JPS6070157A - Amorphous alloy and its manufacture - Google Patents
Amorphous alloy and its manufactureInfo
- Publication number
- JPS6070157A JPS6070157A JP58177876A JP17787683A JPS6070157A JP S6070157 A JPS6070157 A JP S6070157A JP 58177876 A JP58177876 A JP 58177876A JP 17787683 A JP17787683 A JP 17787683A JP S6070157 A JPS6070157 A JP S6070157A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- amorphous alloy
- amorphous
- formula
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000808 amorphous metal alloy Inorganic materials 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 230000035699 permeability Effects 0.000 claims abstract description 24
- 239000000956 alloy Substances 0.000 claims abstract description 20
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 19
- 238000002425 crystallisation Methods 0.000 claims abstract description 8
- 230000008025 crystallization Effects 0.000 claims abstract description 8
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 6
- 229910052796 boron Inorganic materials 0.000 claims abstract description 5
- 229910052742 iron Inorganic materials 0.000 claims abstract description 5
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 4
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 4
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 4
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 3
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 3
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 3
- 229910052763 palladium Inorganic materials 0.000 claims abstract 3
- 229910052703 rhodium Inorganic materials 0.000 claims abstract 3
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract 3
- 229910052762 osmium Inorganic materials 0.000 claims abstract 2
- 229910052719 titanium Inorganic materials 0.000 claims abstract 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- 239000007788 liquid Substances 0.000 claims description 17
- 229910017052 cobalt Inorganic materials 0.000 claims description 13
- 239000010941 cobalt Substances 0.000 claims description 13
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 239000002826 coolant Substances 0.000 claims description 6
- 238000009835 boiling Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- 230000008859 change Effects 0.000 abstract description 9
- 229910052804 chromium Inorganic materials 0.000 abstract description 3
- 229910052748 manganese Inorganic materials 0.000 abstract description 3
- 229910052759 nickel Inorganic materials 0.000 abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 abstract description 2
- 229910052732 germanium Inorganic materials 0.000 abstract description 2
- 229910052741 iridium Inorganic materials 0.000 abstract description 2
- 239000007858 starting material Substances 0.000 abstract description 2
- 229910052720 vanadium Inorganic materials 0.000 abstract description 2
- 229910000531 Co alloy Inorganic materials 0.000 abstract 1
- 239000000155 melt Substances 0.000 abstract 1
- 229910052697 platinum Inorganic materials 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 229910052727 yttrium Inorganic materials 0.000 abstract 1
- 229910052726 zirconium Inorganic materials 0.000 abstract 1
- 239000011162 core material Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 10
- 230000000171 quenching effect Effects 0.000 description 10
- 238000010791 quenching Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 6
- 229910001004 magnetic alloy Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 230000005415 magnetization Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、高い透磁率(μ)を有し、しかも透磁率の経
時変化が小さく、高周波域での保磁力が低い、コバルト
基非晶質合金とその製造方法に関する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a cobalt-based amorphous material having high magnetic permeability (μ), small change in permeability over time, and low coercive force in a high frequency range. Concerning alloys and their manufacturing methods.
近年、電磁気を応用した装置の発展が目ざましい。その
ひとつとして、磁気増幅器を組み込んだスイッチング電
源は、電子計算機の周辺機器や一般通信機用の安定化電
源として広く用いられている。In recent years, the development of devices that apply electromagnetism has been remarkable. As one example, switching power supplies incorporating magnetic amplifiers are widely used as stabilized power supplies for computer peripherals and general communication equipment.
この磁気増幅器を構成する主要部は可飽和リアクトルで
あり、その磁心には角形磁化特性に優れた磁心材料が必
要である。このような磁心材料としては、従来、Fe−
Ni合金、たとえばセンデルタ(商品名)が多用されて
いる。The main part constituting this magnetic amplifier is a saturable reactor, and its magnetic core requires a magnetic core material with excellent square magnetization characteristics. Conventionally, such magnetic core materials include Fe-
Ni alloys, such as Sendelta (trade name), are often used.
このセンデルタは角形磁化特性では優れているものの、
おおよそ20 KHz以上の高周波域においては保磁力
が大きくなって鉄損が増大して発熱し使用不能となる。Although this center delta has excellent square magnetization characteristics,
In a high frequency range of approximately 20 KHz or higher, the coercive force increases, iron loss increases, heat is generated, and the device becomes unusable.
そのため、磁気増幅器を組み込んだスイッチング電源の
スイッチング周波数はおおむね20 KHz以下に限定
されていた。Therefore, the switching frequency of a switching power supply incorporating a magnetic amplifier has been generally limited to 20 KHz or less.
しかしながら最近は、スイッチング電源の小型化・軽量
化への要望からスイッチング周波数の高周波化がめられ
ている。これに対し上記のようにセンデルタでは充分で
なく、この他のものとしては現在までのところ、高周波
域における保磁力が低く、かつ角形磁化特性及び熱安定
性に優れた磁心材料で満足のいくものが未だ見出されて
いない。However, recently, the switching frequency has been increased to meet the demand for smaller and lighter switching power supplies. On the other hand, as mentioned above, center delta is not sufficient, and so far, other satisfactory magnetic core materials have low coercive force in the high frequency range, and have excellent square magnetization characteristics and thermal stability. has not been discovered yet.
また、近時、オーディオ用昇圧トランスの磁心として磁
気特性を改善したものの要望が強い。特に高い透磁率を
安定して得られる材料が要望されているが、満足のいく
ものは未だ見出されていない。In addition, recently there has been a strong demand for magnetic cores for audio step-up transformers with improved magnetic properties. In particular, there is a demand for a material that can stably obtain high magnetic permeability, but a satisfactory material has not yet been found.
このような要望に対して、近時非晶質磁性合金の適用が
図られている。例えばオーディオ用昇圧トランスの磁心
としてコバルト基の非晶質合金の使用が試みられている
が、この場合でも10 moeという比較的強い測定磁
場下にあってもそのIKHzの透磁率(μ+ lc )
は12X104程度にとどまっており、より優れた電磁
変換特性を得るためには、更に高い透磁率が要求されて
いる。In response to such demands, efforts have recently been made to apply amorphous magnetic alloys. For example, attempts have been made to use a cobalt-based amorphous alloy as the magnetic core of an audio step-up transformer, but even in this case, even under a relatively strong measurement magnetic field of 10 moe, its IKHz magnetic permeability (μ + lc )
The magnetic permeability is only about 12×104, and even higher magnetic permeability is required in order to obtain better electromagnetic conversion characteristics.
また、従来試みられたコバルト基非晶質磁性合金は透磁
率の経時変化が大きく、電磁変換特性が時間の経過とと
もに劣化するという問題も生じていた。In addition, cobalt-based amorphous magnetic alloys that have been tried in the past have had the problem of large changes in magnetic permeability over time, resulting in deterioration of electromagnetic conversion characteristics over time.
このような非晶質磁性合金は、通常、所定組成比の合金
素材を溶融しこれを急冷(おおむね108℃/秒以上)
して製造されている(液体急冷法)。Such amorphous magnetic alloys are usually produced by melting an alloy material with a predetermined composition ratio and rapidly cooling it (approximately 108°C/second or more).
(liquid quenching method).
しかしながら、このとき、得られた非晶質磁性合金には
歪みが蓄積されるので、そのままでは優れた軟磁気特性
を得ることができない。However, at this time, since strain is accumulated in the obtained amorphous magnetic alloy, excellent soft magnetic properties cannot be obtained as it is.
そのため、従来から、種々の熱処理が試みられている。Therefore, various heat treatments have been tried in the past.
例えば得られた非晶質磁性合金を一度キューり温度(T
(り以上でかつ結晶化温度未満の適宜な温度で熱処理し
、しかるのちに、急冷し、透磁率が高く保磁力の低い非
晶質合金を得ようとする方法があるが、まだ満足するも
のは得られなかった。この場合、急冷に用いる冷却媒体
は通常水等の常温状態のものであり、0℃以下の沸点を
有する媒体、例えば液体窒素等はむしろ突沸現象を生じ
急冷効果を損うものと考えられ用いられてはいなかった
。For example, the obtained amorphous magnetic alloy is once cured at a temperature (T
(There is a method to obtain an amorphous alloy with high magnetic permeability and low coercive force by heat treatment at an appropriate temperature higher than the crystallization temperature and lower than the crystallization temperature, but this method is still satisfactory. In this case, the cooling medium used for quenching is usually one at room temperature such as water, and media with a boiling point below 0°C, such as liquid nitrogen, would rather cause bumping and impair the quenching effect. It was considered an object and was not used.
上述のように、現在までのところ、高透磁率でかつその
経時変化が小さく安定性に富み、高周波域において低保
磁力を有する非晶質磁性合金は開発されていない。As mentioned above, to date, no amorphous magnetic alloy has been developed that has high magnetic permeability, little change over time, high stability, and low coercive force in a high frequency range.
本発明は、可聴周波域からMH2域迄の高周波域におい
て、高透磁率でかつその経時変化が小さく、低保磁力を
有し、この周波数範囲内で用いる電磁気装置の磁心材料
として有用なコバルト基非晶質合金とその製造方法の提
供を目的とする。The present invention uses a cobalt-based material that has high magnetic permeability, small change over time, and low coercive force in the high frequency range from the audio frequency range to the MH2 range, and is useful as a magnetic core material for electromagnetic devices used within this frequency range. The purpose is to provide an amorphous alloy and its manufacturing method.
・K発明者らは、各種組成のコバルト基非晶質合金のT
cと透磁率との相関関係を調査する過程で、Tcが23
0℃以下で、磁歪が略ゼロであるコバルト基非晶質合金
であれば、Tc以上結晶化温度未満の温度で熱処理した
のち、水中ではなく液体窒素で急冷すると、従来の予想
に反して、得られた非晶質合金は高透磁率で低保磁力を
有し、かつ透磁率の経時変化は小さくなるとの事実を見
出し本発明を完成するに至った。なおコバルト基非晶質
合金では磁歪は熱処理によってほとんど変動しないと考
えられる。・K inventors have developed T of cobalt-based amorphous alloys of various compositions.
In the process of investigating the correlation between c and magnetic permeability, we found that Tc was 23
Contrary to conventional expectations, if a cobalt-based amorphous alloy with almost zero magnetostriction at 0°C or below is heat treated at a temperature above Tc but below the crystallization temperature and then quenched in liquid nitrogen instead of in water, The present invention was completed based on the discovery that the obtained amorphous alloy has high magnetic permeability and low coercive force, and the change in magnetic permeability over time is small. It is thought that the magnetostriction of cobalt-based amorphous alloys hardly changes due to heat treatment.
すなわち、本発明の高透磁率コバルト基非晶質合金は、
Tcが230℃以下、磁歪が略ゼロであることを特徴と
し、その製造方法は、コバルト基非晶質合金を該合金の
Tc以上結晶化温度未満の温度で熱処理し、ついで骸合
金を沸点が0℃以下の冷却媒体中で急冷することを特徴
とする。That is, the high magnetic permeability cobalt-based amorphous alloy of the present invention is
It is characterized by a Tc of 230°C or less and a magnetostriction of approximately zero, and its manufacturing method involves heat treating a cobalt-based amorphous alloy at a temperature higher than or equal to the Tc of the alloy and lower than its crystallization temperature, and then heating the shell alloy to a boiling point. It is characterized by rapid cooling in a cooling medium of 0°C or lower.
本発明の高透磁率コバルト基非晶質合金は、前述した液
体急冷法で製造され、後述する組成を有するコバルト基
非晶質合金である。The high magnetic permeability cobalt-based amorphous alloy of the present invention is a cobalt-based amorphous alloy manufactured by the liquid quenching method described above and having the composition described below.
なお、磁歪が略ゼロとは、±5 X 10−6 以内の
範囲を示す。なお、好ましくは±I X 10”−6以
内のものが良好な磁気特性を得るうえで好ましい。It should be noted that "substantially zero magnetostriction" refers to a range within ±5 x 10-6. Preferably, the range is within ±I x 10''-6 in order to obtain good magnetic properties.
またTcが230℃までのものであれば、より安定な磁
気特性を得ることができる。その組成は、一般式: (
Cot−aMa )zN、oo−2(式中、MはFe、
Ti、 Vt Cr、 Mn、 Ni + Yr Z
r+Nb、 MO,Hf、 Ta、 w、 Ru、 R
h1Pdk:QB+Ir、 pt、希土類元素の群から
選ばれる少なくとも1種の元素を表わし、;NはSL、
B、 P、 C,Ge、 Alの群から選ばれる少な
くとも1種の元素を表わし;a、Zはそれぞれ0.03
≦a≦0.30. 65≦Z≦82の関係を満足する数
を表わす)
で示されるものである。Moreover, if Tc is up to 230° C., more stable magnetic properties can be obtained. Its composition has the general formula: (
Cot-aMa)zN,oo-2 (wherein M is Fe,
Ti, Vt Cr, Mn, Ni + Yr Z
r+Nb, MO, Hf, Ta, w, Ru, R
h1Pdk: QB+Ir, pt, represents at least one element selected from the group of rare earth elements; N is SL;
Represents at least one element selected from the group of B, P, C, Ge, and Al; a and Z are each 0.03
≦a≦0.30. 65≦Z≦82).
各成分のうちMは磁歪の調整及び熱安定性に寄与する成
分で、これらのうち、磁歪の調整にはFe、 Mn、
Ni が有効であり、熱安定性に関してはV、 Cr、
Ni、 Nb、 Mo、 Ta、 Wが特に有効な成
分である。Among each component, M is a component that contributes to magnetostriction adjustment and thermal stability. Among these, for magnetostriction adjustment, Fe, Mn,
Ni is effective, and in terms of thermal stability, V, Cr,
Ni, Nb, Mo, Ta, and W are particularly effective components.
また、Nは合金を非晶質化するために必要な元素であり
、得られた合金の熱安定性の関係からしてB、81が好
ましい。Further, N is an element necessary to make the alloy amorphous, and B, 81 is preferable in terms of the thermal stability of the obtained alloy.
a及び2は、Tc、非晶質状態を規定する因子のひとつ
で、2は65から82迄の間で好ましい非晶質状態を得
ることができ、これと関連してaは0.03以上で磁歪
が略せ四でかつ熱安定性を改善したものが得られ、この
効果はaが0.30までつづき、この範囲では磁歪がほ
ぼゼpになる組合せでかつTeが好ましい値を示す。a
、zはそれぞれ0.04≦a≦0.16. 68≦2≦
77の関係を満足する数であることが所望の特性を得や
すく実用的で好ましい。a and 2 are Tc, one of the factors that determines the amorphous state, and 2 can obtain a preferable amorphous state between 65 and 82, and in relation to this, a is 0.03 or more. A material with a magnetostriction of approximately 4 and improved thermal stability is obtained, and this effect continues up to a of 0.30, and in this range, a combination in which the magnetostriction is approximately zep and Te shows a preferable value. a
, z are 0.04≦a≦0.16, respectively. 68≦2≦
A number that satisfies the relationship of 77 is preferred because it is easy to obtain desired characteristics and is practical.
本発明の出発素材は、上記した各元素を所定量配合して
母合金とし、これに液体急冷法を適用して容易に製造す
ることができる。得られた素材は通常板状の薄帯の形を
している。この場合、厚み8μm未満の薄帯を製造する
ことは、液体急冷法では実質的に困難である。また厚み
が30μmを超えると、高周波域における保磁力は増大
するが、しかし可聴周波域での透磁率は改善される。そ
のため、適用する電磁気装置の種類によって薄帯の厚み
を適宜に選定する。通常、8〜60μm程度であること
が好ましい。The starting material of the present invention can be easily produced by blending a predetermined amount of each of the above-mentioned elements to form a master alloy, and applying a liquid quenching method to the master alloy. The resulting material is usually in the form of a plate-like ribbon. In this case, it is substantially difficult to produce a ribbon with a thickness of less than 8 μm using the liquid quenching method. Moreover, when the thickness exceeds 30 μm, the coercive force in the high frequency range increases, but the magnetic permeability in the audio frequency range is improved. Therefore, the thickness of the ribbon is appropriately selected depending on the type of electromagnetic device to which it is applied. Usually, it is preferably about 8 to 60 μm.
つぎに、この薄帯(非晶質合金)をその合金のTe以上
結晶化温度未満の温度に熱処理する。熱処理温度がTc
未滴の場合には誘導磁気異方性の発生により、高透磁率
、低保磁力は得られにくく、また結晶化温度以上の場合
には合金が結晶化して目的が達成できない。熱処理は大
気中或いは雰囲気中で行なえばよい。処理時間は格別限
定されない。Next, this ribbon (amorphous alloy) is heat-treated at a temperature higher than or equal to the Te of the alloy and lower than the crystallization temperature. The heat treatment temperature is Tc
In the case of non-droplets, it is difficult to obtain high magnetic permeability and low coercive force due to the occurrence of induced magnetic anisotropy, and if the temperature is higher than the crystallization temperature, the alloy crystallizes and the purpose cannot be achieved. The heat treatment may be performed in the air or atmosphere. The processing time is not particularly limited.
その後、との薄帯を0℃以下の沸点を有する冷却媒体の
中に投入して急冷する。本発明におけるポイントのひと
つはここにある。冷却媒体としては、液体窒素、液体酸
素、液体空気、液体ヘリウムなどをあげることができる
が、安価である、入手し易すいなどの点からして液体空
気、液体窒素が好ましい。Thereafter, the ribbon is put into a cooling medium having a boiling point of 0° C. or lower to rapidly cool it. This is one of the points of the present invention. Examples of the cooling medium include liquid nitrogen, liquid oxygen, liquid air, and liquid helium, but liquid air and liquid nitrogen are preferred because they are inexpensive and easily available.
実施例1
組成が(Coo、gl Feo、os Nbo、o+)
yg 5i14 B10の非晶質合金の薄帯を単ロール
法で製造した。薄帯の幅10vrw、厚み42〜45μ
mで、Tcは180℃であった。この薄帯を巻回して外
径18註内径12關のコアを成形し、これを380℃で
熱処理した後、液体窒素の中に投入した。Example 1 The composition is (Coo, gl Feo, os Nbo, o+)
A ribbon of amorphous alloy of yg 5i14 B10 was produced by a single roll process. Thin strip width 10vrw, thickness 42~45μ
m, and Tc was 180°C. This ribbon was wound to form a core having an outer diameter of 18 degrees and an inner diameter of 12 degrees, which was heat-treated at 380° C. and then placed in liquid nitrogen.
得られたコアに巻線を施し、外部磁場2 mQaにおけ
るI KHz透磁率(μlk)をLCRメータで測定し
たところ、200 、000であったo 10 mOe
の測定磁場ではμmkが300 、000であった。The obtained core was wound with a wire, and the I KHz magnetic permeability (μlk) in an external magnetic field of 2 mQa was measured with an LCR meter, and it was found to be 200,000 o 10 mOe.
In the measured magnetic field, μmk was 300,000.
このコアの室温における透磁率の経時変化を調べその結
果を図1に(・)印で示した。比較のために・液体窒素
による急冷に代えて10℃の水中急冷を行なったことを
除いては実施例1と同様にして製造したコアの透磁率変
化をに)印として示した。なお、図1で縦軸は初期値で
規格化しである。The change in magnetic permeability of this core at room temperature over time was investigated, and the results are shown in Fig. 1 with (•) marks. For comparison, the change in magnetic permeability of a core manufactured in the same manner as in Example 1 except that quenching in water at 10° C. was performed instead of quenching with liquid nitrogen is shown as a symbol. Note that in FIG. 1, the vertical axis is normalized to the initial value.
実施例2,3
Co、 Fe、 Nb、 Si、 Bの組成比を変化さ
せて、Tcの異なる非晶質合金の薄帯を実施例1と同様
の方法で製造した。薄帯の厚みはいずれも42〜45μ
mであった。Examples 2 and 3 Amorphous alloy ribbons with different Tc were produced in the same manner as in Example 1 by changing the composition ratios of Co, Fe, Nb, Si, and B. The thickness of the ribbon is 42-45μ
It was m.
これら薄帯から外径18mm内径12關のコアを巻回し
て成形し、これらをそれぞれの最適温度で熱処理し、液
体窒素で急冷した。ついで実施例1と同様に各コアにつ
き2m0eの測定磁場でμmkを測定した。その結果を
各コアのTcとの関係図として(・)印で図2に示した
。Cores having an outer diameter of 18 mm and an inner diameter of 12 diameters were wound and formed from these ribbons, heat treated at their respective optimum temperatures, and quenched with liquid nitrogen. Then, as in Example 1, μmk was measured for each core using a measurement magnetic field of 2 m0e. The results are shown in FIG. 2 as a relationship diagram with the Tc of each core, marked with (.).
比較のため、水中急冷したときの各コアのμmにも (
X)印で図2に記した。For comparison, the μm of each core when rapidly cooled in water is also shown (
It is marked in FIG. 2 with an X) mark.
実施例4〜11
表に示した組成の非晶質合金の薄帯を実施例1と同様に
して製造した。各薄帯の厚みは14〜20μm、Tcは
表の通りである。Examples 4 to 11 Amorphous alloy ribbons having the compositions shown in the table were produced in the same manner as in Example 1. The thickness of each ribbon is 14 to 20 μm, and the Tc is as shown in the table.
各薄帯を巻回してコアを成形し、これらを各々Tc以上
の適宜な温度で熱処理し液体窒素で急冷した0
得られたコアに1次及び2次巻線を施こし、外部磁場1
0e下で交流磁化測定装置を用いて交流ヒステリシス曲
線を測定し、これから50 KHzにおける保磁力(H
e)及び角形比Br/Bt (Br:残留磁束密度、B
、:10eの磁場における磁束密度)をめた。また、磁
歪もめた。以上の結果を一括して表に示した。表に示す
ようにTcが230℃以下の試料は比較例に比べ保磁力
が小さく角形比も優れており磁気増幅器等としての高効
率化が可能となる0
〔発明の効果〕
以上の説明で明らかなように、本発明のコバルト基非晶
質合金は、高透磁率(図2)であり、その経時変化が小
さく (図1)、高周波域での保磁力も小さく(表)、
かつ角形比も良好で、磁歪も略ゼロであり、スイッチン
グ電源の可飽和リアクトル、半導体回路用リアクトル、
オーディオ用昇圧トランスなどの電磁気装置に適用する
とその効率を向上せしめるものであって、工業的に資す
ること大である。Each ribbon was wound to form a core, each of which was heat-treated at an appropriate temperature above Tc and quenched with liquid nitrogen.
The AC hysteresis curve was measured using an AC magnetization measuring device under 0e, and from this the coercive force (H
e) and squareness ratio Br/Bt (Br: residual magnetic flux density, B
, : magnetic flux density in a magnetic field of 10e). There was also a problem with magnetostriction. The above results are summarized in the table. As shown in the table, samples with Tc of 230°C or less have a smaller coercive force and a superior squareness ratio than the comparative example, making it possible to achieve high efficiency as a magnetic amplifier, etc.0 [Effects of the Invention] It is clear from the above explanation As shown, the cobalt-based amorphous alloy of the present invention has a high magnetic permeability (Figure 2), a small change over time (Figure 1), and a small coercive force in the high frequency range (Table).
It also has a good squareness ratio and almost zero magnetostriction, making it suitable for saturable reactors for switching power supplies, reactors for semiconductor circuits,
When applied to electromagnetic devices such as step-up transformers for audio, the efficiency of the devices can be improved, which is of great industrial benefit.
図1は実施例10合金の透磁率の経時変化を表わす図で
・印が本発明方法の゛もの、X印が水中急冷のものであ
る。
図2は、Tcの異なる各種の非晶質合金のTCとμmに
との関係図で、・印が本発明方法のもの、X印が水中急
冷の場合である。FIG. 1 is a diagram showing the change in magnetic permeability of the alloy of Example 10 over time, where the * mark is for the method of the present invention, and the X mark is for the quenching in water. FIG. 2 is a diagram showing the relationship between TC and μm for various amorphous alloys with different Tc, where the * mark is for the method of the present invention and the X mark is for the case of quenching in water.
Claims (1)
ることを特徴とする高透磁率を有するコバルト基の非晶
質合金。 2、一般式+ (co、−、Ma )ZNtoo−Z(
式中、MはFe、 T1+V7Cr+Mn+ Ni、
Y+ Zr+Nb、 Mo、 Hf、 ’l’a、 w
、 Ru、 Rh、 Pd、 Qs、 Ir。 ptl希土類元素の群から選ばれる少なくとも1種の元
素を表わし:Nは81. B、 P、 C,Qe。 A)の群から選ばれる少なくとも1種の元素を表わし;
a、zはそれぞれ0.03≦a≦0゜30゜65≦2≦
82の関係を満足する数を表わす)で示される組成を有
する特許請求の範囲第1項記載の非晶質合金。 3、非晶質合金を該合金のキューリ温度以上かつ結晶化
温度未満の温度領域で熱処理し、ついで該合金を沸点が
0℃以下の冷却媒体中で急冷することを特徴とする非晶
質合金の製造方法。 4、非晶質合金が、 一般式: (Cot−BMa)zNloo−Z(式中、
MはFe、 Ti+ v、 Crl Mnl Ni、
YIZr、 Nb、 Mo、 Hf、 Ta、 W、
Ru、 Rh+ Pd、 Os。 工r、 pt、希土類元素の群から選ばれる少なくとも
1種の元素を表わし;NはSi、 B、 P、 C。 Ges kl の群から選ばれる少なくとも1種の元素
を表わし;a、Zはそれぞれ0.03≦a≦0.30.
65≦Z≦82の関係を満足する数を表わす) で示される組成を有する特許請求の範囲第3項記載の非
晶質合金の製造方法。 5、該冷却媒体が液体窒素、液体空気のいずれかである
特許請求の範囲第3項記載の非晶質合金の製造方法。[Claims] 1. A cobalt-based amorphous alloy with high magnetic permeability, characterized by a cue temperature of 230° C. or less and magnetostriction of approximately zero. 2, General formula + (co, -, Ma)ZNtoo-Z(
In the formula, M is Fe, T1+V7Cr+Mn+Ni,
Y+ Zr+Nb, Mo, Hf, 'l'a, w
, Ru, Rh, Pd, Qs, Ir. ptl Represents at least one element selected from the group of rare earth elements: N is 81. B, P, C, Qe. A) represents at least one element selected from the group;
a and z are each 0.03≦a≦0゜30゜65≦2≦
82) The amorphous alloy according to claim 1, having a composition represented by the formula (representing a number satisfying the relationship of 82). 3. An amorphous alloy characterized by heat-treating the amorphous alloy in a temperature range equal to or higher than the Curie temperature and lower than the crystallization temperature of the alloy, and then rapidly cooling the alloy in a cooling medium having a boiling point of 0° C. or lower. manufacturing method. 4. The amorphous alloy has the general formula: (Cot-BMa)zNloo-Z (wherein,
M is Fe, Ti+v, Crl Mnl Ni,
YIZr, Nb, Mo, Hf, Ta, W,
Ru, Rh+ Pd, Os. Represents at least one element selected from the group of metal, pt, and rare earth elements; N is Si, B, P, and C. Ges kl represents at least one element selected from the group; a and Z are each 0.03≦a≦0.30.
65≦Z≦82) The method for producing an amorphous alloy according to claim 3, which has a composition represented by the formula: 65≦Z≦82. 5. The method for producing an amorphous alloy according to claim 3, wherein the cooling medium is either liquid nitrogen or liquid air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58177876A JPS6070157A (en) | 1983-09-28 | 1983-09-28 | Amorphous alloy and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58177876A JPS6070157A (en) | 1983-09-28 | 1983-09-28 | Amorphous alloy and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6070157A true JPS6070157A (en) | 1985-04-20 |
Family
ID=16038599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58177876A Pending JPS6070157A (en) | 1983-09-28 | 1983-09-28 | Amorphous alloy and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6070157A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4747888A (en) * | 1985-02-16 | 1988-05-31 | Sony Corporation | Amorphous soft magnetic thin film |
JPS6465889A (en) * | 1987-09-07 | 1989-03-13 | Toshiba Corp | Core for pulse compressor |
US5037494A (en) * | 1987-05-21 | 1991-08-06 | Vacuumschmelze Gmbh | Amorphous alloy for strip-shaped sensor elements |
JPH0855736A (en) * | 1995-08-21 | 1996-02-27 | Toshiba Corp | Magnetic core for high frequency |
CN106906432A (en) * | 2017-04-19 | 2017-06-30 | 新疆大学 | A kind of cobalt-base body amorphous state alloy with nearly room temperature magnetothermal effect and preparation method thereof |
RU2703670C1 (en) * | 2017-09-08 | 2019-10-21 | Мицубиси Хитачи Пауэр Системс, Лтд. | Cobalt-based alloy made from additive technology, article from cobalt-based alloy and method of making said alloy |
-
1983
- 1983-09-28 JP JP58177876A patent/JPS6070157A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4747888A (en) * | 1985-02-16 | 1988-05-31 | Sony Corporation | Amorphous soft magnetic thin film |
US5037494A (en) * | 1987-05-21 | 1991-08-06 | Vacuumschmelze Gmbh | Amorphous alloy for strip-shaped sensor elements |
JPS6465889A (en) * | 1987-09-07 | 1989-03-13 | Toshiba Corp | Core for pulse compressor |
JPH0855736A (en) * | 1995-08-21 | 1996-02-27 | Toshiba Corp | Magnetic core for high frequency |
CN106906432A (en) * | 2017-04-19 | 2017-06-30 | 新疆大学 | A kind of cobalt-base body amorphous state alloy with nearly room temperature magnetothermal effect and preparation method thereof |
CN106906432B (en) * | 2017-04-19 | 2020-08-14 | 新疆大学 | Application of cobalt-based bulk amorphous alloy |
RU2703670C1 (en) * | 2017-09-08 | 2019-10-21 | Мицубиси Хитачи Пауэр Системс, Лтд. | Cobalt-based alloy made from additive technology, article from cobalt-based alloy and method of making said alloy |
RU2703670C9 (en) * | 2017-09-08 | 2019-12-11 | Мицубиси Хитачи Пауэр Системс, Лтд. | Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5445889B2 (en) | Soft magnetic alloy, manufacturing method thereof, and magnetic component | |
JPH0525946B2 (en) | ||
JP2007270271A (en) | Soft magnetic alloy, its manufacturing method, and magnetic component | |
JP3719449B2 (en) | Nanocrystalline alloy, method for producing the same, and magnetic core using the same | |
JPH0219179B2 (en) | ||
JP2008231534A5 (en) | ||
JPS6328483B2 (en) | ||
WO2015046140A1 (en) | METHOD FOR PRODUCING Fe-BASED NANO-CRYSTAL ALLOY, AND METHOD FOR PRODUCING Fe-BASED NANO-CRYSTAL ALLOY MAGNETIC CORE | |
JP3424767B2 (en) | Nanocrystalline alloy core and heat treatment method for nanocrystalline alloy core | |
JPH0375341A (en) | Soft magnetic alloy, its manufacture and magnetic core | |
JP2710949B2 (en) | Manufacturing method of ultra-microcrystalline soft magnetic alloy | |
JPS6070157A (en) | Amorphous alloy and its manufacture | |
US4769091A (en) | Magnetic core | |
JPH0549742B2 (en) | ||
JPH0257683B2 (en) | ||
JPH01247556A (en) | Fe-base magnetic alloy excellent in iso-permeability characteristic | |
JP2513645B2 (en) | Amorphous magnetic core excellent in effective pulse magnetic permeability and manufacturing method thereof | |
JPS6396252A (en) | Heat treatment of toroidal amorphous magnetic core | |
JP2693453B2 (en) | Winding core | |
JPH0323614B2 (en) | ||
JPS6329909A (en) | Fe group amorphous magnetic core for saturable reactor and manufacture thereof | |
JP2000252111A (en) | High-frequency saturable magnetic core and device using the same | |
JP2831761B2 (en) | Amorphous alloy ribbon and core for saturable reactor using it | |
JPH0442508A (en) | Amorphous alloy for high frequency magnetic core and high frequency magnetic core | |
JPS63215348A (en) | Production of extremely thin amorphous alloy |