[go: up one dir, main page]

JPH0456268A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0456268A
JPH0456268A JP2167156A JP16715690A JPH0456268A JP H0456268 A JPH0456268 A JP H0456268A JP 2167156 A JP2167156 A JP 2167156A JP 16715690 A JP16715690 A JP 16715690A JP H0456268 A JPH0456268 A JP H0456268A
Authority
JP
Japan
Prior art keywords
trench
region
nitride film
oxide film
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2167156A
Other languages
Japanese (ja)
Inventor
Katsuya Ishikawa
克也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP2167156A priority Critical patent/JPH0456268A/en
Publication of JPH0456268A publication Critical patent/JPH0456268A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Element Separation (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To enable the obstruction to the micronization due to a margin between a contact hole and an isolating region not to be taken into consideration by a method wherein the contact hole of a first diffusion region is expanded up to the isolating region. CONSTITUTION:A trench 3 is formed including an N<+>-type first diffusion layer region 2, a P<->-type channel stopper 5 is formed, an oxide film 7 is deposited, a first nitride film 8 is provided, and the first nitride film 8 is left unremoved only on the side wall of the trench 3. Then, a second selective oxide film 9 and a second nitride film 10 are deposited on the base of the trench 3, the second nitride film 10 formed on the base of the trench 3 is removed through anisotropic etching, the inside of the trench 3 is filled with a buried oxide film 11, then an etching mask 12 is formed, the first nitride film 8 and the second nitride film 10 are removed through anisotropic etching, the oxide film 7 on the side wall is removed through etching, and an N<+>-type second diffusion layer region 13 is formed. A buried polycrystalline silicon electrode 14 is formed inside the trench 3, an interlaminar insulating film 15 is deposited, and then a contact hole 16 is buried.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置の製造方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for manufacturing a semiconductor device.

従来の技術 従来、シリコン基板に形成されたMOSトランジスタの
ソースまたはドレインにコンタクトを形成する場合、シ
リコン基板表面にフォトリソ技術を使用してソース拡散
領域内、ドレイン拡散領域内にコンタクトホールを形成
するのが一般的である。
Conventional technology Conventionally, when forming a contact to the source or drain of a MOS transistor formed on a silicon substrate, contact holes are formed in the source diffusion region and drain diffusion region using photolithography on the surface of the silicon substrate. is common.

以下に従来の半導体装置の製造方法について説明する。A conventional method for manufacturing a semiconductor device will be described below.

第3図はMOSトランジスタのソース拡散領域。Figure 3 shows the source diffusion region of a MOS transistor.

ドレイン拡散領域にコンタクトを形成する方法を説明す
るための平面図である。図に示すように、従来のコンタ
クト形成方法ではソース拡散領域またはドレイン拡散領
域2内にコンタクトホール16が形成されている。1は
ゲート領域である。
FIG. 3 is a plan view for explaining a method of forming a contact in a drain diffusion region. As shown in the figure, in the conventional contact forming method, a contact hole 16 is formed in the source or drain diffusion region 2. 1 is a gate region.

発明が解決しようとする課題 しかしながら上記従来の構成では、フォトリソ技術の進
展に従って素子の微細化は進むが、トランジスタ間の分
離領域およびコンタクトホールをソース拡散領域または
ドレイン拡散領域内に形成するためのマージンが必要と
なり、このことが集積回路全体の微細化に対する限界と
なっていた。
Problems to be Solved by the Invention However, in the above-mentioned conventional configuration, although elements are becoming finer as photolithography technology progresses, margins for forming isolation regions between transistors and contact holes in source diffusion regions or drain diffusion regions are insufficient. This has become a limit to the miniaturization of the entire integrated circuit.

本発明は上記従来の課題を解決するもので、コンタクト
ホールと分離領域とのマージンを考慮する必要のない半
導体装置の製造方法を提供することを目的とする。
The present invention is intended to solve the above-mentioned conventional problems, and an object of the present invention is to provide a method for manufacturing a semiconductor device that does not require consideration of the margin between a contact hole and an isolation region.

課題を解決するための手段 この目的を達成するために本発明の半導体装置の製造方
法は、ソース拡散領域またはドレイン拡散領域(以下総
称して第一の拡散層領域と称す)にコンタクトホールを
形成するために、分離領域とコンタクトホール部を含ん
でトレンチを形成し、そのトレンチ内部に酸化シリコン
の柱を形成し、その後トレンチの側壁にイオン注入して
第一の拡散層領域に接続された第二の拡散層領域を形成
し、酸化シリコンの柱とトレンチ側壁との間に多結晶シ
リコン電極を埋込み、多結晶シリコンを含んで第一の拡
散層領域にコンタクトホールを形成するものである。
Means for Solving the Problems In order to achieve this object, the method for manufacturing a semiconductor device of the present invention includes forming a contact hole in a source diffusion region or a drain diffusion region (hereinafter collectively referred to as a first diffusion layer region). In order to do this, a trench is formed including an isolation region and a contact hole, a silicon oxide pillar is formed inside the trench, and then ions are implanted into the sidewalls of the trench to form a trench connected to the first diffusion layer region. A second diffusion layer region is formed, a polycrystalline silicon electrode is buried between the silicon oxide pillar and the trench sidewall, and a contact hole containing polycrystalline silicon is formed in the first diffusion layer region.

作用 この構成によって、第一の拡散層領域のコンタクトホー
ルを分離領域にまで広げることができく本発明では素子
分離はトレンチ底部で行っている)、コンタクトホール
と分離領域とのマージンによる微細化の妨げを考慮する
必要がなくなる。
Effect: With this configuration, the contact hole in the first diffusion layer region can be extended to the isolation region (in the present invention, element isolation is performed at the bottom of the trench), and the margin between the contact hole and the isolation region allows for miniaturization. There is no need to consider obstacles.

またトレンチ内部にイオン注入を行う際に素子形成に必
要なp型拡散層およびn型拡散層を同時に形成−するこ
とができる。
Further, when ion implantation is performed inside the trench, a p-type diffusion layer and an n-type diffusion layer necessary for forming an element can be formed at the same time.

実施例 以下に本発明の一実施例について、第1図を用いて説明
する。
EXAMPLE An example of the present invention will be described below with reference to FIG.

第1図(a)は2個のMOS トランジスタの主要部を
示す平面図、同図(b)〜(i)は工程順断面図である
FIG. 1(a) is a plan view showing the main parts of two MOS transistors, and FIG. 1(b) to (i) are sectional views in the order of steps.

図において、1はゲート領域、2はソース拡散領域また
はドレイン拡散領域などのn1型の第一の拡散層領域、
破線で囲んだ領域3はトレンチ領域である。
In the figure, 1 is a gate region, 2 is an n1 type first diffusion layer region such as a source diffusion region or a drain diffusion region,
Region 3 surrounded by a broken line is a trench region.

まず、トレンチ領域3以外の領域にレジスト膜を形成し
、そのレジスト膜をマスクとして酸化膜4をエツチング
した後、この酸化膜4をマスクとしてシリコンをエツチ
ングする。同図(b)は同図(a)をA−A’線(拡張
層領域方向)で切断した断面図である。n+型の第一の
拡張層領域2を含んでトレンチ3が形成されている。4
は酸化膜である。同図(e)は同図(a)をB−B’線
(分離領域方向)で切断した断面図である。これらの図
に示すように、トレンチ3の側壁および底部にほう素イ
オン(B+)が大傾斜イオン注入機を用いて約2 X 
10 I3cwl−2程度注入され、そこにp−型のチ
ャンネルストッパー5が形成される。6は第一選択酸化
膜である。
First, a resist film is formed in a region other than the trench region 3, and the oxide film 4 is etched using the resist film as a mask. Then, silicon is etched using the oxide film 4 as a mask. FIG. 5B is a cross-sectional view taken along line AA' (in the direction of the expansion layer region) of FIG. A trench 3 is formed including a first extension layer region 2 of n+ type. 4
is an oxide film. Figure (e) is a sectional view taken along line BB' (separation region direction) of figure (a). As shown in these figures, boron ions (B+) are implanted into the sidewalls and bottom of trench 3 using a large tilt ion implanter at approximately 2X
About 10 I3cwl-2 is injected, and a p-type channel stopper 5 is formed there. 6 is a first selective oxide film.

次に、第1図ω)(第1図(a)のA−A’線による断
面図)に示すようにトレンチ3の内部に500A程度の
薄い酸化膜7を形成した後、減圧CVD法(LPCVD
法)を用いて第一窒化膜8を1500A程度堆積する。
Next, as shown in FIG. 1(ω) (cross-sectional view taken along line A-A' in FIG. 1(a)), a thin oxide film 7 of about 500A is formed inside the trench 3, and then a low pressure CVD method ( LPCVD
A first nitride film 8 is deposited to a thickness of about 1500 Å using a method (method).

そして異方性ドライエツチング法によりトレンチ3の底
部の窒化膜を除去し、トレンチ3の側壁にのみ第一窒化
膜8を残す。次に第1図(e)、げ)に示すように、ト
レンチ3の底部に第二選択酸化膜9を形成する。その後
第二窒化膜10を堆積し、異方性トイエツチングにより
トレンチ3の底部の第二窒化膜10を除去する。そして
トレンチ3の内部を埋込み酸化膜11で埋め込んだ後、
全面にレジスト膜を塗布し、エツチングマスク12を形
成する。ここで第1図(a)をA−A’線で切断した断
面図に相当するのが同図(e)、B−B′線で切断した
断面図に相当するのが同図(f)である。レジストマス
ク12を用いて分離領域方向(BB’)の第一窒化膜8
および第二窒化膜10を異方性ドライエツチング法によ
り除去する。その後トレンチ3の内部に残った第一窒化
膜8および第二窒化膜10をエツチング除去する。この
状態を示したのが第1図(g)(第1図(a)のA−A
’線による断面図で、以下同図(h) (i)も同様で
ある)である。
Then, the nitride film at the bottom of the trench 3 is removed by anisotropic dry etching, leaving the first nitride film 8 only on the side walls of the trench 3. Next, as shown in FIG. 1(e), a second selective oxide film 9 is formed at the bottom of the trench 3. Thereafter, a second nitride film 10 is deposited, and the second nitride film 10 at the bottom of the trench 3 is removed by anisotropic etching. After filling the inside of the trench 3 with a buried oxide film 11,
A resist film is applied to the entire surface to form an etching mask 12. Here, Fig. 1(e) corresponds to a cross-sectional view taken along line A-A' in Fig. 1(a), and figure (f) corresponds to a cross-sectional view taken along line B-B'. It is. First nitride film 8 in isolation region direction (BB') using resist mask 12
Then, the second nitride film 10 is removed by anisotropic dry etching. Thereafter, the first nitride film 8 and the second nitride film 10 remaining inside the trench 3 are removed by etching. This state is shown in Figure 1(g) (A-A in Figure 1(a)).
This is a cross-sectional view taken along the line ' (h) and (i) below.

すなわちトレンチ3内の中央に埋込み酸化膜11の柱が
立っている。次にトレンチ3の側壁の薄い酸化膜7をエ
ツチング除去した後、大傾斜イオン注入機を用いて拡散
層領域方向(A−A’M)のトレンチ3の側壁にひ素イ
オン(As+)を約5×10”ell−2程度注入し、
n中型の第二の拡散層領域13を形成する。またn型お
よびp型開時にコンタクトを形成する場合は、拡散層領
域方向(AA’)のトレンチ3の側壁の一方にはAs+
でn+型の拡散層領域を形成し、もう一方の側にはBF
2+を3X10”c+a−2程度注入してp+型の拡散
層領域を形成することにより、1個のトレンチ内でp型
およびn型のコンタクトを同時に形成することが可能で
ある。次に、第1図(噸に示すように、減圧CVD法(
LPCVD法)を用いてトレンチ3の内部に多結晶シリ
コンを埋込み、埋込み多結晶シリコン電極14を形成す
る。最後に第1図(i)に示すように、層間絶縁膜15
を堆積後、コンタクトホール16を埋込み多結晶シリコ
ン電極14にかかるように形成する。
That is, a column of buried oxide film 11 stands at the center of trench 3. Next, after removing the thin oxide film 7 on the side wall of the trench 3 by etching, approximately 50% of arsenic ions (As+) are injected into the side wall of the trench 3 in the direction of the diffusion layer region (A-A'M) using a large tilt ion implanter. Inject about ×10”ell-2,
An n medium-sized second diffusion layer region 13 is formed. In addition, when forming a contact when the n-type and p-type are open, one of the side walls of the trench 3 in the direction of the diffusion layer region (AA') is made of As+
An n+ type diffusion layer region is formed on the other side, and BF is formed on the other side.
By implanting approximately 3×10"c+a-2 of 2+ to form a p+ type diffusion layer region, it is possible to simultaneously form p-type and n-type contacts within one trench. As shown in Figure 1 (噸), the low pressure CVD method (
Polycrystalline silicon is buried inside the trench 3 using the LPCVD method to form a buried polycrystalline silicon electrode 14. Finally, as shown in FIG. 1(i), the interlayer insulating film 15
After depositing, a contact hole 16 is formed so as to span the buried polycrystalline silicon electrode 14.

なお、本発明の実施列における各マスクの関係を第2に
示す。図に示すようにコンタクトホール16は第一の拡
散層領域2とトレンチ3の両方にかかって形成されてお
り、ゲート領域1から外へ延びる第一の拡散層領域2は
第3図に示す従来列に比べて少な(て良いため、素子間
隔を狭(することができる。従来方法に比べて、分離領
域とコンタクトホールとのマージンを0.2μm少なく
でき、分離領域上に形成した多結晶シリコン電極へかか
るコンタクトを形成することによりマージンを0.3μ
m少なくでき、合計0.5μm(片側)程度、素子間隔
を縮小できる。
Incidentally, the relationship between the masks in the implementation row of the present invention is shown in the second section. As shown in the figure, the contact hole 16 is formed so as to extend over both the first diffusion layer region 2 and the trench 3, and the first diffusion layer region 2 extending outward from the gate region 1 is formed in a conventional manner as shown in FIG. Compared to the conventional method, the margin between the isolation region and the contact hole can be reduced by 0.2 μm, and the polycrystalline silicon formed on the isolation region can be By forming a contact to the electrode, the margin is reduced to 0.3μ.
m can be reduced, and the element spacing can be reduced by a total of about 0.5 μm (on one side).

発明の効果 以上のように本発明は、コンタクトホールと素子分離領
域とのマージンを考慮する必要がなく、素子分離領域上
にある埋込み多結晶シリコン電極にかかるコンタクトホ
ールを形成できるため素子の微細化ができる。さらに1
個のトレンチでn型とp型のコンタクトを同時に形成す
ることができる。
Effects of the Invention As described above, the present invention eliminates the need to consider the margin between the contact hole and the element isolation region, and allows the formation of a contact hole that spans the buried polycrystalline silicon electrode on the element isolation region, thereby facilitating miniaturization of elements. I can do it. 1 more
N-type and p-type contacts can be formed simultaneously in a single trench.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の製造方法による半導体装置の平
面図、第1図(b)〜(i)は同じく工程順断面図、第
2図は同半導体装置の製造方法における各マスクの関係
を示す平面図、第3図は従来の半導体装置の製造方法に
おける各マスクの関係を示す平面図である。 2・・・・・・第一の拡散層領域(ソース拡散領域、ド
レイン拡散領域)、3・・・・・・トレンチ、11・・
・・・・埋込み酸化膜、13・・・・・・第二の拡散層
領域(拡散層)、14・・・・・・埋込み多結晶シリコ
ン電極(多結晶シリコン電極)、15・・・・・・層間
絶縁膜、16・・・・・・コンタクトホール。 代理人の氏名 弁理士 粟野重孝 ほか1名未 図 プ
FIG. 1(a) is a plan view of a semiconductor device according to the manufacturing method of the present invention, FIGS. 1(b) to (i) are sectional views in the same process order, and FIG. FIG. 3 is a plan view showing the relationship between masks in a conventional semiconductor device manufacturing method. 2...First diffusion layer region (source diffusion region, drain diffusion region), 3...Trench, 11...
...Buried oxide film, 13...Second diffusion layer region (diffusion layer), 14...Buried polycrystalline silicon electrode (polycrystalline silicon electrode), 15... ...Interlayer insulating film, 16...Contact hole. Name of agent: Patent attorney Shigetaka Awano and one other person not shown.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板に形成された第一のMOSトランジス
タのソース拡散領域および第二のMOSトランジスタの
ドレイン拡散領域の一部と第一および第二のMOSトラ
ンジスタの分離領域の一部と第一および第二のMOSト
ランジスタの分離領域の一部とを含んでトレンチを形成
する工程と、前記トレンチ内にその側壁との間に間隔を
有する埋込み酸化膜の柱を形成する工程と、トレンチ側
壁に前記ソース拡散領域またはドレイン拡散領域に接続
される拡散層を形成する工程と、前記埋込み酸化膜の柱
とトレンチ側壁との間に多結晶シリコン電極を埋め込む
工程と、半導体基板上の全面に層間絶縁膜を形成する工
程と、前記層間絶縁膜に前記多結晶シリコン電極の一部
を含むソース拡散領域およびドレイン拡散領域のコンタ
クトホールを形成する工程とを有する半導体装置の製造
方法。
(1) Part of the source diffusion region of the first MOS transistor and the drain diffusion region of the second MOS transistor formed in the semiconductor substrate, part of the isolation region of the first and second MOS transistors, and the first and second MOS transistors. a step of forming a trench including a part of the isolation region of the second MOS transistor; a step of forming a pillar of a buried oxide film having a space between the trench sidewall and the trench sidewall; A step of forming a diffusion layer connected to a source diffusion region or a drain diffusion region, a step of embedding a polycrystalline silicon electrode between the column of the buried oxide film and the side wall of the trench, and an interlayer insulating film formed on the entire surface of the semiconductor substrate. and forming contact holes for source and drain diffusion regions including part of the polycrystalline silicon electrode in the interlayer insulating film.
(2)第一のMOSトランジスタと第二のMOSトラン
ジスタのいずれか一方がn型で、他方がp型である請求
項1記載の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein one of the first MOS transistor and the second MOS transistor is an n-type, and the other is a p-type.
JP2167156A 1990-06-25 1990-06-25 Manufacture of semiconductor device Pending JPH0456268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2167156A JPH0456268A (en) 1990-06-25 1990-06-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2167156A JPH0456268A (en) 1990-06-25 1990-06-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0456268A true JPH0456268A (en) 1992-02-24

Family

ID=15844462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2167156A Pending JPH0456268A (en) 1990-06-25 1990-06-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0456268A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100362934B1 (en) * 1995-12-29 2003-03-03 주식회사 하이닉스반도체 Manufacturing method of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100362934B1 (en) * 1995-12-29 2003-03-03 주식회사 하이닉스반도체 Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JP3640486B2 (en) Memory cell and method of manufacturing a memory cell structure
US8847298B2 (en) Pillars for vertical transistors
JP3434488B2 (en) Manufacturing method of DRAM cell
US5718800A (en) Self-aligned N+/P+ doped polysilicon plugged contacts to N+/P+ doped polysilicon gates and to N+/P+ doped source/drain regions
KR20030032836A (en) A method to form a self-aligned CMOS inverter using vertical device integration
JP2791260B2 (en) Method for manufacturing semiconductor device
US4445967A (en) Method for manufacturing semiconductor device
US6124192A (en) Method for fabricating ultra-small interconnections using simplified patterns and sidewall contact plugs
US6300178B1 (en) Semiconductor device with self-aligned contact and manufacturing method thereof
JP2001217200A (en) Method for fabricating semiconductor device
JPS58220445A (en) Manufacture of semiconductor integrated circuit
JPH09134954A (en) Semiconductor device and its manufacture
US6380088B1 (en) Method to form a recessed source drain on a trench side wall with a replacement gate technique
US6479355B2 (en) Method for forming landing pad
GB2289162A (en) Semiconductor device with trench isolation and method for fabrication therof
JPH0456268A (en) Manufacture of semiconductor device
JP3034351B2 (en) Method for manufacturing semiconductor device
JPS6119111B2 (en)
JPH0864810A (en) Method of manufacturing vertical MOS FET
KR0150671B1 (en) Manufacturing method of semiconductor having a different isolation structure between peripheral circuit area and cell area
US5830796A (en) Method of manufacturing a semiconductor device using trench isolation
JPS63260163A (en) Manufacture of semiconductor memory device
KR100621451B1 (en) Manufacturing Method of Semiconductor Device
JP2596182B2 (en) Method of manufacturing MOS type read-only memory device
JPH09129842A (en) Manufacture of semiconductor device