[go: up one dir, main page]

JPH0468372B2 - - Google Patents

Info

Publication number
JPH0468372B2
JPH0468372B2 JP58031792A JP3179283A JPH0468372B2 JP H0468372 B2 JPH0468372 B2 JP H0468372B2 JP 58031792 A JP58031792 A JP 58031792A JP 3179283 A JP3179283 A JP 3179283A JP H0468372 B2 JPH0468372 B2 JP H0468372B2
Authority
JP
Japan
Prior art keywords
displacement
alloy
magnetostrictive
properties
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58031792A
Other languages
Japanese (ja)
Other versions
JPS59158574A (en
Inventor
Masashi Sahashi
Tetsuhiko Mizoguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58031792A priority Critical patent/JPS59158574A/en
Publication of JPS59158574A publication Critical patent/JPS59158574A/en
Priority to JP2044406A priority patent/JPH0654817B2/en
Publication of JPH0468372B2 publication Critical patent/JPH0468372B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の目的〕 (産業上の利用分野) 本発明は微小変位制御素子に好適な磁歪合金に
関する。 (従来の技術) 近年、機械工作における加工精度の向上は目覚
しくミクロンオーダーの次元からサブミクロンオ
ーダーの次元に入りつつあるが、このことは電子
デバイスの分野では既に珍しくない状況である。 また、メカトロニクスの時代を迎えるに及ん
で、超微細加工、微小変位制御にかかる問題は上
記した電子工学の分野のみならず機械工学の分野
でも重要視されるに至つている。 すなわち、計測装置、各種の機械装置にあつ
ては温度変化による各構成部材の変位が不可避で
あり、例えば、インバー形合金のような極端に熱
膨脹の小さい材料を用いた場合は別にして、通常
は、10ppm/℃程度の変位は常に起り得ること、
各種装置がフレキシブルな可動部分(例ええば
ジヨイント)、回転部分(例えば歯車、モータ)
を備えている場合には部材間の接触の遊びによる
誤差を不可避的に必要とすること、一般に金属
は荷重下の変形に対しては履歴を示すこと、各
種装置を機械的振動から自由にすることは限度が
あり、とくに装置そのものが振動発生源を内蔵し
ている場合、振動及びそれに起因する距離変動を
防止することは原理的に不可能であること、など
の問題からして、微小変位制御素子は必要とされ
る。 更には、光情報処理、光記録機器の急速な発達
に伴なつて、微小変位制御素子の必要性はますま
す高まつている。 従来から、かかる微小変位制御素子としては、
変位発生部の態様によつて第1表に示すような形
式のものが提案され実用に供されている。
[Object of the Invention] (Industrial Application Field) The present invention relates to a magnetostrictive alloy suitable for a minute displacement control element. (Prior Art) In recent years, machining accuracy in mechanical work has improved markedly and is moving from the micron order to the submicron order, and this is already a common situation in the field of electronic devices. Furthermore, as we enter the era of mechatronics, problems related to ultra-fine processing and minute displacement control are becoming important not only in the above-mentioned field of electronic engineering but also in the field of mechanical engineering. In other words, in the case of measuring devices and various mechanical devices, displacement of each component due to temperature changes is unavoidable. means that a displacement of about 10 ppm/℃ can always occur,
Various devices have flexible moving parts (e.g. joints) and rotating parts (e.g. gears, motors)
In the case of equipment, errors due to play in contact between parts are unavoidable, metal generally exhibits a history of deformation under load, and various devices are freed from mechanical vibration. There are limits to this, especially if the device itself has a built-in vibration source, and it is theoretically impossible to prevent vibration and distance fluctuations caused by it. A control element is required. Furthermore, with the rapid development of optical information processing and optical recording equipment, the need for minute displacement control elements is increasing more and more. Conventionally, such micro-displacement control elements include:
Depending on the form of the displacement generating part, the types shown in Table 1 have been proposed and put into practical use.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の磁歪合金は、例えば、中空状に巻装さ
れた磁性コイルと、該磁性コイルの中空部に同軸
的に挿入されて変位移動する変位発生部材とを備
えた微小変位制御素子の変位発生部材として用い
られるもので、鉄(Fe)13.0〜40重量%、マンガ
ン(Mn)0.01〜16.4重量%、テルビウム(Tb)
0.1〜25重量%、残部は実質的にデイスプロシウ
ム(Dy)からなり、かつ主相が立方晶ラーベス
化合物であり、この立方晶ラーベス化合物の略
[111]方向に結晶配向たことを特徴とする磁歪合
金である。 まず、本発明合金を用いた制御素子の一構造例
を第1図に則して説明する。 第1図で1は棒状の変位発生部材、2は該変位
発生部磁化して長さ変位を発生させるための励磁
コイルである。励磁コイル2は所定径の導線(例
えばホルマル銅線)を必要回数巻回しその内部を
中空にして構成される。このときのコイルの巻回
数は、変位発生部材1に作成させるべき磁界の強
さとの関係から決められる。磁性コイル2の中空
部には、所定長さを有する磁性合金の棒状が同軸
的に挿入されて変位発生部材1を構成する。この
ときの該変位発生部材1の長さは、制御すべき変
位の大きさ及び該部材の磁歪の大きさとの関係か
ら決められる。また、変位発性部材1は、励磁コ
イルの2の中空部の中では潤滑性能に富む例えば
ボールベアリング、黒鉛材、テフロン材のような
軸受材3によつて支持されていて、軸方向の変位
が生じた場合でも容易に滑動できるようになつて
いる。変位発生部材1の変位量は、該部材の端部
に当接して配設される例えば軟磁鉄製の第1の変
位伝達軸4及びつづいて該伝達軸4の端部に当接
する例えば非磁性ステンレススチール製の第2の
変位伝達軸5を介して系外に伝達される。 磁性コイル2の外周には、変位発生部材1に磁
界を印加したときその両端部からの磁束もれを防
止するために、更には、変位発生部材1に生起す
る反磁界を制御若しくは消去して磁性コイル2の
作用効率を高めるために、例えば軟磁鉄で構成し
たヨークを配設することが好ましい。 更には、励磁コイル2で変位発生部1を磁化す
るに先立ち、予め該変位発生部材1をある程度磁
化してその線形性が良好な磁歪特性領域で使用す
るために、励磁コイル2の外周にバイアスコイル
6を配設することが一層好ましい。また、永久磁
石でもよい。 以下に磁歪合金につき詳細に説明する。 まず、Tb、Dyか極めて大きい結晶異方性を有
する希土類元素であつて、磁性合金の磁歪特性を
高めるために必須な成分である。しかしながら、
Tb単体、Dy単体はTbとDyのみから成る合金は、
いずれも低温領域では優れた磁歪特性を示すけれ
ども、室温以上の温度領域では磁歪を示さないと
いう問題点を有する。 一方、Tb,DyはFe、Mnなどの還移金属とラ
ーベス(Laves)型金属間化合物を形成するが、
このことによつて、Tb、Dy−Tb、Dy合金の優
れた磁歪特性を室温まで持ち来たすことができ
る。これは、広義の強磁性相がラーベス型金属間
化合物に包摂される形で室温まで安定化されるた
めである。例えば、Dyにおいてその強磁性相の
消失する温度は179K(−94℃)であるが、Dyと
Feとのラベース型金属間化合物DyFexの場合に
は635 K(358℃)である。 各種の希土類元素とFeとのラベース型金属間
化合物の室(25℃)における飽和磁歪値(λ)は
第2表に示すとおりである。
(Means for Solving the Problems) The magnetostrictive alloy of the present invention includes, for example, a magnetic coil wound in a hollow shape and a displacement generating member coaxially inserted into the hollow part of the magnetic coil and displaced. It is used as a displacement generating member of the minute displacement control element with iron (Fe) 13.0 to 40% by weight, manganese (Mn) 0.01 to 16.4% by weight, and terbium (Tb).
0.1 to 25% by weight, the remainder substantially consisting of disprosium (Dy), and the main phase is a cubic Laves compound, and the crystals are oriented in the approximately [111] direction of the cubic Laves compound. It is a magnetostrictive alloy. First, an example of the structure of a control element using the alloy of the present invention will be explained with reference to FIG. In FIG. 1, 1 is a rod-shaped displacement generating member, and 2 is an excitation coil for magnetizing the displacement generating portion to generate a length displacement. The excitation coil 2 is constructed by winding a conducting wire (for example, formal copper wire) of a predetermined diameter a necessary number of times, and making the inside hollow. The number of turns of the coil at this time is determined based on the relationship with the strength of the magnetic field to be created in the displacement generating member 1. A rod-shaped magnetic alloy having a predetermined length is coaxially inserted into the hollow portion of the magnetic coil 2 to constitute the displacement generating member 1 . The length of the displacement generating member 1 at this time is determined based on the relationship between the magnitude of the displacement to be controlled and the magnitude of magnetostriction of the member. In addition, the displacement generating member 1 is supported in the hollow part of the excitation coil 2 by a bearing material 3 having excellent lubrication performance, such as a ball bearing, a graphite material, or a Teflon material. It is designed so that it can be easily slid even if something happens. The amount of displacement of the displacement generating member 1 is determined by a first displacement transmission shaft 4 made of, for example, soft magnetic iron, which is disposed in contact with an end of the member, and a first displacement transmission shaft 4 made of, for example, non-magnetic stainless steel, which is in contact with an end of the transmission shaft 4. It is transmitted to the outside of the system via the second displacement transmission shaft 5 made of steel. In order to prevent magnetic flux from leaking from both ends when a magnetic field is applied to the displacement generating member 1, the outer periphery of the magnetic coil 2 is provided with a demagnetizing field that controls or eliminates the demagnetizing field generated in the displacement generating member 1. In order to increase the efficiency of the magnetic coil 2, it is preferable to provide a yoke made of soft magnetic iron, for example. Furthermore, before magnetizing the displacement generating part 1 with the excitation coil 2, a bias is applied to the outer periphery of the excitation coil 2 in order to magnetize the displacement generation member 1 to some extent in advance and use it in a magnetostrictive characteristic region with good linearity. More preferably, a coil 6 is provided. Alternatively, a permanent magnet may be used. The magnetostrictive alloy will be explained in detail below. First, Tb and Dy are rare earth elements that have extremely large crystal anisotropy and are essential components for improving the magnetostriction properties of magnetic alloys. however,
Tb alone and Dy alone are alloys consisting only of Tb and Dy.
Although both exhibit excellent magnetostriction properties at low temperatures, they have the problem that they do not exhibit magnetostriction at temperatures above room temperature. On the other hand, Tb and Dy form Laves-type intermetallic compounds with reduction metals such as Fe and Mn.
This allows the excellent magnetostrictive properties of Tb, Dy-Tb, and Dy alloys to be brought to room temperature. This is because the broadly defined ferromagnetic phase is stabilized up to room temperature in a form that is included in the Laves type intermetallic compound. For example, the temperature at which the ferromagnetic phase disappears in Dy is 179K (-94℃), but in Dy
In the case of DyFex, a labase-type intermetallic compound with Fe, it is 635 K (358°C). The saturation magnetostriction values (λ) of Labase type intermetallic compounds of various rare earth elements and Fe in a chamber (25° C.) are shown in Table 2.

【表】 第2表から明らかなように、これらラベース型
金属間化合物の飽和磁歪値は、従来の典型的な磁
歪金属であるNiのそれ(30×10-6)に比べて桁
違いに大きい。 しかしながら、上記したラベース型金属間化合
物は、それが単相である場合、その機械的特性、
とくに加工性、靭性が極めて劣悪であつて実用性
の点で問題がある。更には、第2表に示した飽和
磁歪値を得るためには数十KOeという強磁場を
必要とし、例えば100 Oe/A程度のソレノイド
型マグネツトを用いて電気・磁気変換操作を行つ
た場合、100A以上の第電流が必要となつて数十
KWの電力消費を下可避とするので、実用性の点
での障害は大である。 本発明者らは、Tb、Dy、Tb−Dy合金の磁歪
特性が優れていること、そしてこれら元素とFe、
Mnとのラベース型金属間化合物は室温での安定
な磁歪特性を保障し得ること、結晶配向させるこ
とにより磁歪量を各段に優れたものにできること
を前提として後述する種々の検討を加えることに
より、微小変位制御素子の変位発生部材として有
用な合金を見出すに至つた。 まず、(Tby Dy(1-y))1.33(Fe1-xMnx2(x、y
はそれぞれMn濃度、Tb濃度を表わす。)で示さ
れる合金につき、そのx,yをそれぞれ変動させ
たときの磁歪特性を測定した。その結果の一部を
第2図及び第3図に示す。図で特性の次元はx=
0、y−0のものすなわち、Dy1.33Fe2のラベー
ス型金属間化合物の室温における磁歪特性を10と
したときの相対値で示してある。 第2図から明らかなように、Mnの合金化は、
室温、低磁場側(2KOe以下)での磁歪特性にお
いて、y=0.2、すなわちTb13重量%以下の領域
で磁歪特性の顕著な向上が見られる。とくに、x
=0.2、1=0.2の合金;(Tb0.2Dy0.81.33(Fe0.8
Mn0.22は、現在磁歪特性が最大のものとして知
られている。Tb0.3Dy0.7Fe2の値を上回り、しか
もその靭性が著しく改善されていることが判明し
た。 また、第3図から明らかなように、xの大小に
よにらずDyのTbによる合金化に伴い得られた合
金はその特性が著しく向上している。とくにx=
0.2においてTb合金化の効果は顕著である。 本発明はかかる磁性合金は、以上の実験経過を
背景に開発されたTb−Dy−Fe−Mn系のもので
ある。 該磁性合金において、Fe、MnはTb、Dyとラ
ーベス型金属間化合物を形成して、Tb、Dy、
Tb−Dy合金の優れた磁歪特性を室温以上の温度
領域で安定化・向上せしめる。そのとき、Feの
組成比が13.0重量%未満の場合には充分な磁歪特
性が得られず、また、40重量%を超えると合金の
靭性が著しく劣化して脆弱となつてしまう。Mn
はその組成比0.01重量%以上から磁歪特性向上の
効果を発揮するがそ組成比が16.4重量%を超える
と逆に磁歪特性の劣化を招く。 TbはDyと合金化することにより、Dy単独の
場合よりも全体の磁歪特性を高める。組成比が
0.1重量%以上からその効果を発揮するが、25重
量%を超えると逆に磁性特性の劣化を招いてしま
う。 本発明にかかる磁歪合金において、その残部は
Dyで構成されるが、合金調整時に不可避的に付
随する微量の混入物(例えば、C、O、N、希土
類、Y、La)が存在しても何らの不都合はない。 なお、以上のような合金組成である程度大きな
磁歪を得ることができるが、これを結晶配向させ
ることにより、より特性を向上することができ
る。 磁歪合金には、大きな磁歪の他、低い飽和磁界
という要求特性がある。低い飽和磁界を得るため
には、磁化容易軸が印加磁界方向と近いこと、
異方性エネルギー(の絶対値)が小さいこと、
が必要である。磁化容易軸は構成元素によつて異
なり、例えば、本願発明において、その主成分で
あるDyとFeの2元系では[100]である。また異
方性エネルギは、組成により異なり、Dy−Fe 2
元系においては負の値をもつ。これに正の値をも
つTb−Fe系を加えて3元系とすると、その絶対
値を小さくすることができるが、磁化容易軸は
[100]からシフトしてしまう。 さらにこれらの系に、磁歪特性向上のためMn
を加えると、その挙動の詳細はまだ明らかされて
おらず、その組成と結晶方位を最適化することが
困難であつた。 そこで発明者らは、実験的にこれらの値につい
て最適化を図つたところ、[100]の磁化容易軸を
有するDy−Fe系に、本願発明で規定するように
Tb、Mnを加えたときには、略[111]方向に磁
化容易軸が得られ、異方性エネルギも十分小さく
することができるとともに、磁歪も無配向のとき
と比べて十分大きな値が得られる、即ち、上述の
組成のものを主相である立方晶ラーベス化合物の
略[111]方向に配向させることが、磁歪、飽和
磁界の両方において最も好ましいことを見出だし
た。本発明合金は、例えば真空誘導加熱法で溶解
した後インゴツトにし、このインゴツトを例えば
ブリツヂマン炉で適宜なG値(固液界面相での温
度勾配)で一方向凝固させることにより得ること
ができる。変位発生部材とするためには所定の切
削加工を施して作成することができる。なお、結
晶の配向方法一方向凝固によらず、いかなる方法
も用いることができる。更に熱間、冷間加工をし
ても良く、また得られた合金を粉砕後磁場中プレ
スして焼給しても良い。 この部材を第1図に示したコイル部と組合せる
ことによつて微小変位制御素子が製造される。 (実施例) 以下に本発明の実施例を説明する。 第3表に示した組成の、30種類の合金試料を用
意し、これらをそれぞれ真空誘導加熱炉で溶解し
た。溶湯を冷却してインゴツトとした後、これを
内径12mm長さ250mmのアルミナ管の中に装入し、
タンタルヒータを備えた改良ブリツヂマン炉によ
り、アルゴン雰囲気中、60mm/hrの定速度で一方
凝固させた。なおこの速度は10mm/min〜100
mm/hr程度に変位できる。このときの固液界面近
傍におけるG値は約80℃/cmであつた。 得られた一方向凝固材の・凝固方位は、それぞ
れ立方晶ラーベス化合物の結晶方位にして略
[111]磁化容易軸であつた。各一方向凝固材に
800℃で120時間均一処理を施した後、直径8mm長
さ100mmの丸棒を切削加工して変位発生部材とし
た。試料番号1〜14が本発明にかかる実施例で他
は比較例である。 尚、試料番号31、32は試料番号1と同組成で結
晶の配向方向を変えたものである。 これら丸棒を用いて、第1図に示した構造の微
小変位制御素子を組立て、各素子の特性を調べ
た。 ここで、軸受材は外径10mm、内径8mm、長さ
100mmのテフロン製の筒、励磁コイルは直径1mm
のホルマル銅線をテフロン筒の外周に2万回/m
で巻回し、全直流抵抗値5Ω、励磁能力250
Oe/Aのもの、その外周に配設されたバイアス
コイルは1万回/mの巻回数で励磁能力150
Oe/Aのものであつた。 制御素子の特性評価は、バイアスコイルに1A
の電流を流し125 Oeのバイアス磁場下で行なつ
た。 この状態で励磁コイルに0.5A(入力電力6W)
の駆動電力を流し、このときの棒材(磁歪合金)
の変位量(μm)を測定した。その結果を第3表
に示した。
[Table] As is clear from Table 2, the saturation magnetostriction values of these Labase-type intermetallic compounds are orders of magnitude larger than that of Ni, a typical conventional magnetostrictive metal (30×10 -6 ). . However, when the above-mentioned labase-type intermetallic compound is single-phase, its mechanical properties
In particular, the workability and toughness are extremely poor, which poses a problem in terms of practicality. Furthermore, in order to obtain the saturation magnetostriction values shown in Table 2, a strong magnetic field of several tens of KOe is required, and for example, when an electric/magnetic conversion operation is performed using a solenoid type magnet of about 100 Oe/A, Dozens of times require a second current of 100A or more
Since the power consumption of KW is unavoidable, there is a big obstacle in terms of practicality. The present inventors discovered that Tb, Dy, and Tb-Dy alloys have excellent magnetostrictive properties, and that these elements and Fe,
Based on the premise that the Labase type intermetallic compound with Mn can guarantee stable magnetostriction properties at room temperature, and that the amount of magnetostriction can be improved in each step by crystal orientation, we have carried out various studies described below. We have now discovered an alloy useful as a displacement generating member for micro displacement control elements. First, (Tby Dy (1-y) ) 1.33 (Fe 1-x Mn x ) 2 (x, y
represent Mn concentration and Tb concentration, respectively. ) The magnetostrictive properties of the alloy shown in (2) were measured while varying x and y. Some of the results are shown in FIGS. 2 and 3. In the diagram, the dimension of the characteristic is x=
0, y-0, that is, the magnetostriction properties at room temperature of the Labase-type intermetallic compound of Dy 1.33 Fe 2 are shown as relative values when 10. As is clear from Figure 2, alloying of Mn is
In the magnetostrictive properties at room temperature and in a low magnetic field (below 2 KO e ), a remarkable improvement in the magnetostrictive properties is seen in the region of y = 0.2, that is, 13% by weight of Tb or less. In particular, x
=0.2, 1=0.2 alloy; (Tb 0.2 Dy 0.8 ) 1.33 (Fe 0.8
Mn 0.2 ) 2 is currently known to have the highest magnetostrictive properties. It was found that the value was higher than that of Tb 0.3 Dy 0.7 Fe 2 , and its toughness was significantly improved. Furthermore, as is clear from FIG. 3, the properties of the alloy obtained by alloying Dy with Tb are significantly improved regardless of the size of x. Especially x=
At 0.2, the effect of Tb alloying is remarkable. The magnetic alloy of the present invention is of the Tb-Dy-Fe-Mn system developed based on the above experimental progress. In the magnetic alloy, Fe and Mn form a Laves type intermetallic compound with Tb and Dy, and Tb, Dy,
The excellent magnetostrictive properties of Tb-Dy alloy are stabilized and improved in the temperature range above room temperature. At this time, if the composition ratio of Fe is less than 13.0% by weight, sufficient magnetostrictive properties cannot be obtained, and if it exceeds 40% by weight, the toughness of the alloy deteriorates significantly and becomes brittle. Mn
When the composition ratio is 0.01% by weight or more, the effect of improving magnetostrictive properties is exhibited, but when the composition ratio exceeds 16.4% by weight, the magnetostrictive properties are deteriorated. By alloying with Dy, Tb improves the overall magnetostrictive properties compared to the case of Dy alone. The composition ratio is
The effect is exhibited at 0.1% by weight or more, but if it exceeds 25% by weight, the magnetic properties will deteriorate. In the magnetostrictive alloy according to the present invention, the remainder is
Although it is composed of Dy, there is no problem even if there is a trace amount of contaminants (for example, C, O, N, rare earth elements, Y, La) that inevitably accompany the alloy adjustment. Note that although it is possible to obtain a relatively large magnetostriction with the alloy composition as described above, the characteristics can be further improved by crystallizing the alloy. Magnetostrictive alloys have the required characteristics of high magnetostriction and low saturation magnetic field. In order to obtain a low saturation magnetic field, the axis of easy magnetization must be close to the direction of the applied magnetic field,
The anisotropy energy (absolute value) is small,
is necessary. The axis of easy magnetization differs depending on the constituent elements, and for example, in the present invention, it is [100] in the binary system of Dy and Fe, which are the main components. In addition, the anisotropic energy differs depending on the composition, and the anisotropy energy differs depending on the composition.
It has a negative value in the element system. If a Tb-Fe system with a positive value is added to this to form a ternary system, the absolute value can be reduced, but the axis of easy magnetization will shift from [100]. Furthermore, Mn is added to these systems to improve magnetostriction properties.
However, the details of its behavior have not yet been clarified, and it has been difficult to optimize its composition and crystal orientation. Therefore, the inventors experimentally tried to optimize these values, and found that the Dy-Fe system having an easy axis of magnetization of [100] has the following properties as specified in the present invention.
When Tb and Mn are added, an easy axis of magnetization is obtained approximately in the [111] direction, the anisotropy energy can be made sufficiently small, and magnetostriction can also be obtained with a sufficiently large value compared to the case without orientation. That is, it has been found that it is most preferable in terms of both magnetostriction and saturation magnetic field to orient the material having the above-mentioned composition in the approximately [111] direction of the cubic Laves compound as the main phase. The alloy of the present invention can be obtained by, for example, melting it by a vacuum induction heating method, making it into an ingot, and unidirectionally solidifying this ingot at an appropriate G value (temperature gradient at the solid-liquid interface) in, for example, a Bridgeman furnace. In order to create a displacement generating member, it can be created by performing a predetermined cutting process. Note that any method can be used for crystal orientation, regardless of the unidirectional solidification. Further, hot or cold working may be performed, or the obtained alloy may be crushed and then pressed in a magnetic field and fired. By combining this member with the coil portion shown in FIG. 1, a minute displacement control element is manufactured. (Example) Examples of the present invention will be described below. Thirty types of alloy samples having the compositions shown in Table 3 were prepared, and each of these samples was melted in a vacuum induction heating furnace. After the molten metal is cooled and made into an ingot, it is charged into an alumina tube with an inner diameter of 12 mm and a length of 250 mm.
Solidification was performed unilaterally in a modified Bridzmann furnace equipped with a tantalum heater at a constant rate of 60 mm/hr in an argon atmosphere. Note that this speed is 10mm/min ~ 100
It can be displaced about mm/hr. At this time, the G value near the solid-liquid interface was about 80°C/cm. The solidification orientation of the obtained unidirectionally solidified material was approximately the [111] easy axis of magnetization, which is the crystal orientation of the cubic Laves compound. For each unidirectionally solidified material
After uniform treatment at 800°C for 120 hours, a round bar with a diameter of 8 mm and a length of 100 mm was cut into a displacement generating member. Sample numbers 1 to 14 are examples according to the present invention, and the others are comparative examples. Note that sample numbers 31 and 32 have the same composition as sample number 1, but the orientation direction of the crystals was changed. Using these round bars, minute displacement control elements having the structure shown in FIG. 1 were assembled, and the characteristics of each element were investigated. Here, the bearing material has an outer diameter of 10 mm, an inner diameter of 8 mm, and a length of
100mm Teflon tube, excitation coil 1mm in diameter
20,000 times/m around the outer circumference of the Teflon tube.
Winding with a total DC resistance of 5Ω, excitation capacity of 250
Oe/A, the bias coil arranged around its outer circumference has a number of turns of 10,000 turns/m and an excitation capacity of 150
It was Oe/A. Characteristic evaluation of the control element is performed using 1A in the bias coil.
The experiment was conducted under a bias magnetic field of 125 Oe and a current of 125 Oe. In this state, the excitation coil is 0.5A (input power 6W)
When driving power is applied to the bar material (magnetostrictive alloy)
The amount of displacement (μm) was measured. The results are shown in Table 3.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明の磁歪合
金は、歪み量が大きく、非常に有効である。 またこれを用いた変位発生部材は線形性に優
れており、変位履歴が著しく小さく、小さい
入力電力で作動することができ、歪み量が大き
いことにより素子全体を小型化することができる
などの利点を有しているので、サブミクロンオー
ダーの精密制御を必要とする光情報処理、光記録
機器、精密工作機器の分野での有用性は極めて大
である。
As is clear from the above description, the magnetostrictive alloy of the present invention has a large amount of strain and is very effective. In addition, displacement generating members using this material have excellent linearity, have a significantly small displacement history, can be operated with small input power, and have a large amount of distortion, which allows the entire element to be miniaturized. Therefore, it is extremely useful in the fields of optical information processing, optical recording equipment, and precision machine tools that require precision control on the submicron order.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る微小変位制御素子の好ま
しい1例を示す一部欠模式図である。第2図、第
3図はそれぞれ(TbyDy(1-y)1.33Fe1-xMnx2
x、yと磁性特性との関係図である。第4図は駆
動電流と歪み量との関係図、第5図は比較のため
に示した電歪材料、圧電材料の電界の大きさと歪
み量との関係図である。 1……変位発生部材(磁歪合金)、2……励磁
コイル、3……軸受材、4,5……変位伝達軸、
6……バイアスコイル。
FIG. 1 is a partially cutaway schematic diagram showing a preferred example of a minute displacement control element according to the present invention. FIGS. 2 and 3 are diagrams showing the relationship between x, y and magnetic properties of (TbyDy (1-y)1.33 Fe 1-x Mn x ) 2, respectively. FIG. 4 is a diagram showing the relationship between the drive current and the amount of strain, and FIG. 5 is a diagram showing the relationship between the magnitude of the electric field and the amount of strain for electrostrictive materials and piezoelectric materials shown for comparison. 1... Displacement generating member (magnetostrictive alloy), 2... Excitation coil, 3... Bearing material, 4, 5... Displacement transmission shaft,
6...Bias coil.

Claims (1)

【特許請求の範囲】 1 鉄13.0〜40重量%、マンガン0.01〜16.4重量
%、テルビウム0.1〜25重量%及び残部実質的に
デイスプロシウムからなり、かつ主相が立方晶ラ
ーベス化合物であり、この立方晶ラーベス化合物
の略[111]方向に結晶配向したことを特徴とす
る磁歪合金。 2 磁化容易軸が略[111]方向であることを特
徴とする特許請求の範囲第1項記載の磁歪合金。 3 結晶方向が方向性凝固により得られたもので
あることを特徴とする特許請求の範囲第1項又は
第2項記載の磁歪合金。
[Scope of Claims] 1 Consisting of 13.0 to 40% by weight of iron, 0.01 to 16.4% by weight of manganese, 0.1 to 25% by weight of terbium, and the remainder substantially disprosium, and the main phase is a cubic laves compound, A magnetostrictive alloy characterized by crystal orientation in the [111] direction of a cubic Laves compound. 2. The magnetostrictive alloy according to claim 1, wherein the axis of easy magnetization is approximately in the [111] direction. 3. The magnetostrictive alloy according to claim 1 or 2, wherein the crystal orientation is obtained by directional solidification.
JP58031792A 1983-03-01 1983-03-01 Control element for minute displacement Granted JPS59158574A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58031792A JPS59158574A (en) 1983-03-01 1983-03-01 Control element for minute displacement
JP2044406A JPH0654817B2 (en) 1983-03-01 1990-02-27 Displacement generating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58031792A JPS59158574A (en) 1983-03-01 1983-03-01 Control element for minute displacement

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2044406A Division JPH0654817B2 (en) 1983-03-01 1990-02-27 Displacement generating element

Publications (2)

Publication Number Publication Date
JPS59158574A JPS59158574A (en) 1984-09-08
JPH0468372B2 true JPH0468372B2 (en) 1992-11-02

Family

ID=12340916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58031792A Granted JPS59158574A (en) 1983-03-01 1983-03-01 Control element for minute displacement

Country Status (1)

Country Link
JP (1) JPS59158574A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654817B2 (en) * 1983-03-01 1994-07-20 株式会社東芝 Displacement generating element
US4609402A (en) * 1985-10-28 1986-09-02 Iowa State University Research Foundation, Inc. Method of forming magnetostrictive rods from rare earth-iron alloys
JPS6434631A (en) * 1987-07-30 1989-02-06 Sentan Kako Kikai Gijutsu Shin Actuator of ultra magnetic strain member
US5223046A (en) * 1988-09-29 1993-06-29 Kabushiki Kaisha Toshiba Super-magnetostrictive alloy
DE68926768T2 (en) * 1988-09-29 1996-12-12 Toshiba Kawasaki Kk Super magnetostrictive alloy
GB8909483D0 (en) * 1989-04-26 1989-06-14 Univ Hull Magnetostrictive actuator devices
JP2974148B2 (en) * 1989-04-28 1999-11-08 株式会社東芝 Magnetostrictive actuator
JPH062635B2 (en) * 1989-06-30 1994-01-12 日本鋼管株式会社 Giant magnetostrictive alloy rod manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364798A (en) * 1976-11-19 1978-06-09 Shingijutsu Kaihatsu Jigyodan Electric magntostrictive convertor
JPS55134150A (en) * 1979-04-05 1980-10-18 Toshiba Corp Terbium- and dysprosium-base macro-magnetostrictive alloy

Also Published As

Publication number Publication date
JPS59158574A (en) 1984-09-08

Similar Documents

Publication Publication Date Title
US4402770A (en) Hard magnetic alloys of a transition metal and lanthanide
US4533408A (en) Preparation of hard magnetic alloys of a transition metal and lanthanide
US4374665A (en) Magnetostrictive devices
JPS5929644B2 (en) Method for modifying magnetic properties of high magnetic permeability amorphous alloy
KR20100016053A (en) Austenitic iron/nickel/chromium/copper alloy
EP0361969A2 (en) Super-magnetostrictive alloy
JP3466481B2 (en) Giant magnetostrictive material
JPH0468372B2 (en)
US5565830A (en) Rare earth-cobalt supermagnetostrictive alloy
US6451131B1 (en) Terbium-dysprosium-iron magnetostrictive materials and devices using these materials
US4854979A (en) Method for the manufacture of an anisotropic magnet material on the basis of Fe, B and a rare-earth metal
Gould Permanent magnets
JPH0654817B2 (en) Displacement generating element
Kim et al. Magnetic properties of very high permeability, low coercivity, and high electrical resistivity in Fe87Zr7B5Ag1 amorphous alloy
JPS59211559A (en) Permanent magnet material
US7179339B2 (en) Terbium-dysprosium-iron magnetostrictive materials and devices using these materials
Adams Recent developments in soft magnetic alloys
USRE34322E (en) Preparation of hard magnetic alloys of a transition metal and lanthanide
Sinha et al. Magnetic behavior of heavy rare earth RTiFe11-xCox alloys
JPS6115944A (en) Rare earth magnet thin strip
JP3313386B2 (en) Giant magnetostrictive alloy and magneto-mechanical mutation conversion device
JP2579787B2 (en) Manufacturing method of permanent magnet
US3144325A (en) Magnetic compositions containing iron, rhodium, and at least one member of the lanthanide series
JPH01321854A (en) Reciprocating drive device
US3116182A (en) Magnets