of slag, leaving the slag from the previous charge at 50 kg/lon or more, and keeping the slag thickness at the next scrap melting at 100 kg or more.

第1発明の工程手順を第1図に従いスクラップ溶解が終
了した後、さらに引き続き溶融還元開始まで溶鋼の温度
を1550″C以上に昇温させる第■期である。この昇
温が完了するとクロム鉱石および炭材を酸素ガスと共に
供給し、クロム鉱を溶融還元する第■期に移る。その際
に石灰、軽焼ドロマイトを投入し耐火物溶損の原因とな
るMgO溶出の抑制と溶融還元期に適正なスラグ組成を
形成することが肝要である。
After the scrap melting is completed according to Fig. 1 in the process procedure of the first invention, the temperature of the molten steel is raised to 1550"C or higher until the start of smelting reduction. When this temperature rise is completed, chromium ore is produced. and carbonaceous materials are supplied together with oxygen gas, and the process moves on to the second stage in which chromite is melted and reduced.At this time, lime and lightly calcined dolomite are added to suppress MgO elution, which causes refractory erosion, and to reduce the melting and reducing stage. It is important to form the proper slag composition.

通常(CaO) / (Si(h)を1.5以上3.5
以下でかつ、((MgO) + (Aj2zOs ”)
 ) / ((CaO)+ (SiO□) + (Mg
O) + (Alx(h ) )を0.45以上0.5
5以下にスラグ組成を保つのが有効である。
Normal (CaO) / (Si(h) 1.5 or more 3.5
and ((MgO) + (Aj2zOs ”)
) / ((CaO) + (SiO□) + (Mg
O) + (Alx(h)) from 0.45 to 0.5
It is effective to keep the slag composition below 5.

何故ならば、((MgO) + (AfzOs ) ]
 /((CaO) + (Sift)  + (MgO
) + (AjLO3)  )を低くするとスラグの融
点が低下するものの、耐火物溶損が大きくなってしまう
。一方、((MgO)+ (AfzOs ) ) / 
((CaO) + (Sing) + (MgO)+ 
(AfzOs ) )を高くするとスラグの融点が高く
なりクロム鉱石の溶融還元に著しく不利となる。
Because ((MgO) + (AfzOs) ]
/((CaO) + (Sift) + (MgO
) + (AjLO3)) Although the melting point of the slag is lowered, the melting loss of the refractory increases. On the other hand, ((MgO) + (AfzOs) ) /
((CaO) + (Sing) + (MgO)+
(AfzOs) ) increases the melting point of the slag, which is extremely disadvantageous for melting and reducing chromium ore.

従来鉄と鋼69 (1984)、 S 117に示され
るように、(MgO) + (Af、03 )は45%
以上になるとクロム鉱石の溶融還元に不利になることが
知られていたが、塩基度をさらに上昇させ(CaO) 
/(Sing)を1.5以上まで上昇させると従来溶融
還元に不利とされていた(MgO) + (八zzo:
+)1度でも問題なく溶融還元が行え、しかも耐火物の
保護の面で有利となる。
As previously shown in Tetsu to Hagane 69 (1984), S 117, (MgO) + (Af, 03) is 45%
It was known that a temperature higher than this would be disadvantageous for melting and reducing chromium ore, but it is possible to further increase the basicity (CaO).
Increasing /(Sing) to 1.5 or more was conventionally considered to be disadvantageous for melt reduction (MgO) + (8zzo:
+) Melting reduction can be carried out without any problem even once, and it is advantageous in terms of protecting refractories.

また塩基度を高くすれば脱硫の面でも有利となる。Furthermore, increasing the basicity is advantageous in terms of desulfurization.

さらに発明者らはクロム濃度の溶融還元の改善・歩止ま
りの向上をねらって羽口の改善も試み、第5図に示すよ
うな酸素ガスジェットを複数圧いに干渉させるようにら
せん状に噴出させる羽口を用いればクロム鉱石の還元速
度が向上し、クロム歩止まりの増大が可能であることを
見出した。
Furthermore, the inventors also attempted to improve the tuyere in order to improve the melting reduction of the chromium concentration and increase the yield, and as shown in Figure 5, the oxygen gas jets are ejected in a spiral pattern so as to interfere with multiple pressure chambers. We have found that the reduction rate of chromium ore can be improved and the chromium yield can be increased by using a tuyere.

これはクロム鉱石の溶融還元は、投入されたクロム鉱石
がスラグ中に一度溶解し、そのスラグと溶鋼あるいはコ
ークスが反応するスラグ・メタル反応やコークスとスラ
グ反応で進行すると考えられるが、こうした反応の促進
に対して従来の羽口よりも上記酸素ガスジェットが互い
にらせん状に噴出し干渉しあう羽口を用いると微細な気
泡を多数形成しスラグの溶鋼への巻きこみを促進させる
ことが可能となりそのためにスラグ・メタル反応速度が
増加しその結果クロム鉱石の溶融還元が改善されるもの
と思われる。こうした羽口としては複数の二重音羽口を
互いにねじり合わせた羽目(第5図(a))や内管に複
数のらせん状に噴出可能な羽口(第5図Q)))が適す
る。
This is because the smelting reduction of chromium ore is thought to proceed through a slag-metal reaction in which the charged chromium ore is once dissolved in slag and the slag reacts with molten steel or coke, or through a coke-slag reaction. For acceleration, using a tuyere in which the oxygen gas jets eject in a spiral manner and interfere with each other, rather than a conventional tuyere, makes it possible to form a large number of fine bubbles and promote the entrainment of slag into molten steel. It is believed that the slag-metal reaction rate increases and as a result, the smelting reduction of chromium ore is improved. As such a tuyere, a tuyere made by twisting a plurality of double tone tuyeres together (Fig. 5(a)) or a tuyere capable of spouting a plurality of spiral jets in an inner pipe (Fig. 5Q)) are suitable.

こうして所定のクロム濃度に達するまでクロム鉱石の溶
融還元を行った後、第■期にて炭材とクロム鉱石の供給
を停止し、酸素の供給を行う。この際炭材は第■期まで
に酸素で消費する量より過剰に供給し、この時期に炭材
は添加しない方がよい。何故ならば第■期ではクロム鉱
石が直接還元されることによって生じる金属粒が大量に
スラグ中に存在する。したがってこの時期に炭材を添加
すると、添加した炭材の表面に金属粒が付着し、その結
果金属粒の溶湯への沈降を阻害しクロム歩止まりの悪化
をまねくからである。またスラグ中に残った炭材は排滓
時に排出されてしまうのでエネルギー的に不利となるの
で、第■期までに投入した炭材を第■期で消費してしま
うのが最も望ましいわけである。
After melting and reducing the chromium ore until a predetermined chromium concentration is reached in this manner, the supply of carbonaceous material and chromium ore is stopped in the second stage, and oxygen is supplied. At this time, it is better to supply carbonaceous material in excess of the amount consumed by oxygen by the first stage, and not to add carbonaceous material at this stage. This is because in stage II, a large amount of metal grains produced by direct reduction of chromium ore are present in the slag. Therefore, if carbonaceous material is added at this time, metal particles will adhere to the surface of the added carbonaceous material, and as a result, precipitation of the metal particles into the molten metal will be inhibited, leading to a deterioration of the chromium yield. In addition, the carbonaceous material remaining in the slag will be discharged during slag removal, which is disadvantageous in terms of energy, so it is most desirable to consume the carbonaceous material that has been put in until stage II in stage II. .

第■期で酸素を供給しクロム酸化物の還元を行い、溶湯
温度が上昇し始めまるで処理を続ける。
In the second stage, oxygen is supplied to reduce the chromium oxide, and the temperature of the molten metal begins to rise and the process continues.

溶湯温度が1570〜1620°Cの範囲で第■期が終
了した後出湯と排滓を行う。
After the molten metal temperature is in the range of 1,570 to 1,620°C and the period (2) is completed, tapping and slag is carried out.

その際に排滓でスラグを50 (kg/l)以上でかつ
次回のスクラップ溶解の際にスラグの厚さを100価以
上に保つようスラグを適量残す。
At that time, an appropriate amount of slag is left in the slag to maintain a valence of 50 (kg/l) or more and a thickness of slag of 100 or more during the next scrap melting.

しかる後、上記のようにして得られたステンレス鋼母溶
湯を脱炭炉に装入し、熱供給量のパランスと酸化クロム
の還元速度を促進するのに最適な出鋼量の30〜40%
に当たる量を合金鉄やスクラップとして逐次炉内に添加
する。脱炭炉では上吹きランスおよび底吹き二重管羽口
から0□と不活性ガスの混合ガスを吹精し、同時に底吹
き羽口から炭化水素系ガスを対底吹き酸素比で3〜7%
流すと同時に、所定の炭素濃度にまで脱炭し、場合によ
ってはその後炉内にSiを含む合金鉄を投入してスラグ
中の酸化クロムを還元し同時に脱硫も行う。
Thereafter, the stainless steel mother metal obtained as described above is charged into a decarburization furnace, and the amount of tapped steel is 30 to 40%, which is the optimum amount to balance the heat supply amount and promote the reduction rate of chromium oxide.
The equivalent amount is added to the furnace sequentially as alloy iron or scrap. In the decarburization furnace, a mixed gas of 0□ and inert gas is blown from the top blowing lance and the bottom blowing double pipe tuyeres, and at the same time, hydrocarbon gas is blown from the bottom blowing tuyeres at a ratio of 3 to 7 to bottom blowing oxygen. %
At the same time as flowing, the slag is decarburized to a predetermined carbon concentration, and in some cases, a ferroalloy containing Si is introduced into the furnace to reduce chromium oxide in the slag and desulfurize at the same time.

出鋼した溶湯は直ちにRH脱ガス装置に移行し、真空度
を10 torr以下で20〜30分間処理を行う。本
条件でR1+処理を行う理由は前工程までに複数のプロ
セスを経ているので出湯時等の吸窒から鋼中窒素濃度が
増加することならびに鋼中水素低減、鋼中酸素低減によ
る鋼の洗浄度向上という観点からである。
The tapped molten metal is immediately transferred to an RH degassing device and treated at a vacuum level of 10 torr or less for 20 to 30 minutes. The reason why R1+ treatment is performed under these conditions is that since multiple processes have gone through before the previous process, the nitrogen concentration in the steel increases due to nitrogen absorption during tapping, and the cleanliness of the steel is improved by reducing hydrogen and oxygen in the steel. This is from the perspective of improvement.

しかる後RH脱ガスしたステンレス溶鋼は、通常の連続
鋳造機で鋳造する。
Thereafter, the RH degassed molten stainless steel is cast using a conventional continuous casting machine.

(実施例) 溶銑脱珪脱りん工程 トピードカー1内の溶銑に粉体吸込みランス2を用いて
脱珪剤、脱りん剤を吹込み、溶銑の処理を行う。
(Example) Hot metal desiliconization and dephosphorization process A desiliconizing agent and a dephosphorizing agent are injected into hot metal in a torpedo car 1 using a powder suction lance 2 to treat the hot metal.

溶銑処理量   :200を 処理前溶銑成分C:4.5重量% St : 0.12重量% Mn : 0.14重量% P:0.14重量% S:0.025重量% 処理前温度   : 1370°C 脱珪剤     :焼結炉発生ダスト 原単位:25kg/t 脱りん剤    :焼結炉発生ダスト(75重量%)C
aO(22重量%) CaPz(3重量%) 原単位60kg/t 粉体吹込み速度 : 500 kg/win処理後成分
  C:4,2重量% Si : 0.01重量%以下 Mn : 0.10重量% P : 0.015重量% S : 0.024重量% 処理後温度   : 1240°C ステンレス鋼スクラップ23.0tonをスクラップシ
ュートを用いて85ton上底吹き転炉に装入した。
Hot metal processing amount: 200 before treatment Hot metal component C: 4.5% by weight St: 0.12% by weight Mn: 0.14% by weight P: 0.14% by weight S: 0.025% by weight Temperature before treatment: 1370 °C Desiliconizing agent: Dust generated in sintering furnace unit: 25kg/t Dephosphorizing agent: Dust generated in sintering furnace (75% by weight)C
aO (22% by weight) CaPz (3% by weight) Basic unit 60kg/t Powder blowing speed: 500 kg/win Components after treatment C: 4.2% by weight Si: 0.01% by weight or less Mn: 0.10 Weight % P: 0.015 weight % S: 0.024 weight % Temperature after treatment: 1240°C 23.0 tons of stainless steel scrap was charged into an 85 ton top-bottom blowing converter using a scrap chute.

その後上記脱りん銑42.2tonを装入した後、炉型
とし、吹錬を行った。その際前チャージのスラグを3 
ton残しておき、スクラップ溶解吹i!(第1期)で
はスラグ厚は210 wnであった。
Thereafter, 42.2 tons of the dephosphorized pig iron was charged, and then the furnace was shaped into a furnace and blowing was performed. At that time, add 3 slugs from the previous charge.
Leave a ton of scrap and melt it! (1st period), the slag thickness was 210 wn.

炭剤と酸素を供給しながらスクラップ溶解を行い、さら
に引き続き昇温吹錬を行った。スクラップ溶解期のダス
ト発生速度は平均22kg/minであった。
Scrap melting was carried out while supplying carbonaceous agent and oxygen, and then heating blowing was carried out. The average rate of dust generation during the scrap melting period was 22 kg/min.

吹錬開始後送酸量600ONm’のとき、測温とサンプ
リングを行ったところ測温は1560°Cであり溶融還
元を行った。またこの時のサンプリングの分析値からス
クラップはこの時点で完全に溶解していることを確認し
た。また〔%C)−4,9%であった。上吹送酸速度は
220 Nm’/min底吹き送酸速度は60 Nm’
/minプロパン流量は5.0 Nm’/minであっ
た。また羽口としては第5図(a)に示すらせん状に酸
素が噴出可能な羽口を6本用い、今回の実験ではd/D
=0.25、Il/ D =0.06で操業を行った。
When the oxygen supply amount was 600 ONm' after the start of blowing, temperature measurement and sampling were performed, and the temperature measurement was 1560°C, and melting reduction was performed. Also, it was confirmed from the analytical values of the sampling at this time that the scrap had completely dissolved at this point. It was also [%C) -4.9%. Top blowing acid rate is 220 Nm'/min, bottom blowing acid rate is 60 Nm'
/min propane flow rate was 5.0 Nm'/min. In addition, six tuyeres capable of spouting oxygen in a spiral shape as shown in Figure 5(a) were used as tuyeres, and in this experiment, d/D
= 0.25, Il/D = 0.06.

その結果、スクラップ溶解期の底吹きガス発生量Qは であった。引き続き送酸量6200 Nm’よりクロム
鉱石溶融還元を行った。なお、スクラップ溶解および昇
熱期において炭剤を1.8 kg/Nm’Ozの割合で
供給した。
As a result, the amount Q of bottom-blown gas generated during the scrap melting period was . Subsequently, chromium ore was melted and reduced using an oxygen supply amount of 6200 Nm'. In addition, during the scrap melting and heating periods, carbonaceous agent was supplied at a rate of 1.8 kg/Nm'Oz.

さてCr酸化物還元期では、鉄浴温度を一定に保つべき
、熱バランスから半還元Crペレットと炭剤を投入した
Now, in the Cr oxide reduction period, half-reduced Cr pellets and carbonaceous agent were added to maintain the iron bath temperature constant for the sake of heat balance.

半還元Crペレットの成分は次表3のとおりである。The components of the semi-reduced Cr pellets are shown in Table 3 below.

表  3 半還元ペレット投入完了後、0!ト一タル1830ON
m’のところで、仕上げ還元期(撹拌)に移行した。す
なわち上吹送酸速度を絞り、10分間上吹0□: 6O
Nm’/mfn 、底吹(h : 6ONffi’/w
inで行い出湯した。
Table 3 0 after completion of semi-reduced pellet input! Total 1830ON
At point m', the final reduction period (stirring) started. In other words, reduce the top blowing acid rate and top blow 0□: 6O for 10 minutes.
Nm'/mfn, bottom blow (h: 6ONffi'/w
It was done indoors and the hot water was taken out.

出湯量は71.3ton 、精錬時間(吹錬開始から吹
錬終了まで)は71分であった。
The amount of hot water tapped was 71.3 tons, and the refining time (from the start of blowing to the end of blowing) was 71 minutes.

なお、仕上げ還元期に入る前にサブランスを投入したと
ころ、浴温は1570″Cであり、Cr酸化物還元期の
間はほぼ鉄浴温度は一定に保持されていたことが確かめ
られた。
When the sublance was introduced before entering the final reduction period, the bath temperature was 1570''C, and it was confirmed that the iron bath temperature was kept almost constant during the Cr oxide reduction period.

出湯時の浴温、成分は次表4のとおりであった。The bath temperature and components at the time of tapping were as shown in Table 4 below.

表4    (%) また出湯時におけるスラグ組成は次表5のとおりであっ
た。
Table 4 (%) The slag composition at the time of tapping was as shown in Table 5 below.

さらに使用したCrベレットとコークスを表6に示す。Furthermore, Table 6 shows the Cr pellets and coke used.

表6 上記の実験においては、Cr歩止まり: 98.7%、
製出調歩止まり: 95.7%、Ni歩止まり8100
%と極めて良好であった。
Table 6 In the above experiment, Cr yield: 98.7%,
Production yield: 95.7%, Ni yield: 8100
%, which was extremely good.

(比較例) 全く同じ操業を通常の二重前羽口を6本取りつけた上底
吹き転炉を用いてスラグを残さない条件で行った。スク
ラップ量は22,5ton 、溶銑装入量は41.5t
onであった。その他の操業条件はほぼ同じ条件で行っ
た。
(Comparative Example) Exactly the same operation was carried out using a top-bottom blowing converter equipped with six conventional double front tuyeres under conditions that no slag was left behind. The amount of scrap is 22.5 tons, and the amount of hot metal charged is 41.5 tons.
It was on. The other operating conditions were almost the same.

仕上還元(■期)終了後、調査したところCr歩止まり
83%、製出調歩止まり86.2%であった。これはス
クラップ溶解期にダスト発生速度が130〜140 k
g/winと多いことと排出したスラグ中に多量のクロ
ム濃度の高い粒鉄を含んでいたことからダストおよびス
ラグ中の粒鉄により歩止まりが低下したものと考えられ
る。
After finishing reduction (■ period), an investigation revealed that the Cr yield was 83% and the production yield was 86.2%. This means that the dust generation rate during the scrap melting period is 130 to 140 km.
g/win, and the discharged slag contained a large amount of granulated iron with a high chromium concentration, so it is thought that the yield was reduced by the granulated iron in the dust and slag.

(発明の効果) ステンレス鋼母溶湯として含クロム鉄の溶製に関し第1
発明は、従来に比較して多量に安価なスクラップ原料を
使用でき、かつスクランプ溶解時のダスト発生抑制と歩
止まりの向上が図れまた第2発明の羽口配列および第3
発明の羽口構造は第1発明の実施に使用して有用であっ
た。
(Effect of the invention) The first study regarding the melting of chromium-containing iron as a stainless steel mother molten metal.
The present invention enables the use of a large amount of inexpensive scrap raw material compared to the conventional method, suppresses dust generation during scrap melting, and improves yield.
The tuyere structure of the invention was useful in the practice of the first invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1発明のプロセスフローを示す説明図、 第2図はスクラップ溶解期の底吹きガス流量と送酸10
0 Nm’/ tの経過後のスクラップ溶解率の関係グ
ラフ、 第3図は炉底羽口の位置関係を示す配列図、第4図はd
/Dと羽口溶損の関係を示すグラフであり、 第5図は羽口の説明図である。 d・・・羽口間隔     D・・・炉底径!・・・炉
底径からの偏り 1・・・外筒2・・・内筒     
  3・・・狭隙4・・・らせん孔     7・・・
外管8・・・内管
Figure 1 is an explanatory diagram showing the process flow of the first invention, Figure 2 is the flow rate of bottom blown gas during the scrap melting period and oxygen supply 10
A graph showing the relationship between the scrap melting rate after the passage of 0 Nm'/t, Figure 3 is an arrangement diagram showing the positional relationship of the bottom tuyeres, and Figure 4 is a
FIG. 5 is a graph showing the relationship between /D and tuyere melting loss, and FIG. 5 is an explanatory diagram of the tuyere. d... Tuyere spacing D... Furnace bottom diameter! ... Deviation from the furnace bottom diameter 1 ... Outer cylinder 2 ... Inner cylinder
3...Narrow gap 4...Spiral hole 7...
Outer tube 8...Inner tube

Claims (1)

【特許請求の範囲】 1、クロム含有物質と炭素含有物質と共に溶銑とからス
テンレス鋼母溶湯を溶製するにあたり、 溶滓の存在する反応容器中に溶銑と共にスクラップを装
入し、 炭素含有物質と酸素含有ガスを供給しながら該スクラッ
プを溶かす溶解工程に引続き昇温を行い、 更に、酸素含有ガスを供給しながらクロム含有物質と炭
素含有物質とを溶銑に加えクロム含有量が目標値になる
まで溶融還元工程を行い、 次に酸素含有ガスの吹錬で仕上還元工程を行い、 溶滓を適量残して出湯すること を特徴とするステンレス鋼母溶湯の溶製方法。 2、スクラップ溶解工程において反応容器中に存在する
溶滓の量が、少なくとも50kg/t以上でかつ溶銑浴
面上に100mm厚以上である請求項1記載の方法。 3、スクラップ溶解工程において、反応容器底から1.
0Nm^3/min/t以上の撹拌ガスを吹込む請求項
1又は2記載の方法。 4、専ら請求項1記載の方法に用いる反応容器の底部羽
口配列であって底吹き羽口が炉底で互いに間隔をおき列
状に並んで配列され、その配列本数が4本以上で、かつ
中心より最も近接する2本の羽口間の距離dと反応容器
炉底部分の直径Dとの比d/Dが0.1〜0.5、また
該羽口群との距離の和が最小となる直線とこの直線に平
行な直径との距離lと炉底部分の直径Dとの比l/Dが
0.1以下とからなるステンレス鋼母溶湯溶製用の反応
容器底部羽口配列。 5、専ら請求項1記載の方法に用いる反応容器の底部羽
口であって外管と外管に内挿された内管とよりなる同心
二重管であり、少なくとも内管の先端部で複数の酸素ガ
スジェットがらせん状に噴出する構造を有することから
なるステンレス鋼母溶湯溶製用の反応容器の底吹き羽口
[Scope of Claims] 1. In melting a stainless steel mother metal from hot metal together with a chromium-containing substance and a carbon-containing substance, the scrap is charged together with the hot metal into a reaction vessel in which molten slag is present, and the carbon-containing substance and Following the melting process in which the scrap is melted while supplying oxygen-containing gas, the temperature is raised, and then chromium-containing substances and carbon-containing substances are added to the hot metal while supplying oxygen-containing gas until the chromium content reaches the target value. A method for producing molten stainless steel mother metal, which is characterized by performing a melting reduction process, followed by a finishing reduction process by blowing with oxygen-containing gas, and tapping the metal with an appropriate amount of slag remaining. 2. The method according to claim 1, wherein the amount of slag present in the reaction vessel in the scrap melting step is at least 50 kg/t or more and has a thickness of 100 mm or more on the surface of the hot metal bath. 3. In the scrap melting process, 1.
The method according to claim 1 or 2, wherein the stirring gas is blown at a rate of 0 Nm^3/min/t or more. 4. A bottom tuyere arrangement of a reaction vessel exclusively used in the method according to claim 1, in which the bottom blowing tuyeres are arranged in rows at intervals from each other at the bottom of the furnace, and the number of the arrangement is 4 or more; and the ratio d/D of the distance d between the two tuyeres closest to the center and the diameter D of the bottom of the reactor vessel is 0.1 to 0.5, and the sum of the distances to the tuyere group is 0.1 to 0.5. A tuyere arrangement at the bottom of a reaction vessel for melting a stainless steel mother melt, where the ratio l/D of the distance l between the minimum straight line and the diameter parallel to this straight line and the diameter D of the furnace bottom part is 0.1 or less. . 5. The bottom tuyere of the reaction vessel exclusively used in the method according to claim 1 is a concentric double tube consisting of an outer tube and an inner tube inserted into the outer tube, and at least at the tip of the inner tube there is a plurality of concentric tuyeres. A bottom blowing tuyere of a reaction vessel for melting a stainless steel mother melt, which has a structure in which an oxygen gas jet is ejected in a spiral manner.
JP63076448A 1988-03-31 1988-03-31 Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere Granted JPH01252753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63076448A JPH01252753A (en) 1988-03-31 1988-03-31 Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63076448A JPH01252753A (en) 1988-03-31 1988-03-31 Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere

Publications (2)

Publication Number Publication Date
JPH01252753A true JPH01252753A (en) 1989-10-09
JPH0431016B2 JPH0431016B2 (en) 1992-05-25

Family

ID=13605436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63076448A Granted JPH01252753A (en) 1988-03-31 1988-03-31 Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere

Country Status (1)

Country Link
JP (1) JPH01252753A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132969A (en) * 2007-11-30 2009-06-18 Jfe Steel Corp Top-bottom blowing converter
WO2023204071A1 (en) * 2022-04-22 2023-10-26 Jfeスチール株式会社 Production method for grained iron, and grained iron

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132969A (en) * 2007-11-30 2009-06-18 Jfe Steel Corp Top-bottom blowing converter
WO2023204071A1 (en) * 2022-04-22 2023-10-26 Jfeスチール株式会社 Production method for grained iron, and grained iron
JPWO2023204071A1 (en) * 2022-04-22 2023-10-26

Also Published As

Publication number Publication date
JPH0431016B2 (en) 1992-05-25

Similar Documents

Publication Publication Date Title
JPH0770626A (en) Converter steelmaking
US7094271B2 (en) Method for producing stainless steels, in particular high-grade steels containing chromium and chromium-nickel
JP2001254116A (en) Melting method of low nitrogen steel
JPH01252753A (en) Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere
JPH08311519A (en) Converter steelmaking
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JP4461495B2 (en) Dephosphorization method of hot metal
JP2607329B2 (en) Hot metal dephosphorization method
WO2003029498A1 (en) Method for pretreatment of molten iron and method for refining
JP3486886B2 (en) Steelmaking method using two or more converters
JP2964861B2 (en) Stainless steel manufacturing method
JP3063537B2 (en) Stainless steel manufacturing method
JPH0488114A (en) Method for producing high manganese steel
JP2842185B2 (en) Method for producing molten stainless steel by smelting reduction
JPH0967608A (en) Stainless steel manufacturing method
JP2587286B2 (en) Steelmaking method
JPH0860221A (en) Converter steelmaking
JP2005325389A (en) Hot metal refining method
JPH066731B2 (en) Method of melting stainless steel
JP3571871B2 (en) Manufacturing method of low carbon steel
JP2842231B2 (en) Pretreatment of hot metal by bottom-blown gas stirring
JP3173325B2 (en) How to make stainless steel
JP3511685B2 (en) Bottom blow converter steelmaking
CN113614255A (en) Decarburization of steel with carbon dioxide
JP2002256324A (en) Melting method of high carbon and high chromium steel

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees