JP3313386B2 - Giant magnetostrictive alloy and magneto-mechanical mutation conversion device - Google Patents
Giant magnetostrictive alloy and magneto-mechanical mutation conversion deviceInfo
- Publication number
- JP3313386B2 JP3313386B2 JP01306592A JP1306592A JP3313386B2 JP 3313386 B2 JP3313386 B2 JP 3313386B2 JP 01306592 A JP01306592 A JP 01306592A JP 1306592 A JP1306592 A JP 1306592A JP 3313386 B2 JP3313386 B2 JP 3313386B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- magnetostrictive alloy
- giant magnetostrictive
- displacement
- magneto
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Soft Magnetic Materials (AREA)
- Hard Magnetic Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁気−機械変位変換デ
バイス等に用いられる超磁歪合金に係わり、特にキュリ
ー温度の向上を図った超磁歪合金に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a giant magnetostrictive alloy used for a magneto-mechanical displacement conversion device and the like, and more particularly to a giant magnetostrictive alloy having an improved Curie temperature.
【0002】[0002]
【従来の技術】磁性体に外部磁場を印加した際、磁性体
が変形する磁歪の応用として変位制御アクチュエータ、
磁歪振動子、磁歪センサー、磁歪フィルタ、超音波遅延
線等がある。従来はNi基合金、Fe−Co合金、フェ
ライト等が用いられている。2. Description of the Related Art When an external magnetic field is applied to a magnetic material, a displacement control actuator,
There are magnetostrictive vibrators, magnetostrictive sensors, magnetostrictive filters, ultrasonic delay lines, and the like. Conventionally, Ni-based alloys, Fe-Co alloys, ferrites and the like have been used.
【0003】近年、計測工学の進歩および精密機械分野
の発展にともない、ミクロンオーダーの微小変位制御に
不可欠の変位駆動部の開発が必要とされている。この変
位駆動部の駆動機構の一つとして磁歪合金を用いた磁気
−機械変換デバイスが有力である。しかしながら従来の
磁歪合金では、変位の絶対量が充分でなく、ミクロンオ
ーダーの精密変位制御駆動部材料としては絶対駆動変位
量のみならず精密制御の点からも満足し得るものではな
かった。[0003] In recent years, with the advance of measurement engineering and the development of the field of precision machinery, development of a displacement drive unit indispensable for micro displacement control on the order of microns has been required. A magneto-mechanical conversion device using a magnetostrictive alloy as one of the driving mechanisms of the displacement driving unit is effective. However, in the conventional magnetostrictive alloy, the absolute amount of displacement is not sufficient, and as a material for a precision displacement control drive unit on the order of microns, it cannot be satisfied from the viewpoint of not only the absolute drive displacement but also the precision control.
【0004】このような要求に対し、希土類−遷移金属
系の磁歪合金が高磁歪材料として注目され、研究されて
いる。(特公昭61−33892号公報、米国特許第4
378258号明細書など)In response to such demands, rare earth-transition metal based magnetostrictive alloys have attracted attention as high magnetostrictive materials and have been studied. (Japanese Patent Publication No. 61-33892, U.S. Pat.
378258)
【0005】しかしながら、このような磁歪合金ではキ
ュリー温度が十分高くなく、例えば希土類−鉄合金は低
温域では磁歪特性が低下してしまい、また希土類−コバ
ルト合金では高温環境下での使用が困難で、広範囲の温
度領域で優れた磁歪特性を有する磁歪材料は得られてい
なかった。However, such a magnetostrictive alloy does not have a sufficiently high Curie temperature. For example, rare earth-iron alloys have low magnetostriction characteristics in a low temperature range, and rare earth-cobalt alloys are difficult to use in a high temperature environment. A magnetostrictive material having excellent magnetostrictive properties in a wide temperature range has not been obtained.
【0006】[0006]
【発明が解決しようとする課題】このように従来の希土
類−遷移金属系の磁歪合金では、キュリー温度が十分高
くなく、広範囲の温度領域で良好な磁歪特性が得られな
いという問題があった。本発明は以上の点を考慮してな
されたものであり、キュリー温度が高く、優れた磁歪特
性を持つ超磁歪合金を提供することを目的とする。As described above, the conventional rare earth-transition metal based magnetostrictive alloy has a problem that the Curie temperature is not sufficiently high and good magnetostrictive characteristics cannot be obtained in a wide temperature range. The present invention has been made in consideration of the above points, and has as its object to provide a giant magnetostrictive alloy having a high Curie temperature and excellent magnetostrictive characteristics.
【0007】[0007]
【課題を解決するための手段】本発明に係る超磁歪合金
は、原子%で表した一般式:RxT100-x-yMy(RはY
を含む希土類元素のうちの少なくとも1種、TはFe,
Coのうちの少なくとも1種の元素、MはN元素、20
≦x≦60、0<y≦30)で示されることを特徴とす
るものである。本発明に係る超磁歪合金において、主相
がラーベス相で、Nを侵入型元素として主相の格子内に
侵入されていることを許容とするものである。本発明に
係る磁気−機械変異変換デバイスは、前述した超磁歪合
金を備えたことを特徴とするものである。 Super magnetostrictive alloy according to the present invention SUMMARY OF] <br/> the general formula expressed in atomic%: R x T 100-xy M y (R is Y
At least one of the rare earth elements including, T is Fe,
At least one element of Co, M is an N element, 20
≦ x ≦ 60, 0 <y ≦ 30). In the giant magnetostrictive alloy according to the present invention, the main phase
Is the Laves phase, and N is an interstitial element in the lattice of the main phase.
It is permissible to have been intruded. The magneto-mechanical mutation conversion device according to the present invention includes the above-described super magnetostriction coupling.
It is characterized by having gold.
【0008】前記Yは含む希土類元素(R)としては、
Y,La,Ce,Pr,Nb,Pm,Sm,Eu,C
d,Tb,Dy,Ho,Er,Tm,Yb,Luが用い
られ、これらのうち少なくとも1種としては、Pr,N
d,Sm,Tb,Dy,Ho,Er,TbDy,TbH
o,TbPr,SmYb,TbDyHo,TbDyP
r,TbPrHoが好ましい。The rare earth element (R) containing Y is as follows:
Y, La, Ce, Pr, Nb, Pm, Sm, Eu, C
d, Tb, Dy, Ho, Er, Tm, Yb, Lu are used, and at least one of them is Pr, N
d, Sm, Tb, Dy, Ho, Er, TbDy, TbH
o, TbPr, SmYb, TbDyHo, TbDyP
r, TbPrHo is preferred.
【0009】Fe、Coのうち少なくとも1種の元素
(T)としては、Fe及び又は、Coが用いられる。こ
の一部をNi,Mn等他の遷移元素で置換することも可
能であるが、過剰に置換するとキュリー温度が低下して
しまうため、Fe,Coに対し原子%で50%以下であ
る必要がある。前記一般式におけるxは、20未満か6
0を越えると、主相が減少し、磁歪特性が低下する。よ
り好ましいxは、25〜40の範囲である。As at least one element (T) of Fe and Co, Fe and / or Co is used. It is possible to substitute a part of this with other transition elements such as Ni and Mn. However, if it is excessively substituted, the Curie temperature will decrease. is there. X in the above general formula is less than 20 or 6
If it exceeds 0, the main phase decreases, and the magnetostriction characteristics deteriorate. More preferred x is in the range of 25 to 40.
【0010】前記超磁歪合金は、一般に磁歪特性を担う
主相であるラーベス相及び粒界から構成されているがM
元素は主相の格子中に侵入するいわゆる浸入型元素で、
遷移元素のバンド構造に変調を与え、特にd電子の磁気
分極の増加及びd電子スピン間の交換相互作用を強化
し、ひいては超磁歪合金のキュリー温度を向上させる。
この効果は極少量のM元素の添加で得られるが、特に、
上記一般式におけるyが3以上で顕著となる。一方、含
有量を増してゆくと、主相中での固溶が困難となり粒界
に析出してくるが、粒界に存在した際は、抵抗率が増加
し、周波数特性を向上させる。しかし、30を超えると
粒界において過剰に存在することにより磁歪特性を劣化
させる。より好ましいyは、10〜25の範囲である。
なお、水素、酸素、リンなども同様の侵入型元素であ
り、同程度の量までの含有が許容される。前記一般式に
おけるMがNである超磁歪合金の製造方法を以下に説明
する。The giant magnetostrictive alloy is generally composed of a Laves phase, which is a main phase having magnetostrictive properties, and a grain boundary.
The element is a so-called immersion element that penetrates into the lattice of the main phase,
It modulates the band structure of the transition element, and in particular, increases the magnetic polarization of d electrons and enhances the exchange interaction between d electron spins, thereby improving the Curie temperature of the giant magnetostrictive alloy.
This effect can be obtained by adding a very small amount of M element.
This becomes significant when y in the above general formula is 3 or more. On the other hand, as the content increases, solid solution in the main phase becomes difficult and precipitates at the grain boundaries, but when present at the grain boundaries, the resistivity increases and the frequency characteristics are improved. However, when it exceeds 30, the magnetostriction is deteriorated due to the excessive existence at the grain boundary. More preferred y is in the range of 10-25.
Note that hydrogen, oxygen, phosphorus, and the like are similar interstitial elements, and the inclusion of up to a similar amount is allowable. A method for producing a giant magnetostrictive alloy in which M in the general formula is N will be described below.
【0011】まず、所定原子比のR元素およびFe、C
oの少なくとも1種の元素を調合し、高周波誘導溶解な
どにより溶解する。つづいて、このインゴットを切削加
工等を施すことにより所望の形状の試料とした後、窒素
または窒素を含む気体化合物中において結晶制御溶解、
例えば浮遊帯域溶解、ブリッジマン溶解を行なう。前記
窒素または窒素を含む気体の圧力としては、0.01a
tm〜10atmで行えどよく、結晶の育成速度として
は0.1mm/hr〜300mm/hrにすることが望
ましい。前記窒素または窒素を含む気体としては、例え
ば窒素、アンモニアガス、シアン系ガスが望ましい。First, a predetermined atomic ratio of the R element and Fe, C
At least one element of o is prepared and dissolved by high frequency induction melting or the like. Subsequently, after the ingot is subjected to cutting or the like to obtain a sample having a desired shape, crystal controlled dissolution in nitrogen or a gaseous compound containing nitrogen,
For example, floating zone melting and Bridgman melting are performed. The pressure of the nitrogen or the gas containing nitrogen is 0.01 a
It may be performed at tm to 10 atm, and the crystal growth rate is desirably 0.1 mm / hr to 300 mm / hr. As the nitrogen or the gas containing nitrogen, for example, nitrogen, ammonia gas, and cyan gas are preferable.
【0012】このような方法により得られた単結晶また
は一方向凝固材はその結晶格子中に侵入しているもので
ある。かかる窒素化合物は、通常、粉末状の試料を窒素
雰囲気中で熱処理することにより得られるが、その場合
バルク状の試料、特に一方向凝固材や単結晶を作製する
ことは非常に困難である。これに対し、前述した方法は
結晶制御溶解、例えば浮遊帯域溶解、ブリッジマン溶解
中に、溶湯が雰囲気中に含まれる窒素を巻き込むため、
合金中に窒素が均質に取り込まれ、前記一方向凝固材や
単結晶においても窒素を均質に含む合金が得られる。The single crystal or unidirectionally solidified material obtained by such a method is one that has penetrated into its crystal lattice. Such a nitrogen compound is usually obtained by heat-treating a powdery sample in a nitrogen atmosphere. In this case, it is very difficult to produce a bulky sample, particularly a unidirectionally solidified material or a single crystal. On the other hand, in the above-described method, during the crystal controlled melting, for example, the floating zone melting, Bridgman melting, the molten metal involves nitrogen contained in the atmosphere,
Nitrogen is homogeneously incorporated in the alloy, and an alloy containing nitrogen even in the unidirectionally solidified material or single crystal can be obtained.
【0013】[0013]
【作用】本発明に係る超磁歪合金は、原子%で表した一
般式:RxT100-x-yMy(RはYを含む希土類元素のう
ちの少なくとも1種、TはFe,Coのうちの少なくと
も1種の元素、MはN元素、20≦x≦60、0<y≦
30)で示されるものであるため、キュリー温度が高
く、優れた磁歪特性を有する。The giant magnetostrictive alloy according to the present invention has a general formula represented by atomic%: RxT100-x-yMy (R is at least one of rare earth elements including Y, and T is at least one of Fe and Co). Seed element, M is N element, 20 ≦ x ≦ 60, 0 <y ≦
30), it has a high Curie temperature and excellent magnetostriction characteristics.
【0014】すなわち、前記一般式におけるMを窒素
(N)とした超磁歪合金は前記窒素により希土類−鉄系
ラーベス型化合物の磁気異方性に作用し、しかもその結
晶組織に作用するため、磁歪特性その他の磁気特性を劣
化させることなく保磁力を低減することができる。 That is , in a giant magnetostrictive alloy in which M in the above general formula is nitrogen (N) , the nitrogen acts on the magnetic anisotropy of the rare earth-iron Laves type compound and also acts on the crystal structure thereof. The coercive force can be reduced without deteriorating the characteristics and other magnetic characteristics.
【0015】[0015]
【実施例】以下に本発明の実施例を説明する。参照 例1Embodiments of the present invention will be described below. Reference example 1
【0016】表1に示すような組成の合金を、アーク溶
解にて作成した後、900℃、1週間の均質化熱処理を
施した試料を切削加工することにより寸法が10×10
×5mmで、下記表1に示す組成の試験片(No.1〜
7)とした。ここでNo.6,7は従来のBもしくはC
を含まないもので、比較例として作製している。An alloy having a composition as shown in Table 1 was prepared by arc melting, and then subjected to a homogenizing heat treatment at 900 ° C. for one week.
× 5 mm, test pieces (No. 1 to No. 1) having the composition shown in Table 1 below.
7). Here, No. 6, 7 are conventional B or C
Is not included, and is manufactured as a comparative example.
【0017】前記方法により作製した各試験片につい
て、磁歪値およびキュリー温度を測定した。その結果を
下記表1に併記した。なお、前記磁歪値およびキュリー
温度は以下のように評価した。磁歪特性は、抗磁性ゲー
ジを用い、磁界は対向磁極型電磁石により発生させ、2
kOe印加磁界中で評価した。なお、磁歪値はNo.6
の磁歪値を1として規格化して表示してある。キュリー
温度は、磁化の温度特性より求めた。The magnetostriction value and the Curie temperature of each test piece produced by the above method were measured. The results are shown in Table 1 below. The magnetostriction value and Curie temperature were evaluated as follows. The magnetostriction characteristics were measured using a coercive gauge, and the magnetic field was generated by an opposing magnetic pole type electromagnet.
Evaluation was performed in a kOe applied magnetic field. In addition, the magnetostriction value is No. 6
Are normalized and the magnetostriction value of 1 is displayed. The Curie temperature was determined from the temperature characteristics of magnetization.
【0018】[0018]
【表1】 [Table 1]
【0019】前記表1から明らかなように参照例1の超
磁歪合金からなる試験片(No.1〜5)は比較例のそ
れ(No.6、7)と比較してキュリー温度が高く、ま
た磁歪値としても比較例より大きくなることがわかる。As is clear from Table 1, the test pieces (Nos. 1 to 5) made of the giant magnetostrictive alloy of Reference Example 1 have a higher Curie temperature than those of Comparative Examples (Nos. 6 and 7). It can also be seen that the magnetostriction value is larger than that of the comparative example.
【0020】さらに、参照例1の超磁歪合金であるN
o.1と比較例の超磁歪合金であるNo.6について直
径10mm、長さ30mmのロッド状試料を作製し、変
位量の周波数特性を評価した。磁界印加手段としては、
空心コイルに正弦波交流を流し、定電流で周波数を可変
した。変位量は、光式変位計を用い、非接触で計測し、
10Hz時の変位量で規格化した。その結果、図1に示
す。Further, N, which is the giant magnetostrictive alloy of Reference Example 1 , is used.
o. No. 1 which is the giant magnetostrictive alloy of the comparative example A rod-shaped sample having a diameter of 10 mm and a length of 30 mm was prepared for No. 6, and the frequency characteristics of the displacement were evaluated. As the magnetic field applying means,
A sinusoidal alternating current was passed through the air-core coil, and the frequency was varied with a constant current. The amount of displacement is measured without contact using an optical displacement meter,
It was standardized by the displacement at 10 Hz. The result is shown in FIG.
【0021】図1から明らかなように、参照例1の超磁
歪合金は比較例のそれに比較して周波数に対する変位量
の変化が小さく、高周波領域においても良好な変位量が
得られることがわかる。 実施例1 As is apparent from FIG. 1, the giant magnetostrictive alloy of Reference Example 1 has a smaller change in the amount of displacement with respect to the frequency than that of the comparative example, and a good amount of displacement can be obtained even in a high frequency region. Example 1
【0022】下記表2に示した組成の合金をアーク溶解
にて作成した後、粒径100μm以下まで粉砕し1気圧
窒素雰囲気中にて500℃×1時間の熱処理を行い、プ
レス成形後に1気圧の窒素雰囲気中にて1200℃×2
時間で焼結し、Nを15原子%含有させた片験片(N
o.8〜12)とした。このようにして作製した試験片
(No.8〜12)の磁歪値及びキュリー温度を、参照
例1と同様の方法により求めた。その結果、下記表2に
併記した。An alloy having the composition shown in Table 2 below was prepared by arc melting, crushed to a particle size of 100 μm or less, and heat-treated at 500 ° C. × 1 hour in a nitrogen atmosphere of 1 atm. 1200 ℃ × 2 in nitrogen atmosphere
Specimen (N at 15 atomic%)
o. 8 to 12). The magnetostriction value and Curie temperature of the test pieces (Nos. 8 to 12) thus prepared were referred to.
It was determined in the same manner as in Example 1. The results are shown in Table 2 below.
【0023】[0023]
【表2】 前記表2から明らかなように本発明の超磁歪合金からな
る試験片(No.8〜12)は、前述した参照例1と同
様の効果が得られることがわかる。 実施例2 [Table 2] As is clear from Table 2, the test pieces (Nos. 8 to 12) made of the giant magnetostrictive alloy of the present invention can obtain the same effects as in Reference Example 1 described above. Example 2
【0024】Tb、Dy、Sm、Ho、Pr、Er、F
e、Co、Mn、Al、Zr、Ni、B、Pの各成分元
素を下記表3に示す組成になるように配合し、アルゴン
雰囲気中でアルミナるつぼを使用して高周波誘導溶解を
行って9種の合金を調製した。つづいて、前記各合金か
ら直径6mm、長さ50mmの試料を切り出した後、1
気圧の窒素雰囲気中にて浮遊帯域溶解を育成速度10μ
m/secの条件で行った。Tb, Dy, Sm, Ho, Pr, Er, F
e, Co, Mn, Al, Zr, Ni, B, and P were blended so as to have the compositions shown in Table 3 below, and subjected to high frequency induction melting using an alumina crucible in an argon atmosphere to obtain 9 Various alloys were prepared. Subsequently, a sample having a diameter of 6 mm and a length of 50 mm was cut out from each of the above alloys.
Floating zone dissolution in nitrogen atmosphere at atmospheric pressure, growth rate 10μ
The test was performed under the conditions of m / sec.
【0025】得られた試料(No.1〜9)の保磁力
を、振動試料型磁力計を用いてそれぞれ測定した。ま
た、前記試料から実施例1と同様な試験片を取り出し、
磁歪値及びキュリー温度を実施例1と同様の方法により
求めた。これらの結果、下記表3に示した。なお、表3
には窒素雰囲気中にて浮遊帯域溶解を行わない前の各合
金の保磁力を併記した。The coercive force of the obtained samples (Nos. 1 to 9) was measured using a vibrating sample magnetometer. Further, a test piece similar to that of Example 1 was taken out from the sample,
The magnetostriction value and the Curie temperature were determined in the same manner as in Example 1. The results are shown in Table 3 below. Table 3
Indicates the coercive force of each alloy before the floating zone melting was performed in a nitrogen atmosphere.
【0026】[0026]
【表3】 [Table 3]
【0027】前記表3から明らかなように本発明の超磁
歪合金からなる試験片(No.1〜9)は10〜20
Oeと低い保磁力を有し、かつ高いキュリー温度、大き
い磁歪値を有することがわかる。As is clear from Table 3, the test pieces (Nos. 1 to 9) made of the giant magnetostrictive alloy of the present invention were 10 to 20 pieces.
It can be seen that Oe has a low coercive force, a high Curie temperature, and a large magnetostriction value.
【0028】さらに、前記表3のNo.1の組成からな
り窒素雰囲気中で浮遊帯域溶解して得た本発明の合金と
前記表3のNo.1の組成からなり窒素雰囲気中で浮遊
帯域溶解前の合金(比較例)から直径4mm、長さ10
mmのロッド状試料を作製し、磁歪式アクチュエータに
組み込み、微小変位特性を評価した。前記アクチュエー
タは、磁界発生手段としての空心コイルと、直流バイア
ス印加用永久磁石と、温度管理用スパイラル水冷パイプ
と、ヨークと、ステーから構成されている。測定は、前
記空心コイルに制御電流を供給し、その際の微小変位を
測定した。なお、測定中は恒温槽より一定の温度に管理
された冷却水を供給し、温度を一定に保持した。図2に
本発明のロッド状試料による変位量の変化を、図3に比
較例のロッド状試料による変位量の変化をそれぞれ示
す。図2、図3から明らかなように本発明の試料は比較
例の試料に比べてヒステリシスの非常に小さな変位特性
が得られることがわかる。Further, in Table 3 above, No. 1 of the present invention and the alloy of the present invention which had the composition of No. 1 and were obtained by melting in a floating zone in a nitrogen atmosphere. 4 mm in diameter and 10 mm in length from an alloy (comparative example) before melting in a floating zone in a nitrogen atmosphere having a composition of 1
A rod-shaped sample having a thickness of 1 mm was prepared, assembled into a magnetostrictive actuator, and the micro-displacement characteristics were evaluated. The actuator includes an air core coil as a magnetic field generating means, a permanent magnet for applying a DC bias, a spiral water cooling pipe for temperature management, a yoke, and a stay. In the measurement, a control current was supplied to the air-core coil, and a minute displacement at that time was measured. During the measurement, cooling water controlled at a constant temperature was supplied from a thermostat to keep the temperature constant. FIG. 2 shows a change in the displacement by the rod-shaped sample of the present invention, and FIG. 3 shows a change in the displacement by the rod-shaped sample of the comparative example. As is clear from FIGS. 2 and 3, the sample of the present invention can obtain a displacement characteristic with extremely small hysteresis compared to the sample of the comparative example.
【0029】[0029]
【発明の効果】以上説明したように、本発明によればキ
ュリー温度の高い優れた磁歪特性を有する超磁歪合金を
提供することができる。特に、前記一般式におけるMが
窒素(N)である超磁歪合金によれば前記窒素により希
土類−鉄系ラーベス型化合物の磁気異方性に作用し、し
かもその結晶組織に作用するため、磁歪特性その他の磁
気特性を劣化させることなく保磁力を低減することがで
きる。As described above, according to the present invention, a giant magnetostrictive alloy having a high Curie temperature and excellent magnetostrictive properties can be provided. In particular, according to the giant magnetostrictive alloy in which M in the above general formula is nitrogen (N), the nitrogen acts on the magnetic anisotropy of the rare earth-iron Laves type compound and also acts on the crystal structure thereof. The coercive force can be reduced without deteriorating other magnetic characteristics.
【図1】表1に示されるNo.1の試料片およびNo.
6(比較例)の試料片の周波数特性を示す線図。FIG. No. 1 and No. 1
FIG. 6 is a diagram showing frequency characteristics of a sample 6 (Comparative Example).
【図2】表3に示されるNo.1の組成からなり窒素雰
囲気中で浮遊帯域溶解して得た合金(本発明)のロッド
状試料の微小変位特性を示す線図。FIG. FIG. 2 is a diagram showing a micro-displacement characteristic of a rod-shaped sample of an alloy (the present invention) obtained by melting a floating zone in a nitrogen atmosphere and having a composition of No. 1;
【図3】表3に示されるNo.1の組成からなり、窒素
雰囲気中で浮遊帯域溶解前の合金(比較例)のロッド状
試料の微小変位特性を示す線図。FIG. FIG. 2 is a diagram showing a micro-displacement characteristic of a rod-shaped sample of an alloy (comparative example) having a composition of No. 1 and before floating zone melting in a nitrogen atmosphere.
フロントページの続き (72)発明者 佐橋 政司 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合研究所内 (56)参考文献 特開 平3−281757(JP,A) 特開 昭58−3294(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C22C 19/03 C22C 19/07 C22C 28/00 Continuation of the front page (72) Inventor Masashi Sabashi 1 Toshiba Research Institute, Komukai, Kawasaki City, Kanagawa Prefecture (56) References JP-A-3-281757 (JP, A) JP-A-58- 3294 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00-38/60 C22C 19/03 C22C 19/07 C22C 28/00
Claims (3)
y(RはYを含む希土類元素のうちの少なくとも1種、
TはFe,Coのうちの少なくとも1種の元素、MはN
元素、20≦x≦60、0<y≦30)で示されること
を特徴とする超磁歪合金。1. A general formula represented by atomic%: R x T 100-xy M
y (R is at least one of rare earth elements including Y,
T is at least one element of Fe and Co, and M is N
Element, 20 ≦ x ≦ 60, 0 <y ≦ 30).
して主相の格子内に侵入されていることを特徴とする請
求項1記載の超磁歪合金。 2. The method according to claim 1, wherein the main phase is a Laves phase, and N is an interstitial element.
Characterized by being penetrated into the lattice of the main phase
The giant magnetostrictive alloy according to claim 1.
ことを特徴とする磁気−機械変異変換デバイス。 3. A super magnetostrictive alloy according to claim 1 or 2.
A magneto-mechanical mutation conversion device characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01306592A JP3313386B2 (en) | 1991-05-08 | 1992-01-28 | Giant magnetostrictive alloy and magneto-mechanical mutation conversion device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10249391 | 1991-05-08 | ||
JP3-102493 | 1991-05-08 | ||
JP01306592A JP3313386B2 (en) | 1991-05-08 | 1992-01-28 | Giant magnetostrictive alloy and magneto-mechanical mutation conversion device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0551704A JPH0551704A (en) | 1993-03-02 |
JP3313386B2 true JP3313386B2 (en) | 2002-08-12 |
Family
ID=26348786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01306592A Expired - Fee Related JP3313386B2 (en) | 1991-05-08 | 1992-01-28 | Giant magnetostrictive alloy and magneto-mechanical mutation conversion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3313386B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005073420A1 (en) * | 2004-01-30 | 2005-08-11 | Tdk Corporation | Magnetostrictive material and method for production thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6273966B1 (en) * | 1998-12-03 | 2001-08-14 | Etrema Products, Inc. | High performance rare earth-transition metal magnetostrictive materials |
-
1992
- 1992-01-28 JP JP01306592A patent/JP3313386B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005073420A1 (en) * | 2004-01-30 | 2005-08-11 | Tdk Corporation | Magnetostrictive material and method for production thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0551704A (en) | 1993-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4533408A (en) | Preparation of hard magnetic alloys of a transition metal and lanthanide | |
JP3057448B2 (en) | Rare earth permanent magnet | |
US20030010405A1 (en) | Magnetostrictive devices and methods using high magnetostriction, high strength fega alloys | |
JP3466481B2 (en) | Giant magnetostrictive material | |
JP2970809B2 (en) | Rare earth permanent magnet | |
JP3452210B2 (en) | Manufacturing method of magnetostrictive material | |
US5565830A (en) | Rare earth-cobalt supermagnetostrictive alloy | |
US8308874B1 (en) | Magnetostrictive materials, devices and methods using high magnetostriction, high strength FeGa and FeBe alloys | |
JP3313386B2 (en) | Giant magnetostrictive alloy and magneto-mechanical mutation conversion device | |
US4854979A (en) | Method for the manufacture of an anisotropic magnet material on the basis of Fe, B and a rare-earth metal | |
JP2625163B2 (en) | Manufacturing method of permanent magnet powder | |
JPH0851007A (en) | Permanent magnet and production thereof | |
JP2004519554A (en) | Metallic glass alloys for electronic article surveillance | |
Kawahara et al. | High temperature in-situ observations of magnetic domains in Fe-Co alloys | |
JP3354183B2 (en) | Magnetostrictive material and magnetostrictive actuator using the same | |
JP2848643B2 (en) | Giant magnetostrictive alloy and actuator for micro displacement control | |
JP3385667B2 (en) | Iron-terbium-based magnetostrictive material and method for producing the same | |
JPH02201903A (en) | Permanent magnet powder | |
JPH04308062A (en) | Magnet alloy containing rare earth element and permanent magnet containing rare earth element | |
JP2877365B2 (en) | Giant magnetostrictive alloy and actuator for micro displacement control | |
JPH10340806A (en) | Rare earth-iron magnetic material and manufacture thereof | |
JP3199506B2 (en) | Rare earth permanent magnet | |
Chen et al. | Effects of Cr substitution on the formation, structure and magnetic properties of Sm/sub 2/(Fe, Cr)/sub 17/C/sub x/alloys | |
JPH11195514A (en) | Hard magnetic material | |
JP2753430B2 (en) | Bonded magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090531 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090531 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100531 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |