JPH0480320A - Production of steel for welded structure having high vibration damping capacity - Google Patents
Production of steel for welded structure having high vibration damping capacityInfo
- Publication number
- JPH0480320A JPH0480320A JP19316990A JP19316990A JPH0480320A JP H0480320 A JPH0480320 A JP H0480320A JP 19316990 A JP19316990 A JP 19316990A JP 19316990 A JP19316990 A JP 19316990A JP H0480320 A JPH0480320 A JP H0480320A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- less
- heat treatment
- vibration damping
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 46
- 239000010959 steel Substances 0.000 title claims abstract description 46
- 238000013016 damping Methods 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 34
- 238000001816 cooling Methods 0.000 claims abstract description 31
- 229910052802 copper Inorganic materials 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 21
- 238000005098 hot rolling Methods 0.000 claims description 12
- 229910000746 Structural steel Inorganic materials 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 238000005096 rolling process Methods 0.000 abstract description 14
- 239000000203 mixture Substances 0.000 abstract description 9
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 3
- 239000010949 copper Substances 0.000 description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000001556 precipitation Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 6
- 230000003014 reinforcing effect Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 230000005381 magnetic domain Effects 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 238000005336 cracking Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、溶接構造物の部材に用いて好適な溶接構造
用鋼に関し、特に振動や騒音を抑制し得る高い振動減衰
能を有する、引張強度が41kgf/mm2以上の溶接
構造用鋼を有利に製造する方法を提案しようとするもの
である。Detailed Description of the Invention (Industrial Application Field) The present invention relates to welded structural steel suitable for use as members of welded structures, and particularly to tensile structural steel having high vibration damping ability capable of suppressing vibration and noise. This paper attempts to propose a method for advantageously producing welded structural steel having a strength of 41 kgf/mm2 or more.
近年、鉄道橋梁や自動車用道路橋など大重量の通過車両
の移動に伴う激しい振動をはじめとして、特に居住地域
に近接して立地した工場や作業場などの施設ないしは機
械構造物に生じる振動ないしはそれらに伴われる騒音が
、社会問題とされる風潮が著しい。In recent years, vibrations occurring in facilities or mechanical structures such as factories and workshops located close to residential areas, including intense vibrations caused by the movement of heavy passing vehicles such as railway bridges and road bridges for automobiles, have been increasing. There is a significant tendency for the accompanying noise to be considered a social problem.
このための対策としては、吸音材料や遮音材料あるいは
振動絶縁材料を使用したり、また構造物の剛性を増大さ
せて共鳴を回避したりする種々な手法が講ぜられている
けれども、実際にはその騒音源となる振動は複雑で、そ
の原因を排除することは一般には困難である。As countermeasures for this, various methods have been taken such as using sound absorbing materials, sound insulating materials, vibration insulating materials, and increasing the rigidity of the structure to avoid resonance. Vibration as a source of noise is complex, and it is generally difficult to eliminate its causes.
そこで構造部材としての材料自体に振動減衰特性いわゆ
る制振性を付与して、それによる構造物の振動、騒音の
抜本的な改善を図ろうとする方法、いわゆるマテリアル
・ダンピング法が注目されている。Therefore, the so-called material damping method is attracting attention, which is a method that attempts to drastically improve the vibration and noise of a structure by imparting vibration damping properties to the material itself as a structural member.
ここで合金の制振性能は、一般にその内部摩擦(Q−’
)の大きさで表すことが多い。これは歪振幅1サイクル
当たりに失われるエネルギーの大きさの指標であり、Q
−’が大きい合金はど、振動エネルギーを合金内部で熱
エネルギーに変換する割合が大きく、高い制振作用を存
する。Here, the damping performance of an alloy is generally determined by its internal friction (Q-'
) is often expressed by the size of This is an index of the amount of energy lost per cycle of strain amplitude, and Q
An alloy with a large value of -' has a large proportion of converting vibrational energy into thermal energy within the alloy, and has a high vibration damping effect.
(従来の技術)
上記の制振性を付与した鋼材について、既にいくつかの
提案が行われている。(Prior Art) Several proposals have already been made regarding steel materials provided with the above-mentioned vibration damping properties.
例えば特公昭60−26813号公報には、低降伏点で
かつ粗大粒とする防振鋼材の製造方法が提案されている
。For example, Japanese Patent Publication No. 60-26813 proposes a method for producing a vibration-proof steel material having a low yield point and coarse grains.
しかしこの鋼材は、低強度でありまたじん性が劣るため
に構造部材としては使用できない。However, this steel material has low strength and poor toughness, so it cannot be used as a structural member.
また特開昭52−144317号公報には、3〜40−
tχ(以下単に%で示す)CrでさらにTi、 AIを
添加した防振鋼が、さらに特開昭57−181360号
公報には、1.5〜9%AIを含有する制振厚鋼板が、
そして特公昭57−22981号公報には、4〜7%C
r、3〜5%八1をへ有する制振性を有する鋼材がそれ
ぞれ開示されている。Furthermore, in Japanese Patent Application Laid-open No. 52-144317, 3 to 40-
Anti-vibration steel with tχ (hereinafter simply expressed as %) Cr further added with Ti and AI is disclosed in JP-A-57-181360, and a thick anti-vibration steel plate containing 1.5 to 9% AI is disclosed.
And, in Japanese Patent Publication No. 57-22981, 4 to 7% C
Steel materials having vibration damping properties having a vibration damping property of 3 to 5% are disclosed.
しかしいずれの鋼材も溶接性に難点があったり、じん性
の改善を必要としたりまた制振性が十分でなかったり、
合金成分が多量に添加されて高価であるという問題を残
していた。However, all steel materials have problems with weldability, require improvement in toughness, and lack sufficient vibration damping properties.
The problem remains that a large amount of alloying components are added and it is expensive.
以上のべたばか特開昭53−1621号公報には、粒界
酸化により振動減衰特性を付与した18−8ステンレス
鋼が提案されているが、溶接性に問題がありまた大量生
産には適さないという問題があった。The above-mentioned JP-A-53-1621 proposes 18-8 stainless steel that has been given vibration damping properties through grain boundary oxidation, but it has problems with weldability and is not suitable for mass production. There was a problem.
(発明が解決しようとする課題)
高い制振性を有し、溶接構造用鋼材として必要な溶接性
を具備してしかもしん性に優れる、比較的安価な、振動
減衰特性に優れた引張強度が41kgf/nym”以上
の溶接構造用鋼を工業的規模で安定して量産できる製造
方法を提案することがこの発明の目的である。(Problem to be solved by the invention) A relatively inexpensive material with high vibration damping properties, weldability required as a welded structural steel material, excellent resistance, and tensile strength with excellent vibration damping properties. It is an object of the present invention to propose a manufacturing method that can stably mass-produce welded structural steel of 41 kgf/nym'' or more on an industrial scale.
(課題を解決するための手段)
さて強磁性体の鋼では、磁気スピンが揃うのに対応して
結晶格子には歪(f61歪)・が生じていて、主にこの
影響を受けて内部は磁区に分割されている。(Means for solving the problem) Now, in ferromagnetic steel, distortion (f61 strain) occurs in the crystal lattice in response to the alignment of magnetic spins, and mainly due to this effect, the internal It is divided into magnetic domains.
かような鋼に外力(振動)が加わると、磁歪との相互作
用によって磁区壁が移動する。すると強磁性体内部に生
じるこの磁区壁の移動すなわち磁化の変化を打ち消すよ
うに渦電流が生じ、この渦電流は、逆に磁歪を通じて歪
を引き起こす。この歪は、外力に対して位相が遅れるの
で、いわゆる磁気−力学的ヒステリシス型の内部摩擦に
より振動減衰特性があられれる。これについては、例え
ば純鉄が比較的制振性に優れることについて知られてい
るとおりである。When external force (vibration) is applied to such steel, the magnetic domain walls move due to interaction with magnetostriction. Then, an eddy current is generated to cancel out the movement of the magnetic domain wall, that is, the change in magnetization, which occurs inside the ferromagnetic material, and this eddy current causes distortion through magnetostriction. Since the phase of this strain lags behind the external force, vibration damping characteristics are achieved by so-called magneto-mechanical hysteresis type internal friction. Regarding this, for example, it is known that pure iron has relatively excellent vibration damping properties.
しかし純鉄は、強度が低く、構造用部材としての適用は
不可能であるばかりでなく、制振性能も十分とは言い難
い。However, pure iron has low strength and not only cannot be used as a structural member, but also has insufficient vibration damping performance.
そこで発明者らは溶接構造用鋼材としての強度とじん性
とを有し、かつ純鉄よりも高い振動減衰能をも兼ね備え
る鋼材を、工業的に量産可能としてしかも安定して特性
を具備できる製造方法を種々検討した結果、熱間圧延を
適切な条件で行いかつ所定の中間熱処理を施すことが、
上記の目的を達成するために肝要であることの知見を得
た。Therefore, the inventors developed a steel material that has the strength and toughness of a welded structural steel material, and also has a higher vibration damping ability than pure iron, which can be industrially mass-produced and has stable characteristics. After examining various methods, we found that hot rolling can be carried out under appropriate conditions and a prescribed intermediate heat treatment can be carried out.
We have obtained knowledge that is essential to achieving the above objectives.
すなわちこの発明は、C:0.02%以下、Si:0.
02%以下、Mn : 0.08%以下、Cu : 0
.05〜1.50%、^1 : 1.0〜7.0%及び
N : 0.0080%以下を含有し、残部はFe及び
不可避的不純物よりなる鋼素材を、1000〜1300
℃に加熱後、圧延仕上げ温度を650〜900℃とする
熱間圧延を施し、引き続き冷却速度0.1℃/s以上で
室温まで冷却を行い、次−いで800〜1300℃に加
熱保持後、冷却速度1.0℃/s以下で冷却する中間熱
処理を施した後、450〜700℃に保持する最終熱処
理を施すことを特徴とする高振動減衰能を有する溶接構
造用銅の製造方法(第1発明)及び、
C: 0.02%以下、Si : 0.02%以下、M
n : 0.08%以下、Ni : 0.05〜1.5
0%、Cu : 0.05〜1.50%、Al:1.0
〜7.0%及びN : 0.0080%以下を含有し、
残部はFe及び不可避的不純物よりなる鋼素材を、それ
ぞれ1000〜1300″Cに加熱後、圧延仕上げ温度
を650〜900℃とする熱間圧延を施し、引き続き冷
却速度0.1℃/s以上で室温まで冷却を行い、次いで
800〜1300℃に加熱保持後、冷却速度1.0℃/
s以下で冷却する中間熱処理を施した後、450〜70
0℃に保持する最終熱処理を施すことを特徴とする高振
動減衰能を有する溶接構造用銅の製造方法(第2発明)
である。That is, in this invention, C: 0.02% or less, Si: 0.
0.02% or less, Mn: 0.08% or less, Cu: 0
.. 05 to 1.50%, ^1: 1.0 to 7.0%, and N: 0.0080% or less, with the balance consisting of Fe and inevitable impurities.
After heating to 800 to 1,300 degrees Celsius, hot rolling is carried out at a rolling finishing temperature of 650 to 900 degrees Celsius, followed by cooling to room temperature at a cooling rate of 0.1 degrees C/s or more, and then heating and holding at 800 to 1,300 degrees Celsius. A method for producing copper for welded structures having high vibration damping ability, characterized by performing an intermediate heat treatment of cooling at a cooling rate of 1.0 °C/s or less, and then a final heat treatment of maintaining the temperature at 450 to 700 °C (No. 1 invention) and C: 0.02% or less, Si: 0.02% or less, M
n: 0.08% or less, Ni: 0.05 to 1.5
0%, Cu: 0.05-1.50%, Al: 1.0
~7.0% and N: 0.0080% or less,
The steel material, the remainder of which is Fe and unavoidable impurities, is heated to 1000 to 1300"C, then hot rolled to a finishing temperature of 650 to 900C, followed by cooling at a cooling rate of 0.1C/s or higher. Cool to room temperature, then heat and maintain at 800-1300°C, cooling rate 1.0°C/
After performing an intermediate heat treatment of cooling at a temperature of 450 to 70
A method for producing copper for welded structures having a high vibration damping ability, which comprises performing a final heat treatment to maintain the temperature at 0°C (second invention)
It is.
(作 用)
この発明における成分組成範囲の限定理由についてまず
説明する。(Function) First, the reason for limiting the component composition range in this invention will be explained.
Cは、通常の綱では強化成分として含有させるが、この
発明の鋼では、Cuの析出による強化作用を利用するの
で、強化成分としての量は必要ない。C is contained as a reinforcing component in ordinary steels, but in the steel of the present invention, since the reinforcing effect of Cu precipitation is utilized, the amount as a reinforcing component is not necessary.
むしろC含有量が0.02%を超えると、制振性を劣化
させるので、0.02%以下に限定した。Rather, if the C content exceeds 0.02%, the vibration damping properties will deteriorate, so it is limited to 0.02% or less.
Siは、0.02%を超えて含有させると、制振性を劣
化させるので、0.02%を上限とした。When Si is contained in an amount exceeding 0.02%, vibration damping properties are deteriorated, so the upper limit is set at 0.02%.
Mnは、Cu添加により強化する際に、じん性に悪い影
響を与えるので、その含有量は低いほど好ましく、その
含有量の上限は0.08%であるので0.08%以下に
限定した。Since Mn has a negative effect on toughness when reinforcing by adding Cu, the lower the content, the better.The upper limit of the content is 0.08%, so it was limited to 0.08% or less.
Cuは、時効処理により微細なε−Cuとして析出させ
て、鋼を強化させる成分であり、Mn含有量を低下させ
た鋼にCuを含有させることにより、制振性を損なうこ
となしに強度とじん性とを両立させることができる。し
たがってこの発明では必須の成分であるが、Cu含有量
が0.05%に満たないとその効果に乏しく、一方1.
50%を超えて含有させると熱間割れを生じるおそれが
あるので0.05〜1.50%の範囲とした。Cu is a component that strengthens steel by precipitating as fine ε-Cu during aging treatment. By adding Cu to steel with a reduced Mn content, it can increase strength without impairing vibration damping properties. It is possible to achieve both toughness and toughness. Therefore, although Cu is an essential component in this invention, if the Cu content is less than 0.05%, the effect will be poor;
If the content exceeds 50%, hot cracking may occur, so the content is set in the range of 0.05 to 1.50%.
AIは、Mnを0.08%以下に低減し、はぼ純鉄の組
成になる綱に含有することで振動減衰特性を向上させる
がその含有量が1.0%に満たないとその効果がなく、
一方7.0%を超える含有では、溶接部のしん性が劣化
するのでAI含有量は1.0〜7.0%の範囲とした。AI improves vibration damping properties by reducing Mn to 0.08% or less and including it in steel that has a composition of almost pure iron, but if the content is less than 1.0%, the effect is low. Without,
On the other hand, if the Al content exceeds 7.0%, the toughness of the weld zone deteriorates, so the AI content was set in the range of 1.0 to 7.0%.
Nは、その含有量が低いほうが母材及び溶接部のじん性
の面から好ましく、許容できる上限は0、0080%で
ある。A lower N content is preferable from the viewpoint of the toughness of the base metal and welded part, and the allowable upper limit is 0.0080%.
この発明の鋼は、第2発明において、以上の成分に加え
てさらにNiを0.05〜1.50%含有させる。In the second invention, the steel of this invention further contains 0.05 to 1.50% Ni in addition to the above components.
Niは、Cuの添加に由来する熱間割れの傾向を制振性
を損なうことなしに抑えることができる。Ni量が0.
05%に満たないとその効果に乏しく、一方1.50%
を超えると経済的でないという不都合が生じるのでNi
含有量は、0.05〜1.50%の範囲とした。Ni can suppress the tendency of hot cracking resulting from the addition of Cu without impairing vibration damping properties. The amount of Ni is 0.
If it is less than 0.5%, the effect is poor, while 1.50%
Ni
The content was in the range of 0.05 to 1.50%.
上記の成分のほか、この発明では不純物成分としてP、
Sをそれぞれ0.01%、0.005%まで許容できる
。In addition to the above components, in this invention, impurity components include P,
S is allowed up to 0.01% and 0.005%, respectively.
Pは、その含有量の増加とともに制振性を劣化させるが
、0.01%までは許容できるので上限を0.01%と
する。P deteriorates the damping properties as its content increases, but it is permissible up to 0.01%, so the upper limit is set at 0.01%.
Sは、P同様、制振性に好ましくない成分であり、その
含有量が0.005%を超えると制振性が特に劣化する
。したがってS含有量はo、oos%を上限とする。Like P, S is a component unfavorable for damping properties, and when its content exceeds 0.005%, damping properties are particularly deteriorated. Therefore, the upper limit of the S content is o, oos%.
次に、圧延条件及び熱処理条件の限定理由について以下
説明する。Next, the reasons for limiting the rolling conditions and heat treatment conditions will be explained below.
この発明の製造方法の要部は、
(1)熱間圧延終了時にCu析出が生じていないで、か
つ十分な圧延歪が鋼素材に蓄積される熱間圧延・冷却条
件を選定し、
(2)次に行う中間熱処理では、結晶粒の整粒化及び粗
大化また固溶成分の均質固溶化を図り、その後の冷却歪
は極力低減する条件を選定する。The main parts of the manufacturing method of this invention are as follows: (1) Select hot rolling/cooling conditions under which no Cu precipitation occurs at the end of hot rolling and sufficient rolling strain is accumulated in the steel material; (2) ) In the next intermediate heat treatment, conditions are selected to reduce the subsequent cooling strain as much as possible by aiming to regularize and coarsen the crystal grains and to make the solid solution components into a homogeneous solid solution.
なお前述の熱間圧延・冷却による圧延歪の蓄積は、この
中間熱処理時における粒成長を助長する効果を持つ。ま
たこの中間熱処理後の冷却終了温度は、次に行う熱処理
温度(450〜700℃)から室温までの任意の温度で
良い。Note that the accumulation of rolling strain due to the hot rolling and cooling described above has the effect of promoting grain growth during this intermediate heat treatment. The cooling end temperature after this intermediate heat treatment may be any temperature from the next heat treatment temperature (450 to 700°C) to room temperature.
(3)最終熱処理は、Cu析出を増進させる処理で、強
度確保を目的として行う
ことにある。(3) The final heat treatment is a treatment to promote Cu precipitation, and is carried out for the purpose of ensuring strength.
このことから、各処理条件を次のとおりに限定した。From this, each treatment condition was limited as follows.
熱間圧延に先立つ鋼素材の加熱温度は、熱間圧延が可能
な温度とし、かつ結晶粒の粗大化、固溶成分の均質固溶
化を図るために1000〜1300℃とした。加熱温度
が1000℃に満たないと結晶粒の混粒化が生じて最終
製品の制振性能がばらつく原因の一つとなり、また13
00℃を超えると銅表面の酸化が著しく、また経済的に
も不利である。The heating temperature of the steel material prior to hot rolling was set at 1,000 to 1,300° C. in order to enable hot rolling and to coarsen crystal grains and homogeneously form a solid solution component. If the heating temperature is less than 1000℃, mixing of crystal grains will occur, which is one of the causes of variations in the damping performance of the final product, and 13
If the temperature exceeds 00°C, the oxidation of the copper surface will be significant and it is also economically disadvantageous.
熱間圧延の圧延仕上げ温度は、Cuの析出を抑制しつつ
、圧延歪の蓄積を図るために650〜900℃の範囲と
した。650℃に満たない低温仕上げとすると、Cuの
析出が生じること及び混粒組織となり易いため、制振性
の不安定化の要因となる。また低温仕上げでは、圧延に
要する時間が増大し、製造コストの増加をもたらすので
好ましくない。The finishing temperature of the hot rolling was set in a range of 650 to 900° C. in order to suppress Cu precipitation and accumulate rolling strain. When finishing at a low temperature of less than 650° C., Cu precipitation occurs and a mixed grain structure tends to occur, which becomes a factor in destabilizing vibration damping properties. Furthermore, low-temperature finishing is not preferred because it increases the time required for rolling and increases manufacturing costs.
方圧延仕上げ温度が900 ℃を超えると、被圧延材へ
の圧延歪の蓄積が不十分であり、その後の中間熱処理で
の粒成長、粗大化が効率良く達成しにくい。When the finishing temperature of square rolling exceeds 900° C., rolling strain is insufficiently accumulated in the rolled material, and it is difficult to efficiently achieve grain growth and coarsening in the subsequent intermediate heat treatment.
熱間圧延に引き続く冷却は、Cu析出の抑制と圧延歪の
凍結を目的とし、0.1℃/s以上の冷却速度が必要で
ある。なお冷却速度の上限は、この発明では特に制限す
るものではない。工業的に実施可能な範囲としては、6
0℃/s程度以下である。Cooling subsequent to hot rolling is aimed at suppressing Cu precipitation and freezing rolling strain, and requires a cooling rate of 0.1° C./s or more. Note that the upper limit of the cooling rate is not particularly limited in this invention. The industrially practicable range is 6.
It is about 0°C/s or less.
中間熱処理の温度は、結晶粒の整粒化及び粗大化また圧
延歪の完全な除去を目的に800〜1300℃とする。The temperature of the intermediate heat treatment is 800 to 1300° C. for the purpose of regulating and coarsening the crystal grains and completely removing rolling strain.
なおAIを1〜2%未満含有する場合は、その上限はフ
ェライト単相となる900〜950℃が望ましい。1〜
2%未満AI含有鋼では950〜1000℃でフェライ
ト→オーステナイト変態が生じ、細粒組織となって制振
性能が低下するうれいがある。In addition, when containing less than 1 to 2% of AI, the upper limit is preferably 900 to 950°C, which results in a single phase of ferrite. 1~
In steel containing less than 2% AI, ferrite → austenite transformation occurs at 950 to 1000°C, resulting in a fine-grained structure and a decrease in damping performance.
また2%以上の^1を含有する場合は、フェライト単相
となって処理温度が高温であるほど制振性向上に好まし
いが、処理後の表面性状や工業的な経済性からその上限
を1300℃とした。また中間熱処理温度が800℃に
満たないと圧延歪の完全除去が困難であり、結晶粒粗大
化も十分でないため制振性は劣化する。加熱保持時間は
、熱処理温度及び対象鋼の厚みによって異なるため特に
限定はしないが、1時間以上保持することが好ましい。In addition, when it contains 2% or more of ^1, it becomes a single phase of ferrite, and the higher the treatment temperature, the better the vibration damping property will be improved. ℃. Furthermore, if the intermediate heat treatment temperature is less than 800° C., it is difficult to completely remove rolling strain, and crystal grain coarsening is not sufficient, resulting in deterioration of vibration damping properties. The heating holding time is not particularly limited as it varies depending on the heat treatment temperature and the thickness of the target steel, but it is preferably held for 1 hour or more.
中間熱処理後の冷却は、各位置の冷却むらに伴う歪導入
を防ぐため、1.0℃八以への冷却速度とする。冷却終
了温度については特に限定しないが、その後の最終熱処
理温度範囲(450〜700℃)から室温までの任意の
温度が望ましい。Cooling after the intermediate heat treatment is performed at a cooling rate of 1.0° C. or higher to prevent distortion from being introduced due to uneven cooling at each location. The cooling end temperature is not particularly limited, but any temperature from the subsequent final heat treatment temperature range (450 to 700°C) to room temperature is desirable.
最終熱処理は、ε−Cuの析出による強度上昇を目的に
行うが、450℃未満及び7αO′Cを超えるといずれ
も析出効果が十分でないため450〜700 ℃の範囲
とした。なおこの保持時間については、中間熱処理と同
様に熱処理温度及び対象鋼の厚みによって異なるため特
に限定はしないが、1時間程度保持することが好ましい
。The final heat treatment is carried out for the purpose of increasing the strength by precipitation of ε-Cu, but since the precipitation effect is not sufficient below 450°C and above 7αO'C, the temperature was set in the range of 450 to 700°C. Note that this holding time is not particularly limited because it varies depending on the heat treatment temperature and the thickness of the target steel, similarly to the intermediate heat treatment, but it is preferably held for about 1 hour.
この発明の材料は、通常の溶製、鋳造及び圧延により厚
鋼板とすることができる。また厚鋼板に限らず薄鋼板、
形鋼、棒鋼、線材などにも用いることができる。The material of this invention can be made into a thick steel plate by conventional melting, casting and rolling. In addition to thick steel plates, thin steel plates,
It can also be used for shaped steel, steel bars, wire rods, etc.
(実施例)
表1に示す種々の成分組成になる綱を常法に従って溶製
、鋳造した。(Example) Steels having various component compositions shown in Table 1 were melted and cast according to conventional methods.
これらの名調について、種々の条件で熱間圧延、中間熱
処理及び最終熱処理を施した。なお鋼板板厚は25胴で
あり、冷却速度は冷媒の濃度調整及び保温材の使用等に
よって種々変化させた。These masterpieces were subjected to hot rolling, intermediate heat treatment and final heat treatment under various conditions. The thickness of the steel plate was 25 mm, and the cooling rate was varied by adjusting the concentration of the refrigerant and using a heat insulating material.
得られた各銅板について機械的特性及び減衰特性(Q−
’)を調べた。機械的特性は板厚中央部から試験片を採
取し、また減衰特性は板厚中央部から1.5 m厚の短
冊状試片を採取し、それぞれ測定した。Mechanical properties and damping properties (Q-
') was investigated. Mechanical properties were measured by taking a test piece from the center of the plate thickness, and damping properties by taking a 1.5 m thick strip-shaped test piece from the center of the plate thickness.
名調の圧延条件、熱処理条件及び得られたm械的特性、
減衰特性について、表2にまとめて示す。Excellent rolling conditions, heat treatment conditions and obtained mechanical properties,
The attenuation characteristics are summarized in Table 2.
表1において、綱A−Cはこの発明の成分組成になる鋼
であり、鋼D−Fはこの発明の成分組成範囲を外れた成
分の比較鋼である。表2中の区分は、この発明の適合例
をO印で、比較例をX印で示したものである。In Table 1, steels A-C are steels having the composition of the present invention, and steels D-F are comparative steels having compositions outside the composition range of the present invention. In the classification in Table 2, examples conforming to the present invention are indicated by an O mark, and comparative examples are indicated by an X mark.
表2から明らかなように、適合例はいずれも溶接構造用
鋼板として要求される機械的特性を満足し、また内部摩
擦Q−’は比較例に比べて著しく向上している。As is clear from Table 2, all of the conforming examples satisfy the mechanical properties required for welded structural steel plates, and the internal friction Q-' is significantly improved compared to the comparative example.
鋼の成分組成がこの発明の範囲内で、しかも製造条件が
この発明に適合することによりはじめて著しくQ伺が向
上する。Q ratio can be significantly improved only when the chemical composition of the steel is within the range of this invention and the manufacturing conditions are compatible with this invention.
次に溶接部のしん性を測定し、得られた結果を表3に示
す。溶接は、入熱量10kJ/mmのサブマージアーク
溶接を行い、試験は、継手ボンド部にノツチを入れて調
べたものである。Next, the toughness of the welded part was measured, and the obtained results are shown in Table 3. Welding was performed by submerged arc welding with a heat input of 10 kJ/mm, and the test was conducted by making a notch in the joint bond.
表3
表3から、適合例は溶接構造用として使用可能な溶接部
吸収エネルギーを有していることがわかる。Table 3 From Table 3, it can be seen that the conforming example has a weld absorption energy that can be used for welded structures.
(発明の効果)
この発明の製造方法による鋼材は、従来の構造用材料と
遜色のない十分な強度、じん性及び溶接性を有し、高い
振動減衰能をも兼ねそなえ、しかも工業的に容易に製造
が可能である。本銅材は、機械構造物のあらゆる箇所で
、従来鋼材の代替が可能となり、構造物の振動、騒音を
確実に低減することができ、工業上極めて有用である。(Effects of the Invention) The steel manufactured by the manufacturing method of the present invention has sufficient strength, toughness, and weldability comparable to conventional structural materials, has high vibration damping ability, and is easy to manufacture industrially. production is possible. This copper material can replace conventional steel materials in all parts of mechanical structures, and can reliably reduce vibration and noise in structures, making it extremely useful industrially.
Claims (1)
材を、 1000〜1300℃に加熱後、圧延仕上げ温度を65
0〜900℃とする熱間圧延を施し、引き続き冷却速度
0.1℃/s以上で室温まで冷却を行い、 次いで800〜1300℃に加熱保持後、冷却速度1.
0℃/s以下で冷却する中間熱処理を施した後、 450〜700℃に保持する最終熱処理を施すことを特
徴とする高振動減衰能を有する溶接構造用鋼の製造方法
。 2、C:0.02wt%以下、 Si:0.02wt%以下、 Mn:0.08wt%以下、 Ni:0.05〜1.50wt%、 Cu:0.05〜1.50wt%、 Al:1.0〜7.0wt%及び N:0.0080wt%以下 を含有し、残部はFe及び不可避的不純物よりなる鋼素
材を、 1000〜1300℃に加熱後、圧延仕上げ温度を65
0〜900℃とする熱間圧延を施し、引き続き冷却速度
0.1℃/s以上で室温まで冷却を行い、 次いで800〜1300℃に加熱保持後、冷却速度1.
0℃/s以下で冷却する中間熱処理を施した後、 450〜700℃に保持する最終熱処理を施すことを特
徴とする高振動減衰能を有する溶接構造用鋼の製造方法
。[Claims] 1. C: 0.02wt% or less, Si: 0.02wt% or less, Mn: 0.08wt% or less, Cu: 0.05-1.50wt%, Al: 1.0-7 A steel material containing 0.0wt% or less and N: 0.0080wt% or less, with the remainder consisting of Fe and unavoidable impurities, is heated to 1000 to 1300°C, and then rolled to a finishing temperature of 65°C.
Hot rolling is carried out at 0 to 900°C, followed by cooling to room temperature at a cooling rate of 0.1°C/s or more, then heated and held at 800 to 1300°C, and then at a cooling rate of 1.
A method for manufacturing welded structural steel having high vibration damping ability, which comprises performing an intermediate heat treatment of cooling at 0° C./s or less, and then performing a final heat treatment of maintaining the steel at 450 to 700° C. 2, C: 0.02 wt% or less, Si: 0.02 wt% or less, Mn: 0.08 wt% or less, Ni: 0.05 to 1.50 wt%, Cu: 0.05 to 1.50 wt%, Al: A steel material containing 1.0 to 7.0 wt% and 0.0080 wt% or less of N, with the remainder consisting of Fe and unavoidable impurities is heated to 1000 to 1300°C, and then rolled to a finishing temperature of 65°C.
Hot rolling is carried out at 0 to 900°C, followed by cooling to room temperature at a cooling rate of 0.1°C/s or more, then heated and held at 800 to 1300°C, and then at a cooling rate of 1.
A method for manufacturing welded structural steel having high vibration damping ability, which comprises performing an intermediate heat treatment of cooling at 0° C./s or less, and then performing a final heat treatment of maintaining the steel at 450 to 700° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19316990A JPH0726148B2 (en) | 1990-07-23 | 1990-07-23 | Method for manufacturing welded structural steel with high vibration damping capacity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19316990A JPH0726148B2 (en) | 1990-07-23 | 1990-07-23 | Method for manufacturing welded structural steel with high vibration damping capacity |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0480320A true JPH0480320A (en) | 1992-03-13 |
JPH0726148B2 JPH0726148B2 (en) | 1995-03-22 |
Family
ID=16303444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19316990A Expired - Fee Related JPH0726148B2 (en) | 1990-07-23 | 1990-07-23 | Method for manufacturing welded structural steel with high vibration damping capacity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0726148B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06100988A (en) * | 1992-09-22 | 1994-04-12 | Nkk Corp | High strength, high toughness damping alloy |
-
1990
- 1990-07-23 JP JP19316990A patent/JPH0726148B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06100988A (en) * | 1992-09-22 | 1994-04-12 | Nkk Corp | High strength, high toughness damping alloy |
Also Published As
Publication number | Publication date |
---|---|
JPH0726148B2 (en) | 1995-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3858770B2 (en) | High-tensile hot-rolled steel sheet and manufacturing method thereof | |
JPH07113144A (en) | Nonmagnetic stainless steel excellent in surface property and production thereof | |
JP2617015B2 (en) | Welded structural steel with excellent vibration damping properties | |
JP3772686B2 (en) | High-tensile steel plate and manufacturing method thereof | |
JP3386514B2 (en) | Damping alloy steel sheet and method of manufacturing the same | |
JPH0480320A (en) | Production of steel for welded structure having high vibration damping capacity | |
JPH04143215A (en) | Production of steel for welded structure having high vibration damping capacity | |
KR101205122B1 (en) | 440MPa GRADE HIGH STRENGTH STEEL PLATE APPLIED BATCH ANNEALING TYPE AND METHOD FOR MANUFACTURING THE SAME | |
JPS6130653A (en) | high strength spring steel | |
JPS63166931A (en) | Method for manufacturing high-strength hot-rolled steel sheet with high magnetic flux density | |
JPH0456748A (en) | Steel for welding structure excellent in vibration damping capacity | |
JPH0797624A (en) | Manufacturing method of steel for machine structure having high vibration damping capacity | |
JPH07316738A (en) | Welded structural steel with excellent vibration damping characteristics | |
JPH0774415B2 (en) | Fe-Mn vibration damping alloy steel and method for producing the same | |
JPH05230529A (en) | Method for producing high-strength hot-rolled steel sheet with good workability and weldability | |
JPH07268458A (en) | Manufacturing method of steel for machine structure with high vibration damping capacity and excellent toughness | |
JP2801635B2 (en) | High toughness welded structural steel with high vibration damping capacity | |
JPS5930783B2 (en) | vibration absorbing alloy | |
JPH04143218A (en) | Production of high mn nonmagnetic steel excellent in local deformability | |
JPH0892635A (en) | Method for manufacturing welded structural steel with high vibration damping capacity | |
JP2617000B2 (en) | Steel plates for welded structures with excellent vibration damping characteristics | |
JPH09227997A (en) | Damping alloy and manufacturing method thereof | |
JPH07138703A (en) | Steel for machine structure having high vibration damping capacity and method for manufacturing the same | |
JP2003247052A (en) | Non-oriented electrical steel sheet with excellent high frequency characteristics | |
JPH03140439A (en) | Vibration-absorbing alloy with low specific gravity, high hardness and high damping capacity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |