JPH0478699B2 - - Google Patents
Info
- Publication number
- JPH0478699B2 JPH0478699B2 JP9976386A JP9976386A JPH0478699B2 JP H0478699 B2 JPH0478699 B2 JP H0478699B2 JP 9976386 A JP9976386 A JP 9976386A JP 9976386 A JP9976386 A JP 9976386A JP H0478699 B2 JPH0478699 B2 JP H0478699B2
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- molding
- temperature
- powder
- mixed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000843 powder Substances 0.000 claims description 14
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 4
- 150000002910 rare earth metals Chemical class 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000012298 atmosphere Substances 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 238000000465 moulding Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 6
- 239000002131 composite material Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000007731 hot pressing Methods 0.000 description 4
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- -1 Zn and Al Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/0555—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
- H01F1/0558—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はSmCo5を代表とするRCo5系磁石の製
造方法に関するものである。
造方法に関するものである。
R(イツトリウムおよび希土類金属の少なくと
も一種)とCoとの金属間化合物からなる希土類
磁石の製造方法としては焼結による方法、鋳造に
よる方法、および結合剤を用いる方法の三つに大
別される(特開昭60−48884号公報)。
も一種)とCoとの金属間化合物からなる希土類
磁石の製造方法としては焼結による方法、鋳造に
よる方法、および結合剤を用いる方法の三つに大
別される(特開昭60−48884号公報)。
ところで結合剤を用いる方法には、結合剤に高
分子樹脂を用いるもの(高分子複合磁石と呼ぶ)
と、金属を用いるものとがあるが、前者は強固で
ありながら複雑な形状のものも成形によつて得や
すい利点がある反面、焼結法や鋳造法による磁石
に比して磁石特性が低いという欠点がある。また
後者の方法は、量産効率が低く、かつ得られた磁
石は磁石特性が低いばかりでなく、耐熱性も低い
欠点がある(特開昭60−214505号公報)。
分子樹脂を用いるもの(高分子複合磁石と呼ぶ)
と、金属を用いるものとがあるが、前者は強固で
ありながら複雑な形状のものも成形によつて得や
すい利点がある反面、焼結法や鋳造法による磁石
に比して磁石特性が低いという欠点がある。また
後者の方法は、量産効率が低く、かつ得られた磁
石は磁石特性が低いばかりでなく、耐熱性も低い
欠点がある(特開昭60−214505号公報)。
一方、焼結法による磁石は、加圧成形時に、割
れ、かけ、スリツプが発生し易い。しかも焼結に
よる収縮変形があるので、成形時に製品の最終形
状を得ることができず、そのため焼結体の加工を
必要とし、製品の歩留が良くない。
れ、かけ、スリツプが発生し易い。しかも焼結に
よる収縮変形があるので、成形時に製品の最終形
状を得ることができず、そのため焼結体の加工を
必要とし、製品の歩留が良くない。
従つて、本発明の目的は成形時に製品の最終形
状が得られるとともに前述の従来の結合剤を用い
た高分子複合磁石よりはるかに高い磁石特性およ
び改善された機械強度を有するRCo5系磁石を製
造する方法を提供することである。
状が得られるとともに前述の従来の結合剤を用い
た高分子複合磁石よりはるかに高い磁石特性およ
び改善された機械強度を有するRCo5系磁石を製
造する方法を提供することである。
本発明は、RCo5系磁石合金粉末に、粉末状の
低融点金属M(MはAl,Znの一種または二種)を
体積比で5〜30%混合し、真空中または不活性ガ
ス雰囲中において500℃を越え750℃以下の温度に
て熱間加圧成形することを特徴とする。
低融点金属M(MはAl,Znの一種または二種)を
体積比で5〜30%混合し、真空中または不活性ガ
ス雰囲中において500℃を越え750℃以下の温度に
て熱間加圧成形することを特徴とする。
ここで、低融点金属Mの混合量が5%未満であ
ると粉末間の空隙を満すのに不充分であり、成形
後の機械的強度が低くなり、また30%を越えると
非磁性相が多くなりすぎ、磁石特性の改善が得ら
れなくなる。従つて、Mの混合量は5〜30%とす
る。
ると粉末間の空隙を満すのに不充分であり、成形
後の機械的強度が低くなり、また30%を越えると
非磁性相が多くなりすぎ、磁石特性の改善が得ら
れなくなる。従つて、Mの混合量は5〜30%とす
る。
また、熱間加圧の条件を真空中または不活性ガ
ス雰囲気中としたのは、大気中で行うと磁性粉末
の酸化により成形後の磁石の特性劣化が著しいた
めである。
ス雰囲気中としたのは、大気中で行うと磁性粉末
の酸化により成形後の磁石の特性劣化が著しいた
めである。
また、熱間加圧における温度が500℃以下では、
保磁力が著しく低下するため好ましくない。これ
は、磁石組織の観察およびX線回析の解析結果に
よれば、RCo5がR2Co7相とR2Co17相とに分解し
たためと考えられる。
保磁力が著しく低下するため好ましくない。これ
は、磁石組織の観察およびX線回析の解析結果に
よれば、RCo5がR2Co7相とR2Co17相とに分解し
たためと考えられる。
他方、熱間加圧における温度が750℃を超える
場合には、残留磁化Brが低下し、ひいては最大
エネルギ積(BH)naxが低下するため好ましくな
い。これは、磁石組織の観察によれば、磁石粒子
相と低融点金属相との界面において反応層が発生
するため、即ち磁石粒子相の体積分率が低下する
ためと考えられる。750℃を超える場合はまた、
密度向上効果が飽和するため、製造工程のエネル
ギ消費の点からも好ましくない。
場合には、残留磁化Brが低下し、ひいては最大
エネルギ積(BH)naxが低下するため好ましくな
い。これは、磁石組織の観察によれば、磁石粒子
相と低融点金属相との界面において反応層が発生
するため、即ち磁石粒子相の体積分率が低下する
ためと考えられる。750℃を超える場合はまた、
密度向上効果が飽和するため、製造工程のエネル
ギ消費の点からも好ましくない。
なお加圧は通常の熱間プレスだけでなく熱間静
水圧プレスで行なつても良く、成形体の緻密化の
ためには、少なくとも5Kg/cm2の加圧力が好まし
い。
水圧プレスで行なつても良く、成形体の緻密化の
ためには、少なくとも5Kg/cm2の加圧力が好まし
い。
以下、本発明の実施例について説明する。
実施例 1
Smが36.5wt%、Coが63.5wt%となるように、
アルゴン雰囲気中で高周波加熱により溶解し、イ
ンゴツトを作製した。
アルゴン雰囲気中で高周波加熱により溶解し、イ
ンゴツトを作製した。
このインゴツトを1100℃で2時間保持した後、
2℃/分で800℃まで冷却した後、室温まで急冷
した。以上の熱処理を行なつたインゴツトを、平
均粒子径が7μmになるようにボールミルにて粉砕
した。
2℃/分で800℃まで冷却した後、室温まで急冷
した。以上の熱処理を行なつたインゴツトを、平
均粒子径が7μmになるようにボールミルにて粉砕
した。
この磁石粉末に、5〜30vol%の粉末状のZnを
混合し、成形用粉末とした。この成形用粉末を成
形金型につめ、20kOeの磁場をかけながら、真空
下で600℃の温度、1000Kg/cm2の圧力で15分間圧
力成形した。
混合し、成形用粉末とした。この成形用粉末を成
形金型につめ、20kOeの磁場をかけながら、真空
下で600℃の温度、1000Kg/cm2の圧力で15分間圧
力成形した。
上記の方法で成形した成形体の抗折力を第1図
に示す。
に示す。
5〜20vol%混合量では、混合量と抗折力が比
例しているが、20vol%を超える量を混合しても、
抗折力にそれほど大きな変化はなく、30vol%で
飽和してしまう。
例しているが、20vol%を超える量を混合しても、
抗折力にそれほど大きな変化はなく、30vol%で
飽和してしまう。
また、Zn混合量に対する磁気特性の変化を第
2図に示す。Zn添加量とともに、磁気特性が劣
化し、35%添加のとき、従来の高分子複合磁石の
特性とほぼ同一となる。従つて、Znの添加量は
35%以下とすることが必要である。
2図に示す。Zn添加量とともに、磁気特性が劣
化し、35%添加のとき、従来の高分子複合磁石の
特性とほぼ同一となる。従つて、Znの添加量は
35%以下とすることが必要である。
実施例 2
実施例1と同様に、SmCo5合金磁石粉末に5
〜30vol%Zn粉末を混合した成形用粉末を500℃
〜700℃の温度範囲で、1000Kg/cm2の加圧力で熱
間加圧成形した。
〜30vol%Zn粉末を混合した成形用粉末を500℃
〜700℃の温度範囲で、1000Kg/cm2の加圧力で熱
間加圧成形した。
一定の成形温度に於て、理論密度の成形体を得
るためには、成形温度が低い程、多くの結合相を
必要とする。そこで第3図には、成形温度と理論
密度を得るために必要な最小Zn混合量の関係を
示す。成形温度が高くなるに従い、Zn混合量を
減少させることができる。
るためには、成形温度が低い程、多くの結合相を
必要とする。そこで第3図には、成形温度と理論
密度を得るために必要な最小Zn混合量の関係を
示す。成形温度が高くなるに従い、Zn混合量を
減少させることができる。
実施例では、結合剤としてZnのみで述べたが、
他の低融点金属であるAlの純金属及び合金につ
いても、その効果が期待される。
他の低融点金属であるAlの純金属及び合金につ
いても、その効果が期待される。
本発明について以上詳しく説明したが、RCo5
磁石合金を適切な熱処理を加えて粉砕した合金粉
末と、Zn、Alの低融点金属を混合し、熱間加圧
成形することで、高分子複合磁石と同等の強い靱
性をもちながら、歩留を著しく向上させ、かつ、
高分子複合磁石に比較し、はるかに高い磁石特性
が得られ、工業的に非常に有益である。
磁石合金を適切な熱処理を加えて粉砕した合金粉
末と、Zn、Alの低融点金属を混合し、熱間加圧
成形することで、高分子複合磁石と同等の強い靱
性をもちながら、歩留を著しく向上させ、かつ、
高分子複合磁石に比較し、はるかに高い磁石特性
が得られ、工業的に非常に有益である。
第1図は、実施例1におけるSmCo5合金粉末
に対するZn粉末の混合量と抵折力の関係を示す
図、第2図は、実施例1におけるSmCo5系合金
粉末に対するZn粉末の混合量と磁石特性の関係
を示す図、第3図は、実施例2における熱間加圧
成形時の温度と、理論密度の成形体を得るのに必
要な最少のZn量との関係を示す図である。
に対するZn粉末の混合量と抵折力の関係を示す
図、第2図は、実施例1におけるSmCo5系合金
粉末に対するZn粉末の混合量と磁石特性の関係
を示す図、第3図は、実施例2における熱間加圧
成形時の温度と、理論密度の成形体を得るのに必
要な最少のZn量との関係を示す図である。
Claims (1)
- 1 RCo5(Rはイツトリウムおよび希土類金属の
少なくとも一種)系磁石合金粉末に、粉末状の低
融点金属M(MはAl、Znの一種または二種)を体
積比で5〜30%混合し、真空中または不活性ガス
雰囲中において500℃を越え750℃以下の温度にて
熱間加圧成形することを特徴とする希土類磁石の
製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9976386A JPS62284028A (ja) | 1986-04-30 | 1986-04-30 | 希土類磁石の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9976386A JPS62284028A (ja) | 1986-04-30 | 1986-04-30 | 希土類磁石の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62284028A JPS62284028A (ja) | 1987-12-09 |
JPH0478699B2 true JPH0478699B2 (ja) | 1992-12-11 |
Family
ID=14256014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9976386A Granted JPS62284028A (ja) | 1986-04-30 | 1986-04-30 | 希土類磁石の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62284028A (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005043558A1 (ja) * | 2003-10-31 | 2005-05-12 | Tdk Corporation | 希土類焼結磁石の製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2258780A1 (de) * | 1971-12-14 | 1973-06-28 | Goldschmidt Ag Th | Verfahren zum herstellen von permanentmagneten auf der basis von kobalt-seltene erden-legierungen |
JPS5812331B2 (ja) * | 1974-10-25 | 1983-03-08 | セイコーエプソン株式会社 | 金属間化合物磁石 |
JPS5245523A (en) * | 1975-10-08 | 1977-04-11 | Seiko Instr & Electronics Ltd | Rare earths-cobalt magnet and its production process |
-
1986
- 1986-04-30 JP JP9976386A patent/JPS62284028A/ja active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62284028A (ja) | 1987-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0424401B2 (ja) | ||
EP0595477A1 (en) | Method of manufacturing powder material for anisotropic magnets and method of manufacturing magnets using the powder material | |
US5085716A (en) | Hot worked rare earth-iron-carbon magnets | |
JPH1131610A (ja) | 磁気異方性に優れた希土類磁石粉末の製造方法 | |
JPH0478699B2 (ja) | ||
CA2034632C (en) | Hot worked rare earth-iron-carbon magnets | |
JPS61208808A (ja) | 焼結磁石の製造方法 | |
JPH10172850A (ja) | 異方性永久磁石の製造方法 | |
JPS62284027A (ja) | 希土類磁石の製造方法 | |
JPS62282417A (ja) | 希土類磁石の製造方法 | |
JPS58186906A (ja) | 永久磁石の製造方法 | |
JPH07211566A (ja) | 異方性磁石の製造方法 | |
JPH07110965B2 (ja) | 樹脂結合永久磁石用の合金粉末の製造方法 | |
JPS61208809A (ja) | 焼結磁石の製造方法 | |
JPS63137136A (ja) | 希土類−鉄族系焼結永久磁石材料の製造方法 | |
JPS58108711A (ja) | 希土類永久磁石の製造方法 | |
JP2794704B2 (ja) | 異方性永久磁石の製造方法 | |
JPS61261448A (ja) | 高エネルギ−積永久磁石の製造方法 | |
JP2730441B2 (ja) | 永久磁石用合金粉末の製造方法 | |
JP2000021614A (ja) | 磁気異方性に優れた希土類磁石粉末の製造方法 | |
JPS58108709A (ja) | 希土類永久磁石の製造方法 | |
JPS5819409A (ja) | 等方性Mn−Al−C系磁石の製造法 | |
JPS63306602A (ja) | 希土類−Co系複合磁石およびその製造方法 | |
JPH0732102B2 (ja) | 希土類合金製永久磁石の製造方法 | |
JPS58108710A (ja) | 希土類永久磁石の製造方法 |