[go: up one dir, main page]

JPH0471935B2 - - Google Patents

Info

Publication number
JPH0471935B2
JPH0471935B2 JP60268912A JP26891285A JPH0471935B2 JP H0471935 B2 JPH0471935 B2 JP H0471935B2 JP 60268912 A JP60268912 A JP 60268912A JP 26891285 A JP26891285 A JP 26891285A JP H0471935 B2 JPH0471935 B2 JP H0471935B2
Authority
JP
Japan
Prior art keywords
resin
added
useful
pressure
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60268912A
Other languages
Japanese (ja)
Other versions
JPS62129323A (en
Inventor
Tsunenosuke Hiramatsu
Masaaki Mizuguchi
Yoshiko Nakahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Suzukiyushi Industrial Corp
Original Assignee
Agency of Industrial Science and Technology
Suzukiyushi Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Suzukiyushi Industrial Corp filed Critical Agency of Industrial Science and Technology
Priority to JP26891285A priority Critical patent/JPS62129323A/en
Publication of JPS62129323A publication Critical patent/JPS62129323A/en
Publication of JPH0471935B2 publication Critical patent/JPH0471935B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は樹脂に添加して有用な有機化合物(以
下有用な成分という)を無機質壁多孔質マイクロ
カプセル基体にあらかじめ内封カプセル化した樹
脂用添加剤に関するものであり、さらに詳しくは
樹脂に添加して有用な成分を無機質壁多孔質マイ
クロカプセル基体に減圧内封させることにより、
該樹脂の熱加工成形時に、その熱による有用物質
の揮散を極力少なくして成形後により多く有用な
物質を残留させて、成形後の有用性を高めると共
にその有用性を持続させることのできる樹脂用添
加剤の製造方法に関する。 樹脂に添加して有用な成分は、該樹脂の熱成形
時にその有用性を発揮することを目的とした成分
(例えば熱安定剤、滑剤、加硫促進剤、老化防止
剤、架橋剤等)と、該樹脂の熱成形後に有用性を
発揮することを目的とした成分(例えばスリツプ
剤、帯電防止剤、防曇剤、紫外線吸収剤、香料、
防虫剤、防菌剤、賦臭剤、難燃剤、動物忌避剤
等)があり、これら樹脂に添加して有用な成分は
その用途、樹脂の種類、成形方法等によつて使い
分けられている。 〔従来の技術とその問題点〕 従来、樹脂に添加して有用な成分のうち、特に
樹脂の成形後に有用性を発揮する成分の種類によ
つては、樹脂の熱成形時に作用して該樹脂の成形
時に於ける熱劣化を促進させ、或いは加工成形性
を低下させるためにその効用を認められながら使
用できないか或いは使用しても極くわずかの添加
に限られてしまうためその有効性が充分発揮でき
なかつた。 又、樹脂に添加して有用な成分の種類によつて
は、樹脂の熱成形時に、その熱により揮散してし
まうために成形後に有効性を発揮させるに必要な
量以上を添加しなければならないため経済的に不
利であるばかりではなく、成形後の成形品から経
時的に揮散が早く永続的な有効性が得られない等
の欠点が多かつた。 このような欠点を改善するために従来技術とし
て、樹脂に添加して有用な成分をゼオライト類で
モレキユラーシーブさせて添加する方法、表面積
の大きい無機物質或いは有機物質に吸着させて添
加する方法、又は熱劣化を防止するために安定
剤、老化防止剤又は滑剤等を多量に併用添加して
該樹脂の劣化を防止する方法等が採られている
が、いずれも不充分で満足な結果が得られていな
い。 〔問題点を解決するための手段〕 本発明者らは上述の欠点を改善し、樹脂に添加
して有用な成分の有効性をよりよく発揮させる方
法について鋭意研究を重ねた結果、樹脂に添加し
て有用な成分をあらかじめ無機質壁多孔質マイク
ロカプセル減圧状態で基体中に内封させた後、樹
脂に添加することによつて、該樹脂への悪影響を
極力防ぎ、或いは樹脂の熱成形時に樹脂に添加し
て有用な成分の揮散を最小限に抑えることによ
り、その樹脂に添加して有用な成分の効用が極め
て高くなることを見出した。 即ち無機質壁多孔質マイクロカプセル基体に樹
脂に添加して有用な成分を内封させる方法とし
て、無機質壁多孔質マイクロカプセル基体と樹脂
に添加して有用な成分をあらかじめ液状において
混合した後に減圧し、或いは減圧下で混合し、そ
の後、徐々に常圧に戻すことにより、より効率的
に内封できることを見出し、本発明を完成した。 さらに具体的な内封方法を説明すると次の通り
である。 即ち、特許第1184016号(特公昭57−55454号)
で開示されている、一般に界面反応法といわれる
方法で製造した外径0.1〜500ミクロン、好ましく
は0.5〜200ミクロンの無機質壁多孔質マイクロカ
プセル基体(その粒子壁表面細孔径は概ね20〜
600ミリミクロン、壁厚は概ね0.1〜30ミクロン)
と、樹脂に添加して有用な有機化合物(有用な成
分)の1種又は2種以上とを攪拌混合機或いは回
転混合機等であらかじめ混合した後、減圧器中で
減圧して無機質壁多孔質マイクロカプセル基体内
の中空部分の空気を除去した後、徐々に常圧に戻
すか、或いは減圧下で混合しながら徐々に常圧に
戻すことによつて、無機質壁多孔質マイクロカプ
セルの粒子壁細孔部及び表面に付着している有用
な成分が該マイクロカプセル内の中空部分との圧
力差いより吸引され、効率良く有用な成分を内封
させることができるのである。 内封効率をより高くするには減圧度を、有用な
成分が沸騰気化する手前まで減圧にすることが好
ましく、そのため該有機化合物の蒸気圧を測定し
ておくのがよい。 又、後に述べる如く、有用な成分としては常温
で液状のものと固状のものがあるが、後者につい
てはあらかじめ融点以上で融解するか、適当な溶
媒を用いて溶解し液状として混合する。、この樹
脂用添加剤は樹脂に添加して該樹脂に熱劣化等の
悪影響を及ぼすことなく成形加工後、その有用性
を充分に発揮し、さらに、本無機質壁多孔質マイ
クロカプセルは内封物を徐放する性質を有するこ
とから内封された、樹脂に添加して有用な成分を
一度に表面へ滲出させることがなく、徐々に滲出
させるため、該有用成分を長期にわたつて永続的
にその性能を持続させることができる。 本発明は樹脂に添加して有用な成分が該樹脂の
成形加工後に有用性を付与するような成分を内封
させることが最も好ましいが該樹脂の成形時に有
用な成分、例えば熱安定剤、酸化防止剤、架橋
剤、加硫促進剤等を、成形時に破壊する程度の薄
壁にした無機質多孔質マイクロカプセル基体に内
封して用いることもできる。 又、用いる樹脂の種類又は用途いよつては無機
質壁多孔質マイクロカプセル基体そのものが該樹
脂の性能向上に役立ち、例えばスリツプ剤を内封
させた本発明樹脂用添加剤はポリオレフイン、ポ
リエステル、ナイロン等のフイルムのアンチブロ
ツキング剤としても効用を発揮するので別途にタ
ルク、シリカ、ゼオライト等のアンチブロツキン
グ剤を添加する必要がない。故に本発明に用いる
無機質壁多孔質マイクロカプセル基体はアンチブ
ロツキング剤として単体で樹脂に添加することも
できる。 〔無機質壁多孔質マイクロカプセル基体の例〕 本発明に用いる無機質壁多孔質マイクロカプセ
ル基体は特許第1184016号(特公昭57−55454号)
に開示された界面反応法に準拠して製造された中
空多孔質無機化合物で、その化合物の代表例とし
てはシリカ、アルミナ、酸化マグネシウム、酸化
亜鉛、酸化カドミウム、酸化チタン、酸化鉄、酸
化ニツケル、酸化コバルト、酸化クロム、酸化マ
ンガン、酸化鉛、酸化銅、酸化ジルコニウム、酸
化アンチモン等の酸化物、水酸化マグネシウム、
水酸化カルシウム、水酸化アルミニウム、水酸化
亜鉛、水酸化カドミウム、水酸化鉄、水酸化ニツ
ケル、水酸化コバルト、水酸化クロム、水酸化
鉛、水酸化銅等の水酸化物、炭酸アルミニウム、
炭酸マグネシウム、炭酸亜鉛、炭酸カルシウム、
炭酸バリウム、炭酸カドミウム、炭酸コバルト、
炭酸ニツケル、炭酸クロム、炭酸鉛、炭酸銅等の
炭酸塩、ケイ酸マグネシウム、ケイ酸カルシウ
ム、ケイ酸バリウム、ケイ酸亜鉛、ケイ酸カドミ
ウム、ケイ酸アルミニウム、ケイ酸鉛、サイ酸コ
バルト、ケイ酸ニツケル、ケイ酸銅等のケイ酸
塩、硫酸マグネシウム、硫酸カルシウム、硫酸バ
リウム、硫酸亜鉛、硫酸カドミウム、硫酸鉛等の
硫酸塩、亜硫酸マグネシウム、亜硫酸カルシウ
ム、亜硫酸バリウム、亜硫酸亜鉛、亜硫酸カドミ
ウム、亜硫酸鉛等の亜硫酸塩、硫化マグネシウ
ム、硫化カルシウム、硫化バリウム、硫化亜鉛、
硫化カドミウム、硫化鉛等の硫化物、リン酸マグ
ネシウム、リン酸カルシウム、リン酸バリウム、
リン酸亜鉛、リン酸カドミウム、リン酸アルミニ
ウム、リン酸鉛、リン酸銅等のリン酸塩、亜リン
酸マグネシウム、亜リン酸カルシウム、亜リン酸
バリウム、亜リン酸鉛等の亜リン酸塩、ホウ酸マ
グネシウム、ホウ酸カルシウム、ホウ酸バリウ
ム、ホウ酸亜鉛、ホウ酸カドミウム、ホウ酸アル
ミニウム、ホウ酸鉛、ホウ酸銅、ホウ酸鉄、ホウ
酸コバルト、ホウ酸ニツケル等のホウ酸塩、塩素
酸マグネシウム、塩素酸カルシウム、塩素酸亜
鉛、塩素酸アルミニウム、臭素酸マグネシウム、
臭素酸カルシウム、臭素酸バリウム、臭素酸亜鉛
等のハロゲン酸素酸塩、過塩素酸マグネシウム、
過塩素酸カルシウム、過塩素酸バリウム、過塩素
酸亜鉛、過臭素酸マグネシウム、過臭素酸カルシ
ウム、過臭素酸バリウム、過臭素酸亜鉛等の過ハ
ロゲン酸素酸塩、ハイドロタルサイト化合物、ゼ
オライト化合物等をあげることができる。 〔樹脂に添加して有用な成分の例〕 本発明に用いる、樹脂に添加して有用な成分と
は該樹脂に添加して成形加工後その有用性を発揮
するような物質及び該樹脂に添加して熱成形時に
その有用性を発揮するような物質で好ましくは常
温で液状であるが、常温で固体のものも、有機溶
剤、可塑剤、水等常温で液状の物質に溶解して用
いることができる。 その代表例としてはカチオン型、アニオン、ノ
ニオン型、ペタイン型フツ素系等の帯電防止剤、
脂肪酸アマイド型有機シロキサン等のスリツプ
剤、多価アルコール脂肪酸エステル等の防滴防曇
剤、ヒンダードアミン型、トリアゾール型、ベン
ゾフエノン型等の紫外線吸収剤、天然もしくは合
成の香料、天然もしくは合成の防虫剤、天然もし
くは合成の抗菌剤、天然もしくは合成の賦臭剤、
ハロゲン化有機化合物、有機リン化合物等の難燃
剤、チアゾール型、グアニジン型、チウラム型、
チオウレア型、ジチオカルバミン酸塩型等の加硫
促進剤、アミン型、フエノール型、チオフエノー
ル型、チオプロピオンエステル型、有機亜リン酸
エステル型等の老化防止剤、有機銅化合物、有機
錫化合物、フエノール系化合物、有機窒素硫黄系
化合物等の防黴剤、天然もしくは合成の鼠忌避
剤、有機過酸化物等の架橋剤、シラン系、チタン
系等のカツプリング剤、有機錫化合物、有機金属
化合物、エポキシ化油脂、エポキシ樹脂等の熱安
定剤等があげられる。 〔対象樹脂の説明〕 本発明でいう樹脂とは合成樹脂全般を指し、そ
の代表例としてはポリ塩化ビニル、ポリ塩化ビニ
リデン、ポリ酢酸ビニル、ポリエチレン、ポリプ
ロピレン、ポリメチルペンテン、ポリブテン−
1、ポリブタジエン、ポリスチレン、アクリロニ
トリル樹脂、AS樹脂、ABS樹脂、MBS樹脂、
ポリフエニレンエーテル、ポリフエニレンサルフ
エート、フツ素樹脂、シリコン樹脂、ポリメタク
リルスチレン、メタクリル樹脂、ポリアミド、ポ
リイミド、ポリイミドアミド、ポリエチレンテレ
フタレート、ポリブチレンテレフタレート、ポリ
カーボネート、ポリビニルアルコール、ポリビニ
ルエーテル、ポリアセタール、ポリアリルサルホ
ン、ポリアリレート、イソプロピレンゴム、ポリ
ブタジエンゴム等さらにこれら樹脂を構成するモ
ノマー同士又は他樹脂との2種以上の共重合体及
びこれら相互又は他樹脂との2種以上のポリマー
ブレンドをあげることができる。 〔実施例〕 次に実施例により本発明を具体的に説明する。 実施例 1 アルキルリン酸ジエタノールアミン(花王製帯
電防止剤エレクトロストリツパーN)200gをブ
チルカルビトール100gに溶解した後、平均粒径
2.0ミクロンのシリカ壁多孔質マイクロカプセル
基体200gと、タンブラーミキサーを用いて均一
に混合し、この混合物を常温、水銀柱20mmの減圧
下で30分間放置した後、約3時間の間で徐々に常
圧に戻してアニオン型帯電防止剤内封マイクロカ
プセル粉末498gを得た。 実施例 2 ラウリルトリメチルアンモニウムクロライド
(花王製帯電防止剤コータミン24P)60gと平均
粒径2.0ミクロンのシリカ壁多孔質マイクロカプ
セル基体40gを、密閉式小型試験用リボンミキサ
ーで均一に混合し、この混合物を常温で水銀柱30
mmの減圧下で20分放置後、2時間で常圧に戻した
後、さらにいま一度同様に均一に混合して、再び
水銀柱30mmの減圧下で20分放置し、2時間で再び
常圧に戻してカチオン型帯電防止剤内封マイクロ
カプセル粉末97gを得た。 実施例 3 平均粒径2.0ミクロンの炭酸カルシウム壁多孔
質マイクロカプセル基体80gを密閉式小型試験用
リボンミキサーに入れで水銀柱10mmまで減圧し、
その減圧下で攪拌をしながらラウリルベタイン
(花王製帯電防止剤アンヒドール24B)120gを
徐々に加え、攪拌を続けながら30分間減圧し、3
時間かけて徐々に常圧に戻し、ベタイン型帯電防
止剤内封マイクロカプセル粉末198gを得た。 実施例 1 実施例1〜3で得た本発明の帯電防止剤内封添
加剤を表−1に示す条件でポリ塩化ビニル樹脂組
成物に添加して厚さ0.5mmのシートを調製し、熱
安定性及び帯電性を試験した。又、比較のために
内封カプセル化せずに別途秤量した添加剤を用い
て同様試験を行いその結果を併せて表−2に示し
た。 表 1 配合組成 PVC(ゼオン103EP) 100重量部 DOP(サンソサイザー) 40〃 液状安定剤(BZ−180) 1.5〃 粉末安定剤(PSE−402) 0.6〃 帯電防止剤 表−2 加工条件 テストロール温度 170±2℃ 混練時間 5分間 プレス温度及び時間 170±2℃×3分間 プレス圧力 120Kg/cm2
[Industrial Application Field] The present invention relates to an additive for resins in which an organic compound (hereinafter referred to as a useful component) that is useful when added to a resin is encapsulated in an inorganic-walled porous microcapsule base, More specifically, by adding useful ingredients to the resin and encapsulating them in an inorganic-walled porous microcapsule base under reduced pressure,
A resin that can minimize the volatilization of useful substances due to the heat during thermal processing and molding of the resin, allowing more useful substances to remain after molding, thereby increasing its usefulness after molding and maintaining its usefulness. The present invention relates to a method for producing an additive for use. Components useful when added to resins include components intended to exhibit their usefulness during thermoforming of the resin (e.g., heat stabilizers, lubricants, vulcanization accelerators, anti-aging agents, crosslinking agents, etc.). , components intended to exhibit usefulness after thermoforming the resin (for example, slip agents, antistatic agents, antifogging agents, ultraviolet absorbers, fragrances,
There are insect repellents, antibacterial agents, odorants, flame retardants, animal repellents, etc.), and the useful components added to these resins are classified depending on the purpose, type of resin, molding method, etc. [Prior art and its problems] Conventionally, among the components that are useful when added to resins, depending on the type of component that exhibits its usefulness especially after molding the resin, it has been found that some components act during thermoforming of the resin to improve the resin. Because it accelerates thermal deterioration during molding or reduces processing formability, it cannot be used even though its effectiveness is recognized, or even if it is used, its effectiveness is limited because it is only added in a very small amount. I couldn't perform. Also, depending on the type of component that is useful when added to the resin, it may volatilize due to the heat during thermoforming of the resin, so it may be necessary to add more than the amount necessary to exhibit its effectiveness after molding. Therefore, it is not only economically disadvantageous, but also has many drawbacks, such as rapid volatilization over time from the molded product after molding, making permanent effectiveness impossible. In order to improve these drawbacks, conventional techniques include a method of adding useful components to the resin by molecular sieving with zeolites, and a method of adding them by adsorption to an inorganic or organic material with a large surface area. Alternatively, in order to prevent thermal deterioration, methods have been adopted in which large amounts of stabilizers, anti-aging agents, or lubricants are added in combination to prevent deterioration of the resin, but these methods are insufficient and have not yielded satisfactory results. Not obtained. [Means for Solving the Problems] The present inventors have conducted extensive research into ways to improve the above-mentioned drawbacks and to better demonstrate the effectiveness of useful components added to resins. By pre-encapsulating useful components in inorganic-walled porous microcapsules in a substrate under reduced pressure, and then adding them to the resin, adverse effects on the resin can be prevented as much as possible, or when the resin is heated during thermoforming. It has been found that by minimizing the volatilization of the components useful when added to the resin, the efficacy of the components useful when added to the resin becomes extremely high. That is, as a method for encapsulating useful components by adding them to a resin in an inorganic-walled porous microcapsule base, the inorganic-walled porous microcapsule base and the useful components added to the resin are mixed in advance in a liquid state, and then the pressure is reduced. Alternatively, the present invention was completed based on the discovery that the mixture can be more efficiently sealed by mixing under reduced pressure and then gradually returning the pressure to normal pressure. A more specific enclosing method will be explained as follows. That is, Patent No. 1184016 (Special Publication No. 57-55454)
An inorganic wall porous microcapsule substrate with an outer diameter of 0.1 to 500 microns, preferably 0.5 to 200 microns, manufactured by a method generally called an interfacial reaction method disclosed in
600 millimicrons, wall thickness approximately 0.1 to 30 microns)
and one or more organic compounds (useful components) that are useful when added to the resin are mixed in advance using a stirring mixer or a rotary mixer, and then the pressure is reduced in a pressure reducer to form an inorganic wall porous material. After removing the air in the hollow part of the microcapsule base, the particle wall fineness of the inorganic wall porous microcapsules is reduced by gradually returning the pressure to normal pressure, or by gradually returning the pressure to normal pressure while mixing under reduced pressure. The useful components adhering to the pores and the surface are suctioned by the pressure difference with the hollow part within the microcapsule, making it possible to efficiently encapsulate the useful components. In order to further increase the encapsulation efficiency, it is preferable to reduce the pressure to a level just before the useful components boil and vaporize, and therefore it is preferable to measure the vapor pressure of the organic compound. Further, as will be described later, useful components include those that are liquid at room temperature and those that are solid, and the latter may be melted in advance at a temperature above the melting point or dissolved using an appropriate solvent and mixed in liquid form. , this resin additive is added to the resin and fully exhibits its usefulness after molding without adverse effects such as thermal deterioration on the resin. Because it has the property of slow-release, the useful ingredients added to the resin do not ooze out to the surface all at once, but gradually ooze out, so the useful ingredients are permanently released over a long period of time. Its performance can be sustained. In the present invention, it is most preferable to encapsulate components that are useful when added to the resin and provide usefulness after the resin is molded. It is also possible to use an inhibitor, a crosslinking agent, a vulcanization accelerator, etc., encapsulated in an inorganic porous microcapsule substrate whose walls are thin enough to be destroyed during molding. In addition, the type of resin used or its purpose, or even the inorganic-walled porous microcapsule base itself, is useful for improving the performance of the resin. For example, the additive for the resin of the present invention, which encapsulates a slip agent, can be used for polyolefin, polyester, nylon, etc. Since it is also effective as an anti-blocking agent for films, there is no need to separately add anti-blocking agents such as talc, silica, and zeolite. Therefore, the inorganic-walled porous microcapsule substrate used in the present invention can be added alone to the resin as an anti-blocking agent. [Example of inorganic wall porous microcapsule substrate] The inorganic wall porous microcapsule substrate used in the present invention is disclosed in Japanese Patent No. 1184016 (Japanese Patent Publication No. 57-55454)
A hollow porous inorganic compound manufactured according to the interfacial reaction method disclosed in 2006. Typical examples of the compound include silica, alumina, magnesium oxide, zinc oxide, cadmium oxide, titanium oxide, iron oxide, nickel oxide, Oxides such as cobalt oxide, chromium oxide, manganese oxide, lead oxide, copper oxide, zirconium oxide, antimony oxide, magnesium hydroxide,
Hydroxides such as calcium hydroxide, aluminum hydroxide, zinc hydroxide, cadmium hydroxide, iron hydroxide, nickel hydroxide, cobalt hydroxide, chromium hydroxide, lead hydroxide, copper hydroxide, aluminum carbonate,
Magnesium carbonate, zinc carbonate, calcium carbonate,
barium carbonate, cadmium carbonate, cobalt carbonate,
Carbonates such as nickel carbonate, chromium carbonate, lead carbonate, copper carbonate, magnesium silicate, calcium silicate, barium silicate, zinc silicate, cadmium silicate, aluminum silicate, lead silicate, cobalt silicate, silicic acid nickel, silicates such as copper silicate, sulfates such as magnesium sulfate, calcium sulfate, barium sulfate, zinc sulfate, cadmium sulfate, lead sulfate, magnesium sulfite, calcium sulfite, barium sulfite, zinc sulfite, cadmium sulfite, lead sulfite Sulfites, magnesium sulfide, calcium sulfide, barium sulfide, zinc sulfide, etc.
Sulfides such as cadmium sulfide and lead sulfide, magnesium phosphate, calcium phosphate, barium phosphate,
Phosphates such as zinc phosphate, cadmium phosphate, aluminum phosphate, lead phosphate, and copper phosphate; phosphites such as magnesium phosphite, calcium phosphite, barium phosphite, and lead phosphite; Borates such as magnesium acid, calcium borate, barium borate, zinc borate, cadmium borate, aluminum borate, lead borate, copper borate, iron borate, cobalt borate, nickel borate, chloric acid Magnesium, calcium chlorate, zinc chlorate, aluminum chlorate, magnesium bromate,
Oxygen halogen salts such as calcium bromate, barium bromate, zinc bromate, magnesium perchlorate,
Perhalogen oxygen salts such as calcium perchlorate, barium perchlorate, zinc perchlorate, magnesium perbromate, calcium perbromate, barium perbromate, zinc perbromate, hydrotalcite compounds, zeolite compounds, etc. can be given. [Example of components useful when added to resin] Components useful when added to resin used in the present invention are substances that are added to the resin and exhibit their usefulness after molding, and substances added to the resin. Substances that exhibit their usefulness during thermoforming are preferably liquid at room temperature, but substances that are solid at room temperature may also be used by dissolving them in substances that are liquid at room temperature, such as organic solvents, plasticizers, and water. I can do it. Typical examples include cationic, anionic, nonionic, and petaine fluorine-based antistatic agents;
Slip agents such as fatty acid amide type organic siloxane, drip-proof and anti-fogging agents such as polyhydric alcohol fatty acid esters, UV absorbers such as hindered amine type, triazole type, benzophenone type, natural or synthetic fragrances, natural or synthetic insect repellents, natural or synthetic antibacterial agents, natural or synthetic odorants,
Flame retardants such as halogenated organic compounds and organic phosphorus compounds, thiazole type, guanidine type, thiuram type,
Vulcanization accelerators such as thiourea type and dithiocarbamate type, anti-aging agents such as amine type, phenol type, thiophenol type, thiopropion ester type, and organic phosphite type, organic copper compounds, organic tin compounds, and phenols. antifungal agents such as organic nitrogen sulfur compounds, natural or synthetic rat repellents, crosslinking agents such as organic peroxides, coupling agents such as silane and titanium compounds, organotin compounds, organometallic compounds, and epoxies. Examples include heat stabilizers such as synthetic oils and fats and epoxy resins. [Description of Target Resin] The resin used in the present invention refers to synthetic resins in general, and representative examples thereof include polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyethylene, polypropylene, polymethylpentene, and polybutene.
1. Polybutadiene, polystyrene, acrylonitrile resin, AS resin, ABS resin, MBS resin,
Polyphenylene ether, polyphenylene sulfate, fluororesin, silicone resin, polymethacrylstyrene, methacrylic resin, polyamide, polyimide, polyimide amide, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyvinyl alcohol, polyvinyl ether, polyacetal, poly Allyl sulfone, polyarylate, isopropylene rubber, polybutadiene rubber, etc. Furthermore, two or more copolymers of the monomers constituting these resins with each other or with other resins, and two or more polymer blends of these with each other or with other resins are listed. be able to. [Example] Next, the present invention will be specifically explained with reference to Examples. Example 1 After dissolving 200 g of diethanolamine alkyl phosphate (electrostripper N, an antistatic agent manufactured by Kao) in 100 g of butyl carbitol, the average particle size was
200 g of a 2.0 micron silica wall porous microcapsule base is uniformly mixed using a tumbler mixer, the mixture is left at room temperature under a reduced pressure of 20 mm of mercury for 30 minutes, and then gradually reduced to normal pressure over a period of approximately 3 hours. 498 g of microcapsule powder encapsulating an anionic antistatic agent was obtained. Example 2 60 g of lauryl trimethyl ammonium chloride (Kao antistatic agent Cortamine 24P) and 40 g of a silica-walled porous microcapsule substrate with an average particle size of 2.0 microns were uniformly mixed in a closed small test ribbon mixer, and this mixture was 30 columns of mercury at room temperature
After leaving for 20 minutes under a reduced pressure of 30 mm of mercury, the pressure was returned to normal pressure in 2 hours, and the mixture was uniformly mixed again in the same way. The mixture was returned to give 97 g of microcapsule powder encapsulating a cationic antistatic agent. Example 3 80 g of a calcium carbonate wall porous microcapsule substrate with an average particle size of 2.0 microns was placed in a closed small ribbon mixer for testing, and the pressure was reduced to 10 mm of mercury column.
While stirring under reduced pressure, 120 g of lauryl betaine (Anhidol 24B, an antistatic agent made by Kao) was gradually added, and the pressure was reduced for 30 minutes while stirring.
The pressure was gradually returned to normal pressure over time to obtain 198 g of microcapsule powder encapsulating a betaine type antistatic agent. Example 1 The antistatic agent encapsulating additive of the present invention obtained in Examples 1 to 3 was added to a polyvinyl chloride resin composition under the conditions shown in Table 1 to prepare a sheet with a thickness of 0.5 mm. Stability and chargeability were tested. For comparison, a similar test was conducted using a separately weighed additive without encapsulation, and the results are also shown in Table 2. Table 1 Compound composition PVC (Zeon 103EP) 100 parts by weight DOP (Sansocizer) 40〃 Liquid stabilizer (BZ-180) 1.5〃 Powder stabilizer (PSE-402) 0.6〃 Antistatic agent Table 2 Processing conditions Test roll temperature 170±2℃ Kneading time 5 minutes Press temperature and time 170±2℃×3 minutes Press pressure 120Kg/cm 2

【表】【table】

【表】 表−2に示す如く本発明は比較例に比べて
PVCの熱安定性を阻害することが少なく非常に
有効であることを示している。 実施例 4 2,2−ビス(4−ヒドロキシ−3,5−ジブ
ロモフエニル)プロパン(旭硝子製難燃剤AFR
−1010)222gをブチルセロソルブ445gに溶解
し、これを平均粒径3.5ミクロンのシリカ壁多孔
質マイクロカプセル基体333gと小型スーパーミ
キサー(川田製作所製)で混合した後、常温で水
銀柱10mmの減圧下で1時間減圧した後、2時間を
かけて徐々に常圧に戻し、難燃剤22.2%を包含す
るマイクロカプセル996gを得た。 実施例 2 実施例4の難燃剤内封本発明樹脂用添加剤を無
添加スチレン樹脂に添加して表−3の条件で厚さ
1mmのシートを調製し熱安定性及び燃焼性を試験
した。比較のために実施例4と同様の比率の組成
を単純に混合して試験に供した。その結果を表−
4に示す。燃焼性試験は巾1cm、長さ12cmの試験
片の一方よりガスバーナーで点火し20秒の燃焼距
離を測定した。 表 3 配合組成 無添加スチレン樹脂 100重量部 ステアリン酸亜鉛 1.0〃 酸化防止剤(イルガノツクス1076) 0.3〃 三酸化アンチモン 3.0〃 添加剤 表−4 加工条件 テストロール 170℃×5分 プレス 180℃×3分 ギヤーオーブン 190℃
[Table] As shown in Table 2, the present invention is superior to the comparative example.
This shows that it is very effective as it does not interfere with the thermal stability of PVC. Example 4 2,2-bis(4-hydroxy-3,5-dibromophenyl)propane (AFR flame retardant made by Asahi Glass)
-1010) was dissolved in 445 g of butyl cellosolve, and this was mixed with 333 g of a silica-walled porous microcapsule substrate with an average particle size of 3.5 microns in a small super mixer (manufactured by Kawada Seisakusho). After reducing the pressure for an hour, the pressure was gradually returned to normal over a period of 2 hours to obtain 996 g of microcapsules containing 22.2% of flame retardant. Example 2 The flame retardant-encapsulated additive for the resin of the present invention of Example 4 was added to additive-free styrene resin to prepare a 1 mm thick sheet under the conditions shown in Table 3, and the thermal stability and flammability were tested. For comparison, a composition having the same ratio as in Example 4 was simply mixed and subjected to the test. Table the results.
4. In the flammability test, one side of a test piece with a width of 1 cm and a length of 12 cm was ignited with a gas burner, and the burning distance was measured for 20 seconds. Table 3 Compounding composition Additive-free styrene resin 100 parts by weight Zinc stearate 1.0〃 Antioxidant (Irganox 1076) 0.3〃 Antimony trioxide 3.0〃 Additives Table 4 Processing conditions Test roll 170℃ x 5 minutes Press 180℃ x 3 minutes Gear oven 190℃

【表】 表−4に示す如く本発明の樹脂用添加剤は熱劣
化が少なく、難燃性は比較例と略々同様であつ
た。 実施例 5 水酸化アルミニウム壁多孔質マイクロカプセル
基体40gを常温で水銀柱15mmに減圧したスクリユ
ー式攪拌機付き減圧器に入れて30分間攪拌しなが
ら放置後、攪拌しながらD−リモネン60gを徐々
に加え、添加後攪拌を続けながら20分間放置し、
さらに攪拌を続けながら徐々に2時間かけて常圧
に戻してカプセル化した後、100mlのエタノール
で洗滌過後風乾して、D−リモネン56.4%を内
封したマイクロカプセル96.4gを得た。 比較例 A 実施例5との比較のためにカルシウム置換A型
ゼオライト(耕正製CS−100)を300℃で1時間
乾燥して活性化させた活性化CS−10040gとD−
リモネン60gの混合物を作り、試験例3において
比較に供した。 試験例 3 低密度ポリエチレン(昭和電工製シヨウレツク
ス108F MI=0.8)に表−5に示す配合成分を加
えて160℃の試験ロールで5分間混練後、180℃の
プレスで厚さ0.2mmのフイルムを調製し、試験に
供した。 (1) D−リモネン保持性 成形フイルムを1辺5cmの正方形に切り、7日
間室内につり下げ放置後、ポリエチレン袋に入れ
空気を封入して24時間室温で放置後、ポリエチレ
ン袋中の空気内に揮散しているD−リモネンの量
を検知管を用いて定量し、D−リモネン単独添加
の場合を1として比較した。 (2) フイルムのヘイズ ASTMD−1003−6に準拠して測定 (3) アンチブロツキング性 成形フイルムを45℃、50g/cm2下で24時間フイ
ルム密着性を促進させた後、シヨツパー型引張試
験機を用い引張強度500mm/minの条件でフイル
ム接着面10cm2を剪断的に引き剥がすに要する最大
応力(g/cm2)をもつて示す。 その結果は表−5のとおりである。
[Table] As shown in Table 4, the resin additive of the present invention showed little thermal deterioration, and its flame retardancy was almost the same as that of the comparative example. Example 5 40 g of an aluminum hydroxide-walled porous microcapsule substrate was placed in a pressure reducer equipped with a screw-type stirrer that was depressurized to 15 mm of mercury at room temperature, left to stand while stirring for 30 minutes, and then 60 g of D-limonene was gradually added while stirring. After addition, leave it for 20 minutes while continuing to stir.
While stirring was continued, the pressure was gradually returned to normal pressure over 2 hours for encapsulation, followed by washing with 100 ml of ethanol and air drying to obtain 96.4 g of microcapsules containing 56.4% of D-limonene. Comparative Example A For comparison with Example 5, activated CS-10040g and D-
A mixture containing 60 g of limonene was prepared and used for comparison in Test Example 3. Test Example 3 The ingredients shown in Table 5 were added to low-density polyethylene (Showa Denko Shorex 108F MI = 0.8), kneaded for 5 minutes with a test roll at 160°C, and then a film with a thickness of 0.2 mm was formed using a press at 180°C. It was prepared and tested. (1) D-limonene retention Cut the molded film into squares of 5 cm on each side, hang it indoors for 7 days, then put it in a polyethylene bag and fill it with air.After leaving it at room temperature for 24 hours, the air in the polyethylene bag was The amount of D-limonene volatilized was determined using a detection tube, and the case where D-limonene was added alone was set as 1 for comparison. (2) Film haze Measured in accordance with ASTMD-1003-6 (3) Anti-blocking properties After promoting film adhesion for 24 hours at 45°C and 50 g/ cm2 , the film was subjected to shortcut tensile testing. The maximum stress (g/cm 2 ) required to shear off 10 cm 2 of the adhesive surface of the film using a tester at a tensile strength of 500 mm/min is shown. The results are shown in Table-5.

【表】 表−5に示すとおり、本発明の樹脂用添加剤を
用いた場合D−リモネンの保持性が抜群であると
ともにアンチブロツキング効果も発揮することが
確認された。
[Table] As shown in Table 5, it was confirmed that when the resin additive of the present invention was used, the retention of D-limonene was outstanding and the anti-blocking effect was also exhibited.

Claims (1)

【特許請求の範囲】[Claims] 1 界面反応法により製造した直径0.1〜500ミク
ロンの無機質壁多孔質マイクロカプセル基体と、
樹脂に添加して有用な有機化合物を液状において
混合した後に減圧するか、或いは減圧下に液状に
おいて混合し、次いで徐々に常圧に戻すことによ
り無機質壁多孔質マイクロカプセル基体内に、樹
脂に添加して有用な有機化合物を内封させること
を特徴とする樹脂用添加剤の製造方法。
1 An inorganic wall porous microcapsule substrate with a diameter of 0.1 to 500 microns manufactured by an interfacial reaction method,
Organic compounds useful to be added to the resin can be added to the resin in an inorganic-walled porous microcapsule matrix by mixing in liquid form and then reducing pressure, or by mixing in liquid form under reduced pressure and then gradually returning to normal pressure. 1. A method for producing an additive for resins, which comprises encapsulating an organic compound useful as a resin additive.
JP26891285A 1985-11-29 1985-11-29 Additive for resin and production thereof Granted JPS62129323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26891285A JPS62129323A (en) 1985-11-29 1985-11-29 Additive for resin and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26891285A JPS62129323A (en) 1985-11-29 1985-11-29 Additive for resin and production thereof

Publications (2)

Publication Number Publication Date
JPS62129323A JPS62129323A (en) 1987-06-11
JPH0471935B2 true JPH0471935B2 (en) 1992-11-17

Family

ID=17464993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26891285A Granted JPS62129323A (en) 1985-11-29 1985-11-29 Additive for resin and production thereof

Country Status (1)

Country Link
JP (1) JPS62129323A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135544A (en) * 1985-12-09 1987-06-18 Tanabe Seiyaku Co Ltd Rodent-repellent resin composition
JPH0538001Y2 (en) * 1989-12-01 1993-09-27
JP2006348312A (en) * 2006-09-29 2006-12-28 Yoshinobu Nitta Antimicrobial molded article
JP5474527B2 (en) * 2009-12-25 2014-04-16 東洋ゴム工業株式会社 Rubber composition, method for producing the same, and pneumatic tire
JP5705089B2 (en) * 2011-11-01 2015-04-22 住友化学株式会社 Anti-aging agent for rubber
JP5715548B2 (en) * 2011-11-01 2015-05-07 住友化学株式会社 Rubber composition and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101895A (en) * 1978-02-07 1978-09-05 Takashi Ishikawa Fire preventing agent
JPS56155231A (en) * 1980-12-05 1981-12-01 Ig Tech Res Inc Blowing agent for synthetic resin
JPS5755454A (en) * 1980-09-19 1982-04-02 Hitachi Ltd Failure recovery system
JPS6253374A (en) * 1985-08-31 1987-03-09 Toray Ind Inc Thermoplastic polymer film and production thereof
JPS6257459A (en) * 1985-09-05 1987-03-13 Toray Ind Inc Thermoplastic polymer sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101895A (en) * 1978-02-07 1978-09-05 Takashi Ishikawa Fire preventing agent
JPS5755454A (en) * 1980-09-19 1982-04-02 Hitachi Ltd Failure recovery system
JPS56155231A (en) * 1980-12-05 1981-12-01 Ig Tech Res Inc Blowing agent for synthetic resin
JPS6253374A (en) * 1985-08-31 1987-03-09 Toray Ind Inc Thermoplastic polymer film and production thereof
JPS6257459A (en) * 1985-09-05 1987-03-13 Toray Ind Inc Thermoplastic polymer sheet

Also Published As

Publication number Publication date
JPS62129323A (en) 1987-06-11

Similar Documents

Publication Publication Date Title
KR100479218B1 (en) Expanded polystyrene bead having functional skin layer, manufacturing process thereof, and functional eps product and manufacturing process thereof using the same
JP5288150B2 (en) Thermosetting composition for sealing organic EL elements
JP2017515928A (en) Air-water barrier silicone coating
US20080255299A1 (en) Polymer Composition Containing a Heat Accumulating Phase-Change Material, a Process For Producing Such a Composition and a Product In Which Such a Composition Is Included
JPH11124465A (en) Antistatic resin composition containing phosphonium fluorinated sulfonate
EP2875069A1 (en) Pvc flame retardant compositions
JPH0471935B2 (en)
TW200838872A (en) Phosphite composition and method for producing the same
JP2017137475A (en) Fire-resistant resin composition
ES2791154T3 (en) Composition of vinyl chloride resin, vinyl chloride resin molded product, and laminate
JPH04227762A (en) Plastic molding material treated with antistatic agent
PL193777B1 (en) Rapidly hardening silicone compositions of good adhesive power
JP4592334B2 (en) Conductivity imparting agent and conductive resin composition
JP2006291224A (en) Moisture absorbing formed article
JPH06345925A (en) Flame-retardant styrenic resin composition and molded sheet made therefrom
JPS6332903A (en) Flame-retardant bonded magnet
WO2000005308A1 (en) Accelerated acetate-hardening silicon materials
JPH05262926A (en) Flame-retardant polyolefin resin composition
JPH06128434A (en) Flame-retardant resin composition
JP2004270128A (en) Coating gloves emitting chlorine dioxide
JPH11255955A (en) Capsule type flame retardant and resin composition for encapsulating semiconductor containing the same
JP7374047B2 (en) Polyvinyl chloride composition and fireproof sheet
WO1996007696A1 (en) Compound for use in the production of rapidly hardening silicone materials which can cross-link aminosilanes
JPH01268736A (en) Rubber compound
JP3817616B2 (en) Thermoplastic resin composition for electrical contacts and electronic parts

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term