[go: up one dir, main page]

JPH04107877A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method

Info

Publication number
JPH04107877A
JPH04107877A JP2225797A JP22579790A JPH04107877A JP H04107877 A JPH04107877 A JP H04107877A JP 2225797 A JP2225797 A JP 2225797A JP 22579790 A JP22579790 A JP 22579790A JP H04107877 A JPH04107877 A JP H04107877A
Authority
JP
Japan
Prior art keywords
area
extended drain
region
type
drain region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2225797A
Other languages
Japanese (ja)
Other versions
JP2991753B2 (en
Inventor
Yuji Yamanishi
山西 雄司
Hiroshi Tanida
宏 谷田
Seiki Yamaguchi
山口 誠毅
Hideo Kawasaki
川崎 英夫
Hiroyuki Shindo
裕之 進藤
Toshihiko Uno
宇野 利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP2225797A priority Critical patent/JP2991753B2/en
Publication of JPH04107877A publication Critical patent/JPH04107877A/en
Application granted granted Critical
Publication of JP2991753B2 publication Critical patent/JP2991753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • H10D62/109Reduced surface field [RESURF] PN junction structures
    • H10D62/111Multiple RESURF structures, e.g. double RESURF or 3D-RESURF structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/601Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs 
    • H10D30/603Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs  having asymmetry in the channel direction, e.g. lateral high-voltage MISFETs having drain offset region or extended drain IGFETs [EDMOS]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/13Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
    • H10D62/149Source or drain regions of field-effect devices
    • H10D62/151Source or drain regions of field-effect devices of IGFETs 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/213Channel regions of field-effect devices
    • H10D62/221Channel regions of field-effect devices of FETs
    • H10D62/235Channel regions of field-effect devices of FETs of IGFETs
    • H10D62/314Channel regions of field-effect devices of FETs of IGFETs having vertical doping variations 

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To reduce chip size by providing a second conductivity type extended drain area which contacts with a drain contact area, providing a first conductivity type area which is biased reversely to the extended drain area in the extended drain area and permitting the surface of a semiconductor substrate between the extended drain area and a source area to be a channel area so as to provide a gate electrode on the channel area through a gate oxide film. CONSTITUTION:Boron is ion-implanted in an extended drain area 11, some heat processing is performed, then, the surface of a semiconductor substrate 15 is thermally oxidized. Thus, the segregation coefficients of the boron in a silicon oxide film 8 and the boron in silicon are differentiated. Thus, the boron density at the surface of the substrate 15 is reduced to be N-type and a P-type area is buried in the extended drain area 11. The P-type area 10 is biased reversely to the drain area 11 and depletion layers are spread between the extended drain area 11 and the semiconductor substrate 15 and between the P-type area 10 in the extended drain area 11 and the extended drain area 11. Therefore, the on-resistance between the drain sources becomes smaller than the MOSFET of the conventional structure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置とその製造方法に関し、特にドレイ
ン−ソース間の降伏電圧を高くする必要があるMOSF
ETとして利用できるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor device and its manufacturing method, and particularly to a MOSFET which requires a high breakdown voltage between drain and source.
It can be used as an ET.

従来の技術 第2図に従来の高耐圧横型MO3FETの断面を示す。Conventional technology FIG. 2 shows a cross section of a conventional high voltage lateral MO3FET.

ドレイン20−ソース23間の降伏電圧を高くするため
、半導体基板25内に不純物濃度の低い延長ドレイン領
域21を形成し、ドレイン20−ソース23間が逆バイ
アスされた場合、延長ドレイン領域21に空乏層が広が
るようにしている。なお、図中、16はドレイン電極、
17はソース電極、18はシリコン酸化膜、19はゲー
ト電極、22はアンチパンチスルー領域、24は基板コ
ンタクト領域である。
In order to increase the breakdown voltage between the drain 20 and the source 23, an extended drain region 21 with a low impurity concentration is formed in the semiconductor substrate 25, and when the region between the drain 20 and the source 23 is reverse biased, the extended drain region 21 is depleted. I try to spread out the layers. In addition, in the figure, 16 is a drain electrode,
17 is a source electrode, 18 is a silicon oxide film, 19 is a gate electrode, 22 is an anti-punch-through region, and 24 is a substrate contact region.

発明が解決しようとする課題 上記のような延長ドレイン領域をもうけた従来構造では
、逆電圧がかかったとき、延長ドレイン領域21と半導
体基板25間の接合より空乏層が広がるが、ドレイン2
0−ソース23間降伏電圧を高くするため延長ドレイン
領域21が空乏化するように延長ドレイン領域21の濃
度を低くしなければならない。このことによって高耐圧
は実現できるが、延長ドレイン領域21内の抵抗成分が
大きくなり、MOSFETのドレイン20−ソース23
間オン抵抗が大きくなってしまい、動作時の損失が大き
くなり、大電流を流すためには、素子サイズを大きくし
なければならなくなるという欠点があった。
Problems to be Solved by the Invention In the conventional structure including the extended drain region as described above, when a reverse voltage is applied, the depletion layer spreads from the junction between the extended drain region 21 and the semiconductor substrate 25;
In order to increase the 0-source 23 breakdown voltage, the concentration of the extended drain region 21 must be made low so that the extended drain region 21 is depleted. Although a high breakdown voltage can be achieved by this, the resistance component in the extended drain region 21 increases, and the drain 20-source 23 of the MOSFET increases.
This has the disadvantage that the on-resistance increases during operation, the loss during operation increases, and the element size must be increased in order to allow a large current to flow.

課題を解決するための手段 上記の問題点を解決するため、本発明では、第1導電型
半導体基板に設けた第2導電型のソース領域とドレイン
コンタクト領域との間に、上記ドレインコンタクト領域
に接する第2導電型の延長ドレイン領域を設け、この延
長ドレイン領域内に延長ドレイン領域と逆バイアスされ
た第1導電型領域を設け、延長ドレイン領域とソース領
域間の半導体基板表面をチャネル領域とし、このチャネ
ル領域上にゲート酸化膜を介してゲート電極を設けた製
造としている。
Means for Solving the Problems In order to solve the above-mentioned problems, in the present invention, between the source region of the second conductivity type provided on the semiconductor substrate of the first conductivity type and the drain contact region, providing an extended drain region of a second conductivity type in contact with the extended drain region, providing a first conductivity type region reversely biased with the extended drain region within the extended drain region, and using a surface of the semiconductor substrate between the extended drain region and the source region as a channel region; A gate electrode is provided on this channel region via a gate oxide film.

作   用 このような本発明の構造をとることで高耐圧を実現しつ
つ、ドレイン−ソース間オン抵抗を大幅に低下すること
ができる。
Operation By employing the structure of the present invention as described above, it is possible to achieve a high breakdown voltage and to significantly reduce the drain-source on-resistance.

実施例 第1図に本発明の半導体装置の一実施例におけるNチャ
ネルMOSFETの断面を示す。延長ドレイン領域11
の表面濃度は約lX10cm  とし、この延長ドレイ
ン領域11内にP型領域10を形成し、このP型領域1
0の濃度は5X10  cm以上とした。半導体基板1
5の濃度は3×10140I11−3とし、半導体基板
15の表面のシリコン酸化膜8の厚さは2μm以上とし
た。ゲート電極7には多結晶シリコン膜を使用した。ゲ
ートを極7下に位置するシリコン酸化膜がゲート酸化膜
となる。P型領域10を形成するには、まず延長ドレイ
ン領域11を、半導体基板15へのイオン注入、不純物
ドープ、拡散で形成した後、P型領域10の不純物をド
ープするため延長ドレイン領域11にボロンをイオン注
入し、若干の熱処理をおこなった後、半導体基板15の
表面を熱酸化する。このことでシリコン酸化膜8とシリ
コン間のボロンの偏析係数が異なることから、基板15
表面のボロン濃度が低下しN型となり、P型領域は型延
長ドレイン領域11中に埋め込まれた構造となる。この
P型領域10をドレイン領域11と逆バイアスすること
で延長ドレイン領域11と半導体基板15間、及び上記
延長ドレイン領域11中のP型領域10と延長ドレイン
領域11間に空乏層が広がる。したがって従来構造の場
合とちがって、延長ドレイン領域11のi1度を高くし
ても、延長ドレイン領域11を空乏化できる。したがっ
てドレイン−ソース間オン抵抗を従来構造のMOSFE
Tよりも小さくすることができる。このことで従来構造
のMOSFETと比較して単位面積当りのトレイン−ソ
ース間オン抵抗は1775〜17′6にできた。
Embodiment FIG. 1 shows a cross section of an N-channel MOSFET in an embodiment of the semiconductor device of the present invention. Extended drain region 11
The surface concentration of is approximately 1×10 cm, and a P-type region 10 is formed in this extended drain region 11.
The concentration of 0 was greater than 5×10 cm. Semiconductor substrate 1
The concentration of 5 was set to 3×10140I11-3, and the thickness of the silicon oxide film 8 on the surface of the semiconductor substrate 15 was set to 2 μm or more. A polycrystalline silicon film was used for the gate electrode 7. The silicon oxide film located below the gate electrode 7 becomes a gate oxide film. To form the P-type region 10, first the extended drain region 11 is formed by ion implantation, impurity doping, and diffusion into the semiconductor substrate 15, and then boron is added to the extended drain region 11 in order to dope the P-type region 10 with impurities. After ion implantation and some heat treatment, the surface of the semiconductor substrate 15 is thermally oxidized. As a result, the segregation coefficient of boron between the silicon oxide film 8 and silicon differs, so the substrate 15
The boron concentration on the surface decreases to become N type, and the P type region becomes a structure embedded in the type extension drain region 11. By applying a reverse bias to this P type region 10 and the drain region 11, a depletion layer is spread between the extended drain region 11 and the semiconductor substrate 15 and between the P type region 10 and the extended drain region 11 in the extended drain region 11. Therefore, unlike the conventional structure, the extended drain region 11 can be depleted even if the i1 degree of the extended drain region 11 is increased. Therefore, the on-resistance between drain and source is
It can be made smaller than T. As a result, the train-to-source on-resistance per unit area can be 1775 to 17'6 compared to a MOSFET of conventional structure.

発明の効果 以上のように本発明によれば、高耐圧横型MOSFET
のチップサイズを縮小することができる。
Effects of the Invention As described above, according to the present invention, a high voltage lateral MOSFET
chip size can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるNチャネルMOSF
ETの断面図、第2図は従来の高耐圧横型MO5FET
の断面図である。 ■・・・・・・ドレイン端子、2・・・・・延長トレイ
ン中P型領域電極端子、3・・・・・・ゲート電子、4
・・・・・・ソース端子、5・・・・・・ドレイン電極
、6・・・・・・ソース電極、7・・・・・・ゲート電
極、8・・・・・・シリコン酸化膜、9・・・・・・ド
レインコンタクト領域、10・・・・・・延長ドレイン
領域内P型領域、11・・・・・・延長ドレイン領域、
12・・・・・・アンチバンチスルー領域、13・・・
・・・ソース領域、14・・・・・・基板コンタクト領
域、15・・・・・・半導体基板。
FIG. 1 shows an N-channel MOSF in one embodiment of the present invention.
A cross-sectional view of ET, Figure 2 is a conventional high-voltage horizontal MO5FET.
FIG. ■...Drain terminal, 2...P-type region electrode terminal in extension train, 3...Gate electron, 4
...... Source terminal, 5... Drain electrode, 6... Source electrode, 7... Gate electrode, 8... Silicon oxide film, 9... Drain contact region, 10... P-type region in extended drain region, 11... Extended drain region,
12... Anti-bunch through area, 13...
. . . Source region, 14 . . . Substrate contact region, 15 . . . Semiconductor substrate.

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型半導体基板に設けた第2導電型のソー
ス領域とドレインコンタクト領域との間に、上記ドレイ
ンコンタクト領域に接する第2導電型の延長ドレイン領
域を設け、上記延長ドレイン領域内に延長ドレイン領域
と逆バイアスされた第1導電型領域を設け、延長ドレイ
ン領域とソース領域間の半導体基板表面をチャネル領域
とし、このチャネル領域上にゲート酸化膜を介してゲー
ト電極を設けた半導体装置。
(1) An extended drain region of a second conductivity type that is in contact with the drain contact region is provided between a source region of a second conductivity type and a drain contact region provided on a semiconductor substrate of a first conductivity type, and an extended drain region of a second conductivity type is provided within the extended drain region. A semiconductor device in which an extended drain region and a reverse biased first conductivity type region are provided, the surface of the semiconductor substrate between the extended drain region and the source region is used as a channel region, and a gate electrode is provided on the channel region via a gate oxide film. Device.
(2)請求項1記載の半導体装置をNチャネルMOSF
ETとし、N型延長ドレイン領域内に、このドレイン領
域と逆バイアスされた第1導電型領域としてのP型領域
を形成する場合、延長ドレイン領域を形成してから、P
型領域を形成するためのボロンイオン注入を行い、その
後、表面をおおうシリコン酸化膜を形成し、P型領域表
面の濃度を低下させて延長ドレイン領域表面の濃度より
も低くし、P型領域を延長ドレイン領域内にとじこめる
ようにした半導体装置の製造方法。
(2) The semiconductor device according to claim 1 is an N-channel MOSFET.
ET, and when forming a P-type region as a first conductivity type region reverse biased with this drain region in an N-type extended drain region, after forming the extended drain region,
Boron ion implantation is performed to form a type region, and then a silicon oxide film is formed to cover the surface, and the concentration on the surface of the P-type region is lowered to be lower than that on the surface of the extended drain region. A method of manufacturing a semiconductor device that can be confined within an extended drain region.
JP2225797A 1990-08-27 1990-08-27 Semiconductor device and manufacturing method thereof Expired - Fee Related JP2991753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2225797A JP2991753B2 (en) 1990-08-27 1990-08-27 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2225797A JP2991753B2 (en) 1990-08-27 1990-08-27 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04107877A true JPH04107877A (en) 1992-04-09
JP2991753B2 JP2991753B2 (en) 1999-12-20

Family

ID=16834933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2225797A Expired - Fee Related JP2991753B2 (en) 1990-08-27 1990-08-27 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2991753B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898201A (en) * 1994-08-12 1999-04-27 United Microelectronics Corporation Low resistance, high breakdown voltage, power mosfet
EP0967660A2 (en) * 1998-06-25 1999-12-29 Matsushita Electronics Corporation Power MOSFET and method for fabricating the same
US6043534A (en) * 1997-11-05 2000-03-28 Matsushita Electronics Corporation High voltage semiconductor device
WO2000046859A1 (en) * 1999-02-05 2000-08-10 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6168983B1 (en) 1996-11-05 2001-01-02 Power Integrations, Inc. Method of making a high-voltage transistor with multiple lateral conduction layers
US6312996B1 (en) 1998-10-19 2001-11-06 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
US6404012B1 (en) * 1997-11-13 2002-06-11 Nec Corporation Semiconductor device having a reverse conductive type diffusion layer in an extended drain diffusion layer
US6501130B2 (en) 2001-01-24 2002-12-31 Power Integrations, Inc. High-voltage transistor with buried conduction layer
US6509220B2 (en) 2000-11-27 2003-01-21 Power Integrations, Inc. Method of fabricating a high-voltage transistor
US6635544B2 (en) 2001-09-07 2003-10-21 Power Intergrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US6639277B2 (en) 1996-11-05 2003-10-28 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6768171B2 (en) 2000-11-27 2004-07-27 Power Integrations, Inc. High-voltage transistor with JFET conduction channels
US6781198B2 (en) 2001-09-07 2004-08-24 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US6815293B2 (en) 2001-09-07 2004-11-09 Power Intergrations, Inc. High-voltage lateral transistor with a multi-layered extended drain structure
US7115958B2 (en) 2001-10-29 2006-10-03 Power Integrations, Inc. Lateral power MOSFET for high switching speeds
US7786533B2 (en) 2001-09-07 2010-08-31 Power Integrations, Inc. High-voltage vertical transistor with edge termination structure
US7859037B2 (en) 2007-02-16 2010-12-28 Power Integrations, Inc. Checkerboarded high-voltage vertical transistor layout
CN102544092A (en) * 2010-12-16 2012-07-04 无锡华润上华半导体有限公司 CMOS (complementary metal oxide semiconductor) device and manufacturing method thereof
US9601613B2 (en) 2007-02-16 2017-03-21 Power Integrations, Inc. Gate pullback at ends of high-voltage vertical transistor structure
US9660053B2 (en) 2013-07-12 2017-05-23 Power Integrations, Inc. High-voltage field-effect transistor having multiple implanted layers
US10325988B2 (en) 2013-12-13 2019-06-18 Power Integrations, Inc. Vertical transistor device structure with cylindrically-shaped field plates

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898201A (en) * 1994-08-12 1999-04-27 United Microelectronics Corporation Low resistance, high breakdown voltage, power mosfet
US6570219B1 (en) 1996-11-05 2003-05-27 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6800903B2 (en) 1996-11-05 2004-10-05 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6168983B1 (en) 1996-11-05 2001-01-02 Power Integrations, Inc. Method of making a high-voltage transistor with multiple lateral conduction layers
US6777749B2 (en) * 1996-11-05 2004-08-17 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6787437B2 (en) 1996-11-05 2004-09-07 Power Integrations, Inc. Method of making a high-voltage transistor with buried conduction regions
US6768172B2 (en) 1996-11-05 2004-07-27 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6724041B2 (en) 1996-11-05 2004-04-20 Power Integrations, Inc. Method of making a high-voltage transistor with buried conduction regions
US6828631B2 (en) 1996-11-05 2004-12-07 Power Integrations, Inc High-voltage transistor with multi-layer conduction region
US6639277B2 (en) 1996-11-05 2003-10-28 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6633065B2 (en) 1996-11-05 2003-10-14 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6043534A (en) * 1997-11-05 2000-03-28 Matsushita Electronics Corporation High voltage semiconductor device
US6404012B1 (en) * 1997-11-13 2002-06-11 Nec Corporation Semiconductor device having a reverse conductive type diffusion layer in an extended drain diffusion layer
US6534829B2 (en) 1998-06-25 2003-03-18 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
KR100606530B1 (en) * 1998-06-25 2006-07-31 마츠시타 덴끼 산교 가부시키가이샤 Semiconductor device
EP0967660A3 (en) * 1998-06-25 2002-08-28 Matsushita Electric Industrial Co., Ltd. Power MOSFET and method for fabricating the same
EP0967660A2 (en) * 1998-06-25 1999-12-29 Matsushita Electronics Corporation Power MOSFET and method for fabricating the same
US6312996B1 (en) 1998-10-19 2001-11-06 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
WO2000046859A1 (en) * 1999-02-05 2000-08-10 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6509220B2 (en) 2000-11-27 2003-01-21 Power Integrations, Inc. Method of fabricating a high-voltage transistor
US6768171B2 (en) 2000-11-27 2004-07-27 Power Integrations, Inc. High-voltage transistor with JFET conduction channels
US6504209B2 (en) 2001-01-24 2003-01-07 Power Integrations, Inc. High-voltage transistor with buried conduction layer
US6501130B2 (en) 2001-01-24 2002-12-31 Power Integrations, Inc. High-voltage transistor with buried conduction layer
US6818490B2 (en) 2001-01-24 2004-11-16 Power Integrations, Inc. Method of fabricating complementary high-voltage field-effect transistors
US6781198B2 (en) 2001-09-07 2004-08-24 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US7829944B2 (en) 2001-09-07 2010-11-09 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US6815293B2 (en) 2001-09-07 2004-11-09 Power Intergrations, Inc. High-voltage lateral transistor with a multi-layered extended drain structure
US6750105B2 (en) 2001-09-07 2004-06-15 Power Integrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US6667213B2 (en) 2001-09-07 2003-12-23 Power Integrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US6838346B2 (en) 2001-09-07 2005-01-04 Power Integrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US6882005B2 (en) 2001-09-07 2005-04-19 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US6987299B2 (en) 2001-09-07 2006-01-17 Power Integrations, Inc. High-voltage lateral transistor with a multi-layered extended drain structure
US6635544B2 (en) 2001-09-07 2003-10-21 Power Intergrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US6787847B2 (en) 2001-09-07 2004-09-07 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US7745291B2 (en) 2001-09-07 2010-06-29 Power Integrations, Inc. Method of fabricating a high-voltage transistor with an extended drain structure
US7786533B2 (en) 2001-09-07 2010-08-31 Power Integrations, Inc. High-voltage vertical transistor with edge termination structure
US7115958B2 (en) 2001-10-29 2006-10-03 Power Integrations, Inc. Lateral power MOSFET for high switching speeds
EP2562819A2 (en) 2002-05-02 2013-02-27 Power Integrations, Inc. Method of fabricating a high-voltage transistor
US7859037B2 (en) 2007-02-16 2010-12-28 Power Integrations, Inc. Checkerboarded high-voltage vertical transistor layout
US9601613B2 (en) 2007-02-16 2017-03-21 Power Integrations, Inc. Gate pullback at ends of high-voltage vertical transistor structure
CN102544092A (en) * 2010-12-16 2012-07-04 无锡华润上华半导体有限公司 CMOS (complementary metal oxide semiconductor) device and manufacturing method thereof
JP2014504008A (en) * 2010-12-16 2014-02-13 シーエスエムシー テクノロジーズ エフエイビー1 シーオー., エルティーディー CMOS device and manufacturing method thereof
US9660053B2 (en) 2013-07-12 2017-05-23 Power Integrations, Inc. High-voltage field-effect transistor having multiple implanted layers
US10325988B2 (en) 2013-12-13 2019-06-18 Power Integrations, Inc. Vertical transistor device structure with cylindrically-shaped field plates

Also Published As

Publication number Publication date
JP2991753B2 (en) 1999-12-20

Similar Documents

Publication Publication Date Title
JPH04107877A (en) Semiconductor device and its manufacturing method
JP3291957B2 (en) Vertical trench MISFET and method of manufacturing the same
JPH0330310B2 (en)
KR960012539A (en) Semiconductor device and manufacturing method
JP3219045B2 (en) Manufacturing method of vertical MISFET
KR970060534A (en) Power semiconductor device and manufacturing method thereof
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JPH03205832A (en) Insulated gate semiconductor device and its manufacturing method
JPS63217664A (en) MISFET and its manufacturing method
JPH0346238A (en) Manufacturing method of semiconductor device
JP2623902B2 (en) Semiconductor device and manufacturing method thereof
JP2860482B2 (en) Method for manufacturing semiconductor device
JPH04356966A (en) Insulated gate field effect transistor
JPH07147399A (en) Semiconductor device
JPH0462975A (en) Semiconductor device
JPH0387072A (en) Semiconductor device
JP3968901B2 (en) Field effect transistor and manufacturing method thereof
JPH0235779A (en) Semiconductor device and manufacture thereof
JPH03120836A (en) Semiconductor device
JPH0346272A (en) Manufacture of semiconductor device
JPH01189175A (en) Double diffused field effect semiconductor device
JPH03242976A (en) semiconductor equipment
JPS58115863A (en) Insulated gate field effect semiconductor device and manufacturing method thereof
KR970024287A (en) Silicon-On-Insulator MOS transistor and fabricating method
JPH0350743A (en) Semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees