[go: up one dir, main page]

JPH0462975A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0462975A
JPH0462975A JP17497190A JP17497190A JPH0462975A JP H0462975 A JPH0462975 A JP H0462975A JP 17497190 A JP17497190 A JP 17497190A JP 17497190 A JP17497190 A JP 17497190A JP H0462975 A JPH0462975 A JP H0462975A
Authority
JP
Japan
Prior art keywords
oxide film
diffusion region
drain
element isolation
impurity diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17497190A
Other languages
Japanese (ja)
Inventor
Kazutoshi Ishii
石井 和敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP17497190A priority Critical patent/JPH0462975A/en
Publication of JPH0462975A publication Critical patent/JPH0462975A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To restrain hot carriers from being generated and to make a breakdown strength high by forming a high-concentration impurity diffusion layer which is extended up to a drain from one part of a low-concentration impurity diffusion region, of a second conductivity type, on the lower side of an oxide film, for element isolation use, on the side of the drain. CONSTITUTION:An n-type source 7, an n-type drain 8 and a low-concentration impurity diffusion region 5 at the lower side of an oxide film 4, for element isolation use, adjacent to a gate oxide film 2 are formed. After that, a high- concentration impurity diffusion region 6 which is extended up to the n-type drain 8 from one part of the low-concentration impurity diffusion region 5 adjacent to the n-type drain 8 is formed. The diffusion region 6 can be formed by implanting ions of an n-type dopant such as n<+>, As<+>, Pb<+> or the like after formation of the implantation mask 7 before the oxide film 4 is formed. Since the diffusion region 6 is formed, a potential gap by a concentration difference is relaxed, and it is possible to restrain hot carriers from being generated and to restrain the thermal destruction when an electric current is concentrated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、MO3型半導体装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an MO3 type semiconductor device.

〔発明の概要〕[Summary of the invention]

本発明は、ドレインに隣接する素子分離用酸化膜の下側
の低濃度不純物拡散領域の一部からドレインにまで延在
する高濃度不純物拡散領域を形成したため、従来の高耐
圧半導体装置に比べ、ホントキャリアの発生を抑制する
ことを可能としたものである。
The present invention forms a high concentration impurity diffusion region extending from a part of the low concentration impurity diffusion region under the element isolation oxide film adjacent to the drain to the drain, so compared to conventional high breakdown voltage semiconductor devices, This makes it possible to suppress the generation of true carriers.

〔従来の技術〕[Conventional technology]

従来、第2図に示したように半導体基板1表面付近に素
子分離用酸化膜4を設け、素子分離用酸化膜4番こ囲ま
れた領域にゲート酸化膜2を設け、ゲート酸化膜2を介
して素子分離用酸化膜4上の一部にまで延在するゲート
電極3を設け、ゲート酸化膜2に隣接する素子分離用酸
化膜4のチャネル方向の外側に隣接するソース7、ドレ
イン8を設け、ゲート酸化膜2及びソース7、ドレイン
8に隣接する素子分離用酸化膜の下側のn型低濃度不純
物拡散領域5を設けることによって高耐圧半導体装置を
形成していた。
Conventionally, as shown in FIG. 2, an oxide film 4 for element isolation is provided near the surface of a semiconductor substrate 1, a gate oxide film 2 is provided in a region surrounded by the oxide film 4 for element isolation, and the gate oxide film 2 is A gate electrode 3 extending to a part of the element isolation oxide film 4 is provided through the gate oxide film 2, and a source 7 and a drain 8 adjacent to the outside in the channel direction of the element isolation oxide film 4 adjacent to the gate oxide film 2 are provided. By providing an n-type low concentration impurity diffusion region 5 under the element isolation oxide film adjacent to the gate oxide film 2 and the source 7 and drain 8, a high breakdown voltage semiconductor device was formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の技術ではホントキャリア発生による基板
電流の増大、高耐圧化が困難という問題点を有していた
However, the conventional technology has problems such as an increase in substrate current due to the generation of true carriers and difficulty in increasing the withstand voltage.

〔課題を解決するための手段〕[Means to solve the problem]

以上に述べた問題点を解決するために、本発明では、ド
レイン側素子分離用酸化膜の下側の第2導電型の低濃度
不純物拡散領域の一部がらドレインにまで延在する高濃
度不純物拡散領域を設けた。
In order to solve the above-mentioned problems, in the present invention, a part of the second conductivity type low concentration impurity diffusion region under the drain side element isolation oxide film extends to the drain. A diffusion area was provided.

〔作用〕[Effect]

上記のごとく形成された半導体装置は、ドレイン側素子
分離用酸化膜の下側の半導体基板中にキャリアが流れる
時にポテンシャルのギャップを、1カ所に集中させない
ため、ホントキャリアの発生を抑制し、基板電流の低減
化ができる。
In the semiconductor device formed as described above, when carriers flow into the semiconductor substrate under the drain side element isolation oxide film, the potential gap is not concentrated in one place, so the generation of real carriers is suppressed, and the substrate Current can be reduced.

したがって、高耐圧トランジスタの高耐圧化を可能とし
た。
Therefore, it is possible to increase the voltage resistance of a high voltage transistor.

〔実施例〕〔Example〕

本発明の一実施例を図面に基づいて詳細に説明する。第
1図は、本発明の高耐圧MO3型半導体装置の一実施例
のチャネル方向の断面図を示したものである。例えばP
型半導体基板1表面付近に素子分利用酸化膜4を形成し
、素子分離用酸化膜4に囲まれた領域にゲート酸化膜を
形成し、ゲート酸化膜2を介して素子分離用酸化膜4」
二の一部にまで延在するゲート電極3を形成し、ゲート
酸化膜2に隣接する素子分離用酸化膜4のチャネル方向
の外側に隣接するn型のソース7、n型のドレイン8を
形成する。ここで、n型ソース7、  n型ドレイン8
は素子分離用酸化膜4をインプラマスクとして形成でき
、ドーパントはP’、 As’、Pb’等を用いて、例
えば5X10”/cJ程度のドーズ量とする。次に、n
型のソース7、n型のドレイン8およびゲート酸化膜2
に隣接する素子分離用酸化膜4の下側に低濃度不純物拡
散5を形成し、n型ドレイン8に隣接する低濃度不純物
拡散領域5の一部からn型トレイン8にまで延在する高
濃度不純物拡散領域6を形成する。ここで、低濃度子鈍
物拡散領域は、素子分離用酸化l!4形成時に用いる酸
化マスクをイオンインプラマスクとしてセルフアライメ
ントに形成でき、ドーパントはP+As” 、 Pb”
等を用いて、例えば、2.0X10”/cJから8.0
X40”/c+J程度のドーズ量とする。また、高濃度
不純物拡散領域6は、素子分離用酸化膜4形成前に、イ
ンプラマスク7を形成後、n”、 As”Pb4等のn
型ドーパントをイオン注入することにより形成でき、例
えば2.OXl013/cJ程度のドーズ量を用いる。
An embodiment of the present invention will be described in detail based on the drawings. FIG. 1 shows a cross-sectional view in the channel direction of an embodiment of the high breakdown voltage MO3 type semiconductor device of the present invention. For example, P
An element-use oxide film 4 is formed near the surface of the type semiconductor substrate 1, a gate oxide film is formed in a region surrounded by the element isolation oxide film 4, and the element isolation oxide film 4 is formed through the gate oxide film 2.
2, and an n-type source 7 and an n-type drain 8 adjacent to the outside in the channel direction of the element isolation oxide film 4 adjacent to the gate oxide film 2 are formed. do. Here, an n-type source 7, an n-type drain 8
can be formed using the element isolation oxide film 4 as an implant mask, and dopants such as P', As', Pb', etc. are used at a dose of, for example, 5 x 10''/cJ.Next, n
type source 7, n type drain 8 and gate oxide film 2
A low concentration impurity diffusion region 5 is formed under the element isolation oxide film 4 adjacent to the n-type drain 8 , and a high concentration impurity diffusion region 5 extending from a part of the low concentration impurity diffusion region 5 adjacent to the n-type drain 8 to the n-type train 8 is formed. Impurity diffusion region 6 is formed. Here, the low concentration particle diffusion region is oxidized l! for element isolation. 4 can be formed in self-alignment by using the oxide mask used during formation as an ion implantation mask, and the dopants are P+As", Pb"
For example, from 2.0X10"/cJ to 8.0
The dose is approximately
It can be formed by ion implantation of a type dopant, for example 2. A dose of about OXl013/cJ is used.

この後は、図示しないが中間層形成し、コンタクトホー
ルを選択的に形成し、配線層を形成し、保護膜を形成す
ることにより完成する。
After this, although not shown, an intermediate layer is formed, contact holes are selectively formed, a wiring layer is formed, and a protective film is formed to complete the process.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明した半導体装置は、素子分離用酸化膜の
下側に設けた低濃度不純物拡散領域とドレインとの間に
高濃度不純物拡散領域を設けたため、濃度差によるポテ
ンシャルのギャップを緩和し、ホントキャリアの発生を
抑制するとともに、電流集中による熱破壊を抑制した。
In the semiconductor device described in detail above, the high concentration impurity diffusion region is provided between the low concentration impurity diffusion region provided under the element isolation oxide film and the drain, so that the potential gap due to the concentration difference is alleviated. In addition to suppressing the generation of real carriers, it also suppresses thermal damage caused by current concentration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のMO3型半導体装置のチャネル方向断
面図、第2図は従来のMO3型半導体装置のチャネル方
向断面図である。 ・P型半導体基板 ・ゲート酸化膜 ・ゲート電極 素子分離用酸化膜 ・n型低濃度不純物拡散領域 ・n型高濃度不純物拡散領域 ・n型のソース ・n型のドレイン 以上 出願人 セイコー電子工業株式会社 代理人 弁理士 林  敬 之 助
FIG. 1 is a sectional view in the channel direction of an MO3 type semiconductor device of the present invention, and FIG. 2 is a sectional view in the channel direction of a conventional MO3 type semiconductor device.・P-type semiconductor substrate ・Gate oxide film ・Oxide film for gate electrode element isolation ・N-type low-concentration impurity diffusion region ・N-type high-concentration impurity diffusion region ・N-type source ・N-type drain and above Applicant: Seiko Electronic Industries, Ltd. Company agent Patent attorney Keinosuke Hayashi

Claims (1)

【特許請求の範囲】[Claims]  第1導電型の半導体基板表面付近に素子分離用酸化膜
を設け、前記素子分離用酸化膜に囲まれた領域にゲート
酸化膜を設け、前記ゲート酸化膜を介して前記素子分離
用酸化膜上の一部にまで延在するゲート電極を設け、前
記ゲート酸化膜に隣接する前記素子分離用酸化膜のチャ
ネル方向の外側に隣接する第2導電型のソース、第2導
電型のドレインを設け、前記ゲート酸化膜および前記第
2導電型のソース、前記第2導電型のドレインに隣接す
る前記素子分離用酸化膜の下側に第2導電型の低濃度不
純物拡散領域を設け、前記第2導電型のドレインに隣接
する前記低濃度不純物拡散領域の一部から前記ドレイン
にまで延在する第2導電型の高濃度不純物拡散領域を設
けたことを特徴とする半導体装置。
An oxide film for element isolation is provided near the surface of a semiconductor substrate of a first conductivity type, a gate oxide film is provided in a region surrounded by the oxide film for element isolation, and a gate oxide film is provided on the oxide film for element isolation via the gate oxide film. a second conductivity type source and a second conductivity type drain adjacent to the outer side of the element isolation oxide film in the channel direction of the element isolation oxide film adjacent to the gate oxide film; A low concentration impurity diffusion region of a second conductivity type is provided under the element isolation oxide film adjacent to the gate oxide film, the source of the second conductivity type, and the drain of the second conductivity type, and A semiconductor device comprising a second conductivity type high concentration impurity diffusion region extending from a part of the low concentration impurity diffusion region adjacent to the drain of the mold to the drain.
JP17497190A 1990-07-02 1990-07-02 Semiconductor device Pending JPH0462975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17497190A JPH0462975A (en) 1990-07-02 1990-07-02 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17497190A JPH0462975A (en) 1990-07-02 1990-07-02 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0462975A true JPH0462975A (en) 1992-02-27

Family

ID=15987942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17497190A Pending JPH0462975A (en) 1990-07-02 1990-07-02 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0462975A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784490B1 (en) 1999-09-24 2004-08-31 Matsushita Electric Industrial Co., Ltd. High-voltage MOS transistor
JP2007165398A (en) * 2005-12-09 2007-06-28 Matsushita Electric Ind Co Ltd Semiconductor device, and method of manufacturing same
JP2009158821A (en) * 2007-12-27 2009-07-16 Sharp Corp Semiconductor device and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784490B1 (en) 1999-09-24 2004-08-31 Matsushita Electric Industrial Co., Ltd. High-voltage MOS transistor
KR100710947B1 (en) * 1999-09-24 2007-04-24 마츠시타 덴끼 산교 가부시키가이샤 High-voltage mos transistor
JP2007165398A (en) * 2005-12-09 2007-06-28 Matsushita Electric Ind Co Ltd Semiconductor device, and method of manufacturing same
JP2009158821A (en) * 2007-12-27 2009-07-16 Sharp Corp Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US20050006701A1 (en) High voltage metal-oxide semiconductor device
JPH04107877A (en) Semiconductor device and its manufacturing method
JPS62156873A (en) Semiconductor device
JP2001284540A (en) Semiconductor device and method of manufacturing the same
JPH0462975A (en) Semiconductor device
JPS60247974A (en) semiconductor equipment
JPS62262462A (en) Semiconductor device
JP2860482B2 (en) Method for manufacturing semiconductor device
JP3049725B2 (en) MOS transistor
JPH04251939A (en) Semiconductor device and manufacture thereof
JPH0342872A (en) Manufacture of semiconductor device
KR100252747B1 (en) Flash memory device and manufacturing method thereof
JPH02280322A (en) Manufacture of semiconductor device
JPH0346272A (en) Manufacture of semiconductor device
KR100293270B1 (en) CMOS transistor manufacturing method
JPH03120870A (en) Insulated-gate type semiconductor device
JP2830630B2 (en) Semiconductor device and manufacturing method thereof
JP2676769B2 (en) Semiconductor device
JPS61203679A (en) Mos transistor of high withstand voltage
JPS627148A (en) Complementary semiconductor device and manufacturing method thereof
JP2024042049A (en) Semiconductor device and semiconductor device manufacturing method
KR970024287A (en) Silicon-On-Insulator MOS transistor and fabricating method
JPH04356965A (en) Semiconductor device
JPH03242976A (en) semiconductor equipment