[go: up one dir, main page]

JPH0480523B2 - - Google Patents

Info

Publication number
JPH0480523B2
JPH0480523B2 JP56142252A JP14225281A JPH0480523B2 JP H0480523 B2 JPH0480523 B2 JP H0480523B2 JP 56142252 A JP56142252 A JP 56142252A JP 14225281 A JP14225281 A JP 14225281A JP H0480523 B2 JPH0480523 B2 JP H0480523B2
Authority
JP
Japan
Prior art keywords
ribbon
iron loss
magnetic
amorphous
magnetic core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56142252A
Other languages
Japanese (ja)
Other versions
JPS5844702A (en
Inventor
Senji Shimanuki
Michio Hasegawa
Tadahiko Kobayashi
Koichiro Inomata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56142252A priority Critical patent/JPS5844702A/en
Publication of JPS5844702A publication Critical patent/JPS5844702A/en
Publication of JPH0480523B2 publication Critical patent/JPH0480523B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電磁気装置に用いて有効な低損失非晶
質磁性合金の磁心に関し、更に詳しくは、高周波
領域(10KHz〜200KHz)で鉄損が著しく小さく
スイツチングレギユレータなどに好適な高周波用
磁心に関する。 従来から、スイツチングレギユレータなど高周
波で使用する磁心としては、パーマロイ、フエラ
イトなどの結晶質材料が用いられている。 しかしながら、パーマロイは比抵抗が小さいの
で高周波での鉄損が大きくなる。また、フエライ
トは高周波で損失は小さいが、磁束密度もせいぜ
い5000Gと小さく、そのため、大きな動作磁束密
度での使用時にあつては、飽和に近くなりその結
果鉄損が増大する。近時、スイツチングレギユレ
ータに使用される電源トランスなど高周波で使用
されるトランスにおいては、形状の小型化が望ま
れているが、その場合、動作磁束密度の増大が必
要となるため、フエライトの鉄損増大は実用上大
きな問題となる。 一方、結晶構造を待たない非晶質磁性合金は、
高透磁率、低保磁力など優れた軟質磁性特性を示
すので最近注目を集めている。これらの非晶質磁
性合金は、Fe、Co、Niなどを基本とし、これに
非晶質化元素(メタロイド)としてP、C、B、
Si、Al、Geなどを包含するものである。 しかしながら、これら非晶質磁性合金の全てが
高周波領域で鉄損が小さいというわけではない。
例えば、Fe系非晶質合金は、50〜60Hzの低周波
領域ではケイ素鋼の約1/4という非常に小さい鉄
損を示すが、1KHz以上の高周波領域になると著
しく大きな鉄損を示し、とてもスイツチングレギ
ユレータ等の高周波領域での使用に適合するもの
ではない。これは、動作周波数の2乗に比例する
渦電流損失に基づく現象である。そのため、非晶
質磁性合金の薄帯を磁心として1KHz以上の高周
波領域で使用する場合には、一般に、該薄帯の厚
みを30μm以下に調整することが必要である。 他方、非晶質磁性合金の薄帯は、通常、石英な
どの耐熱容器の中で溶融した所定組成の溶融合金
を該合金にガス圧を加えることによつて、該容器
先端のノズルから高速回転する金属製の単ロール
又は双ロールの回転面に噴出して急冷する溶湯急
冷法で作製されている。しかしながら、このよう
にして作製された薄帯の表面には微細な凹凸が存
在し、その凹凸の状態によつては高周波領域での
鉄損が増大したり、また、占積率が著しく小さく
なるなどの実用面における不都合を招くことがあ
つた。 本発明者らは、高周波領域、とりわけ10〜
200KHzの高周波領域における非晶質磁性合金の
薄帯の表面凹凸状態(表面粗さ)と鉄損の関係に
ついて鋭意研究を重ねた結果、該薄帯の厚み最大
値と厚み平均値とから算出して表示される表面粗
さが所定の値の範囲にあるとき、また、厚み最大
値が所定の範囲にあるときその鉄損が小さくなる
との事実を見出し本発明を完成するに到つた。 本発明は、高周波領域において鉄損が著しく小
さい高周波用磁心を提供することに目的がある。 本発明は、溶湯急冷後の状態での表面粗さが 式:(t−)/t≦0.30 [式中、t、はそれぞれ該薄帯の厚みの最大
値、厚み平均値を表わし、かつ、は 式:W/d・l・ρ (ただし、W、d、l、ρはそれぞれ該薄帯の重
量、幅、長さ、密度を表わす。) として表わされる。] を満足する非晶質磁性合金薄帯からなることを特
徴とする高周波用磁心である。 本発明の磁心において、それを構成する非晶質
磁性合金は一般にM100-zNzの組成式で表わされ
る。ここで、MはFe、Co、Niのうちの少なくと
も1種の元素であり、その一部は、Ti、V、Cr、
Mn.Co、Zr、Nb、Mo、Ta、Wの群から選ばれ
る少くとも1種の元素で1〜10原子%置換されて
いてもよい。NはP、C、B、Si、Al、Geなど
のメタロイドの少くとも1種の元素であり、Zは
15<Z<30を満足する数である。特に磁束密度
7KG以下のCo基非晶質磁性合金を用いると効果
が大きい。 このような非晶質磁性合金は、上記したM、N
の各成分を所定の割合いで混合した後、溶融し、
これを溶湯急冷法などの方法によつて非晶質磁性
合金化し、ついで無磁場中で所定の温度(例え
ば、400〜450℃)に加熱処置して容易に作製する
ことができる。上記式におけるtは該薄帯に関す
る実測値として求められ、は該薄帯の重量、
幅、長さ、密度をそれぞれW、d、l、ρとした
ときに、=W/d・l・ρの式から算出される
計算値である。 この(t−)/tの値が0.30を超えると該薄
帯の表面凹凸の状態が顕著になり(表面が粗くな
り)、高周波領域での鉄損が著しく大きくなつて
使用に適さなくなる。さらに0.30を越えると角形
比も低下してしまう。 また、該薄帯にあつて、厚み最大値(t)が
5μm未満の場合には、得られた磁心の巻回時にお
つて層間絶縁体を大量に必要とするためその占積
率が著しく低下し実用的でなくなる。更に、tが
30μmを超えると表面粗さに関係なく高周波領域
における鉄損が著しく増大する。したがつて、本
発明の磁心にあつては、その薄帯の厚み最大値が
5μm≦t≦30μmの範囲に設定することが好まし
い。 本発明の磁心は、10〜200KHzの動作周波数に
あつて特に鉄損を小さくして有効である。 本発明の磁心を構成する薄帯の厚み最大値は、
溶湯急冷法にあつては、ロールの回転数、溶融合
金をノズルから噴出するときに該溶融合金に印加
するガス圧などを調整し、また、表面粗さは更に
ノズルとロールとの間隔を0.1〜0.5mmの範囲内で
調整することによつて適宜な値にすることができ
る。 ただし本願発明においては溶湯急冷後の状態で
上記条件を満たすことが重要であり、研磨処理な
どでこの条件を満たしたても本願発明の磁気特性
の向上効果は達成できない。これは溶湯急冷で作
製した非晶質磁性合金薄帯表面に存在する微小な
凹凸が、研磨処理ではなくなつてしまい、本願発
明の如く、溶湯急冷後の状態で上記条件を満たす
ようにした場合とでは、非晶質磁性合金薄帯表面
の状態が微妙に異なるためと考えられる。また研
磨処置は非晶質磁性合金薄帯に歪みを導入するこ
とになり、これも磁気特性上好ましいことではな
い。 以下に、本発明を実施例に基づいて説明する。 実施例 1 表に示した各種組成の非晶質磁性合金の薄帯を
溶湯急冷法で作製した。すなわち、高速回転する
単ロールの上に石英管ノズルから各種組成の溶融
合金をアルゴンガス圧で噴出せしめて急冷し、幅
5mm、長さ100mの薄帯試料を作製した。このと
き、ロール回転数、ガス圧、ノズルとロール間の
距離を種々に変動せしめて、厚み最大値、表面粗
さを変化させた。 薄帯試料から長さ14mを切り取り、それを直径
20mmのアルミナ製ポビンに巻きつけ、全体を400
℃で15分間熱処理した後、内径20mm、外径30mmの
プラスチツクケースに入れて1次コイル、2次コ
イルとしてともに70回巻き、ワツトメータを用い
て磁束密度(Bm)3KG、周波数20KHz、100KHz
における鉄損を測定した。また薄帯試料の飽和磁
束密度を試料振動形磁力計を用いて測定した。結
果を一括して表に示した。
The present invention relates to a magnetic core made of a low-loss amorphous magnetic alloy that is effective for use in electromagnetic devices, and more specifically, to a high-frequency magnetic core that has extremely low iron loss in the high frequency region (10 KHz to 200 KHz) and is suitable for switching regulators, etc. Regarding. Conventionally, crystalline materials such as permalloy and ferrite have been used as magnetic cores used in high frequency applications such as switching regulators. However, since permalloy has a low resistivity, iron loss at high frequencies increases. Further, although ferrite has a low loss at high frequencies, its magnetic flux density is also small, at most 5000G, and therefore, when used at a high operating magnetic flux density, it approaches saturation, resulting in an increase in iron loss. Recently, there has been a desire to reduce the size of transformers used at high frequencies, such as power transformers used in switching regulators, but in this case, it is necessary to increase the operating magnetic flux density, so ferrite The increase in iron loss is a major practical problem. On the other hand, amorphous magnetic alloys that do not have a crystal structure are
It has recently attracted attention because it exhibits excellent soft magnetic properties such as high magnetic permeability and low coercive force. These amorphous magnetic alloys are based on Fe, Co, Ni, etc., and include P, C, B, B, etc. as amorphous elements (metalloids).
It includes Si, Al, Ge, etc. However, not all of these amorphous magnetic alloys have small iron loss in the high frequency range.
For example, Fe-based amorphous alloys exhibit a very small iron loss of about 1/4 of silicon steel in the low frequency range of 50 to 60 Hz, but they show a significantly large iron loss in the high frequency range of 1 KHz or higher, which is extremely It is not suitable for use in high frequency ranges such as switching regulators. This is a phenomenon based on eddy current losses that are proportional to the square of the operating frequency. Therefore, when a ribbon of amorphous magnetic alloy is used as a magnetic core in a high frequency region of 1 KHz or higher, it is generally necessary to adjust the thickness of the ribbon to 30 μm or less. On the other hand, ribbons of amorphous magnetic alloys are usually produced by rotating a molten alloy of a predetermined composition in a heat-resistant container such as quartz through a nozzle at the tip of the container by applying gas pressure to the alloy. It is produced using a quenching method in which molten metal is quenched by spouting it onto the rotating surface of a single or twin metal roll. However, the surface of the ribbon produced in this way has minute irregularities, and depending on the state of the irregularities, iron loss in the high frequency region may increase or the space factor may decrease significantly. This may lead to practical inconveniences such as: The inventors have studied the high frequency range, especially 10~
As a result of extensive research into the relationship between the surface unevenness (surface roughness) and iron loss of an amorphous magnetic alloy ribbon in the high frequency range of 200KHz, we found that it was calculated from the maximum thickness and average thickness of the ribbon. We have completed the present invention by discovering the fact that the iron loss is reduced when the surface roughness as expressed by . An object of the present invention is to provide a high-frequency magnetic core with extremely low iron loss in a high-frequency region. In the present invention, the surface roughness after quenching the molten metal is expressed by the formula: (t-)/t≦0.30 [where t represents the maximum thickness value and the average thickness value of the ribbon, respectively, and is expressed as the formula: W/d·l·ρ (where W, d, l, and ρ represent the weight, width, length, and density of the ribbon, respectively). This is a high-frequency magnetic core characterized by being made of an amorphous magnetic alloy ribbon that satisfies the following. In the magnetic core of the present invention, the amorphous magnetic alloy constituting it is generally represented by the composition formula M 100-z Nz. Here, M is at least one element among Fe, Co, and Ni, some of which are Ti, V, Cr,
It may be substituted with 1 to 10 atomic % of at least one element selected from the group consisting of Mn.Co, Zr, Nb, Mo, Ta, and W. N is at least one element of metalloids such as P, C, B, Si, Al, and Ge, and Z is
It is a number that satisfies 15<Z<30. especially magnetic flux density
Using a Co-based amorphous magnetic alloy of 7KG or less is highly effective. Such an amorphous magnetic alloy has the above-mentioned M, N
After mixing each component in a predetermined ratio, melt it,
This can be easily produced by turning it into an amorphous magnetic alloy by a method such as a molten metal quenching method, and then heating it to a predetermined temperature (for example, 400 to 450°C) in a non-magnetic field. t in the above formula is obtained as an actual measurement value regarding the ribbon, and is the weight of the ribbon,
This is a calculated value calculated from the formula =W/d·l·ρ, where width, length, and density are respectively W, d, l, and ρ. If the value of (t-)/t exceeds 0.30, the unevenness of the surface of the ribbon becomes noticeable (the surface becomes rough), and the iron loss in the high frequency range increases significantly, making it unsuitable for use. Furthermore, if it exceeds 0.30, the squareness ratio will also decrease. In addition, for the ribbon, the maximum thickness (t) is
If the diameter is less than 5 μm, a large amount of interlayer insulator is required when winding the obtained magnetic core, and the space factor thereof decreases significantly, making it impractical. Furthermore, t
When the thickness exceeds 30 μm, iron loss in the high frequency range increases significantly regardless of surface roughness. Therefore, in the magnetic core of the present invention, the maximum thickness of the ribbon is
It is preferable to set it in the range of 5 μm≦t≦30 μm. The magnetic core of the present invention is particularly effective in reducing iron loss at operating frequencies of 10 to 200 KHz. The maximum thickness of the ribbon constituting the magnetic core of the present invention is:
In the molten metal quenching method, the number of rotations of the rolls, the gas pressure applied to the molten alloy when it is ejected from the nozzle, etc. are adjusted, and the surface roughness is further adjusted by adjusting the distance between the nozzle and the roll by 0.1. An appropriate value can be obtained by adjusting within the range of ~0.5 mm. However, in the present invention, it is important that the above conditions are satisfied in the state after quenching the molten metal, and even if this condition is satisfied by polishing treatment or the like, the effect of improving the magnetic properties of the present invention cannot be achieved. This is because the minute irregularities that exist on the surface of the amorphous magnetic alloy ribbon produced by quenching the molten metal are removed by the polishing process, and when the above conditions are satisfied in the state after quenching the molten metal, as in the present invention, This is thought to be due to the slightly different surface conditions of the amorphous magnetic alloy ribbon. Furthermore, the polishing treatment introduces distortion to the amorphous magnetic alloy ribbon, which is also not desirable in terms of magnetic properties. The present invention will be explained below based on examples. Example 1 Ribbons of amorphous magnetic alloys having various compositions shown in the table were produced by a molten metal quenching method. That is, molten alloys of various compositions were jetted out from a quartz tube nozzle under argon gas pressure onto a single roll rotating at high speed and rapidly cooled, thereby producing ribbon samples with a width of 5 mm and a length of 100 m. At this time, the maximum thickness and surface roughness were varied by varying the roll rotation speed, gas pressure, and distance between the nozzle and the roll. Cut a length of 14 m from the ribbon sample and measure it with a diameter of
Wrap around a 20mm alumina pobbin and wrap around 400mm.
After heat treatment at ℃ for 15 minutes, the coils were placed in a plastic case with an inner diameter of 20 mm and an outer diameter of 30 mm, and were wound 70 times as a primary coil and a secondary coil. Using a wattmeter, the magnetic flux density (Bm) was 3 KG, and the frequency was 20 KHz and 100 KHz.
The iron loss was measured. In addition, the saturation magnetic flux density of the ribbon sample was measured using a sample vibrating magnetometer. The results are summarized in the table.

【表】 表から明らかなように、本発明にかかる薄帯試
料(試料番号1〜6)は、比較例薄帯試料(試料
番号7、8)に比べ、磁束密度3KG、周波数20K
Hz、100KHzにおける鉄損が著しく小さいことが
判明した。 実施例 2 組成(Fe0.6Ni0.278Si8B14の非晶質磁性合金の
薄帯から成り、表面粗さを種々に変化させた磁心
について、磁束密度3KG、周波数20KHz、100K
Hzにおける鉄損を測定した。その結果を、表面粗
さの関係として図に示した。図から明らかなよう
に、表面粗さが、0.30を超えると鉄損が急激に増
大することが判明した。 組成(Co0.94Fe0.0671(Si0.6B0.429の非晶質磁

合金(磁束密度6.1KG)を単ロール法にて作成し
た。なお板厚18μm、幅10mmを基準とし、表面性
を変化させた。 この非晶質磁性合金リボンを巻回し、外径18
mm、内径12mmのトロイダルコアを成形した。次に
キユリー温度以上、結晶化温度以下の最適温度で
熱処置した後、4℃/minで冷却した。 得られたコアに1次及び2次巻線を施し、1Oe
の外部磁場を印加して交流磁化測定装置を用いて
周波数100KHzにおけるヒステリシス曲線を測定
し、角形比Br/B1(Br;残留磁束密度、B1:1Oe
における磁束密度)を求めた。その結果を第2図
として示す。 以上説明したように、本発明の非晶質磁性合金
の薄帯から成る磁心は、高周波領域での鉄損が著
しく小さくなり、したがつて、高周波トランスな
どの小型形状化を可能とするのでその工業的価値
は大である。
[Table] As is clear from the table, the ribbon samples according to the present invention (sample numbers 1 to 6) have a magnetic flux density of 3KG and a frequency of 20K compared to the comparative example ribbon samples (sample numbers 7 and 8).
It was found that the iron loss at Hz and 100KHz was significantly small. Example 2 A magnetic core made of a thin strip of an amorphous magnetic alloy with a composition (Fe 0.6 Ni 0.2 ) 78 Si 8 B 14 and with various surface roughnesses was prepared at a magnetic flux density of 3 KG, a frequency of 20 KHz, and a frequency of 100 K.
The iron loss at Hz was measured. The results are shown in the figure as a relationship with surface roughness. As is clear from the figure, it was found that when the surface roughness exceeds 0.30, the iron loss increases rapidly. An amorphous magnetic alloy (magnetic flux density 6.1KG) having a composition (Co 0.94 Fe 0.06 ) 71 (Si 0.6 B 0.4 ) 29 was prepared by a single roll method. Note that the surface properties were varied based on a board thickness of 18 μm and width of 10 mm. This amorphous magnetic alloy ribbon is wound with an outer diameter of 18
mm, and a toroidal core with an inner diameter of 12 mm was molded. Next, heat treatment was performed at an optimum temperature of not less than the Curie temperature and not more than the crystallization temperature, followed by cooling at 4° C./min. Primary and secondary windings were applied to the obtained core, and 1Oe
The hysteresis curve at a frequency of 100KHz was measured using an AC magnetization measurement device by applying an external magnetic field of
The magnetic flux density at The results are shown in FIG. As explained above, the magnetic core made of the ribbon of amorphous magnetic alloy of the present invention has significantly reduced iron loss in the high frequency range, and therefore enables miniaturization of high frequency transformers and the like. The industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、組成(Fe0.6Ni0.278Si8B14の非晶質
磁性合金から成る磁心の表面粗さとBm=3KG、
f=20KHz、100KHzにおける鉄損との関係図、
第2図は(Co0.94Fe0.0671(Si0.6B0.429の特性図

ある。
Figure 1 shows the surface roughness of a magnetic core made of an amorphous magnetic alloy with the composition (Fe 0.6 Ni 0.2 ) 78 Si 8 B 14 and Bm = 3KG.
Relationship diagram with iron loss at f=20KHz and 100KHz,
FIG. 2 is a characteristic diagram of (Co 0.94 Fe 0.06 ) 71 (Si 0.6 B 0.4 ) 29 .

Claims (1)

【特許請求の範囲】 1 溶湯急冷手段のみにより製造され、 式:(t−)/t≦0.30 [式中、t、はそれぞれ薄帯の厚みの最大値、
厚みの平均値を表わし、かつ、は 式:W/d・l・ρ (ただし、W、d、l、ρはそれぞれ該薄帯の重
量、幅、長さ、密度を表わす。) として表わされる。] を満たす表面粗さの非晶質磁性合金薄帯を用いた
ことを特徴とする高周波用磁心。 2 tが5μm≦t≦30μmを満足する厚みである
特許請求の範囲第1項記載の高周波用磁心。
[Claims] 1 Manufactured only by molten metal quenching means, formula: (t-)/t≦0.30 [where t is the maximum value of the thickness of the ribbon,
represents the average value of the thickness, and is expressed as the formula: W/d・l・ρ (where W, d, l, and ρ represent the weight, width, length, and density of the ribbon, respectively) . ] A high-frequency magnetic core characterized by using an amorphous magnetic alloy ribbon having a surface roughness that satisfies the following. 2. The high frequency magnetic core according to claim 1, wherein t is a thickness satisfying 5 μm≦t≦30 μm.
JP56142252A 1981-09-11 1981-09-11 Magnetic core of amorphous magnetic alloy for high frequency Granted JPS5844702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56142252A JPS5844702A (en) 1981-09-11 1981-09-11 Magnetic core of amorphous magnetic alloy for high frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56142252A JPS5844702A (en) 1981-09-11 1981-09-11 Magnetic core of amorphous magnetic alloy for high frequency

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5323169A Division JP2506267B2 (en) 1993-11-29 1993-11-29 High frequency magnetic core manufacturing method

Publications (2)

Publication Number Publication Date
JPS5844702A JPS5844702A (en) 1983-03-15
JPH0480523B2 true JPH0480523B2 (en) 1992-12-18

Family

ID=15310983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56142252A Granted JPS5844702A (en) 1981-09-11 1981-09-11 Magnetic core of amorphous magnetic alloy for high frequency

Country Status (1)

Country Link
JP (1) JPS5844702A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611007B2 (en) * 1982-10-05 1994-02-09 ティーディーケイ株式会社 Magnetic core for magnetic switch
JPH07118428B2 (en) * 1984-02-07 1995-12-18 株式会社東芝 Reactor for semiconductor circuit
EP0414974B1 (en) * 1989-09-01 1994-12-28 Masaaki Yagi Thin soft magnetic alloy strip
US5622768A (en) * 1992-01-13 1997-04-22 Kabushiki Kaishi Toshiba Magnetic core

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934780B2 (en) * 1977-12-16 1984-08-24 松下電器産業株式会社 Heat treatment method for amorphous magnetic alloy thin plate
JPS5623714A (en) * 1979-08-06 1981-03-06 Hitachi Metals Ltd Material for magnetic core

Also Published As

Publication number Publication date
JPS5844702A (en) 1983-03-15

Similar Documents

Publication Publication Date Title
JP7028290B2 (en) Manufacturing method of nanocrystal alloy magnetic core
JP5664934B2 (en) Soft magnetic alloy and magnetic component using the same
JPS5933183B2 (en) Low loss amorphous alloy
JPH0525946B2 (en)
US5593518A (en) Amorphous Fe-B-Si-C alloys having soft magnetic characteristics useful in low frequency applications
JPH01242755A (en) Fe-based magnetic alloy
US5593513A (en) Amorphous Fe-B-Si-C alloys having soft magnetic characteristics useful in low frequency applications
JP2000328206A (en) Soft magnetic alloy strip and magnetic core using the same, its apparatus and production
US5496418A (en) Amorphous Fe-B-Si alloys exhibiting enhanced AC magnetic properties and handleability
JP2710949B2 (en) Manufacturing method of ultra-microcrystalline soft magnetic alloy
JP4257629B2 (en) Fe-based amorphous alloy ribbon and magnetic component for nanocrystalline soft magnetic alloy
CN100449030C (en) Amorphous Fe-Based Metal Alloys with Linear BH Loops
JPS6332244B2 (en)
JPH0480523B2 (en)
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
US4834814A (en) Metallic glasses having a combination of high permeability, low coercivity, low AC core loss, low exciting power and high thermal stability
JP2000119825A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP AND Fe BASE NANOCRYSTAL SOFT MAGNETIC ALLOY THIN STRIP USING THE SAME AND MAGNETIC CORE
JP2506267B2 (en) High frequency magnetic core manufacturing method
JPS6070157A (en) Amorphous alloy and its manufacture
JPS62167840A (en) Magnetic material and its manufacture
JP2000252111A (en) High-frequency saturable magnetic core and device using the same
KR0140788B1 (en) Ultrathin fe based nanocrystalline alloys and method for preparing ultrathin ribbons
JP3638291B2 (en) Low loss core
JPH0323614B2 (en)
JPS6122023B2 (en)