[go: up one dir, main page]

JPH0451774B2 - - Google Patents

Info

Publication number
JPH0451774B2
JPH0451774B2 JP17676387A JP17676387A JPH0451774B2 JP H0451774 B2 JPH0451774 B2 JP H0451774B2 JP 17676387 A JP17676387 A JP 17676387A JP 17676387 A JP17676387 A JP 17676387A JP H0451774 B2 JPH0451774 B2 JP H0451774B2
Authority
JP
Japan
Prior art keywords
current
voltage
amplification means
photoelectric conversion
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17676387A
Other languages
Japanese (ja)
Other versions
JPS6420418A (en
Inventor
Yoshitaka Terada
Mikio Kyomasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP17676387A priority Critical patent/JPS6420418A/en
Publication of JPS6420418A publication Critical patent/JPS6420418A/en
Publication of JPH0451774B2 publication Critical patent/JPH0451774B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、フオトダイオードなどの光電変換素
子によつて光電変換された光電流のうち信号光に
よるもののみを増幅して出力する光検出装置に関
する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a photodetection device that amplifies and outputs only signal light of the photocurrent photoelectrically converted by a photoelectric conversion element such as a photodiode. Regarding.

〔従来の技術〕[Conventional technology]

一般に、フオトダイオードなどの光電変換素子
と光電変換素子によつて光電変換された光電流を
電流−電圧変換して増幅する増幅器とからなる光
検出装置では、検出されるべき信号光と同時に、
太陽光などの外乱光が光電変換素子に入射する場
合に、信号光による光電流のみを増幅して出力す
る必要がある。
In general, in a photodetection device consisting of a photoelectric conversion element such as a photodiode and an amplifier that converts and amplifies the photocurrent photoelectrically converted by the photoelectric conversion element, the signal light to be detected is simultaneously detected.
When disturbance light such as sunlight is incident on a photoelectric conversion element, it is necessary to amplify and output only the photocurrent caused by the signal light.

特に信号光が交流変調光あるいはパルス変調光
であり、外乱光が直流光あるいは信号光の周波数
よりもかなり低い周波数の光である場合に、増幅
回路において、光電変換された光電流から直流成
分および低周波数成分を取除くことで、信号光に
よる光電流のみを抽出して出力することができ
る。
In particular, when the signal light is AC modulated light or pulse modulated light and the disturbance light is DC light or light with a frequency considerably lower than the frequency of the signal light, in the amplifier circuit, the DC component and the By removing low frequency components, only the photocurrent caused by the signal light can be extracted and output.

第3図および第4図はこの種の従来の光検出装
置の構成図である。
FIGS. 3 and 4 are configuration diagrams of this type of conventional photodetecting device.

第3図の光検出装置は、フオトダイオードなど
の光電変換素子50と、光電変換素子50によつ
て光電変換された光電流を電流電圧変換し増幅す
る増幅器51と、増幅器51の出力端子に直列に
接続されている結合コンデンサ52とを備えてい
る。
The photodetection device shown in FIG. 3 includes a photoelectric conversion element 50 such as a photodiode, an amplifier 51 that converts and amplifies the photocurrent photoelectrically converted by the photoelectric conversion element 50, and is connected in series to the output terminal of the amplifier 51. A coupling capacitor 52 is connected to the coupling capacitor 52.

第3図の構成の光検出装置では、増幅器51か
らの信号光による交流電圧成分と外乱光による直
流電圧成分、低周波電圧成分とが結合コンデンサ
52に入力するが、結合コンデンサ52は、信号
光による交流電圧成分だけを通過させ出力するの
で、外乱光による電圧成分を取除くことができ
る。
In the photodetector having the configuration shown in FIG. 3, an AC voltage component due to the signal light from the amplifier 51, a DC voltage component due to the disturbance light, and a low frequency voltage component are input to the coupling capacitor 52. Since only the AC voltage component caused by the disturbance light is passed through and output, the voltage component caused by the disturbance light can be removed.

また第4図の電圧検出装置は、光電変換素子5
0と、光電変換素子50によつて光電変換された
光電流を電流電圧変換し増幅する増幅器51と、
増幅器51からの出力電圧のうち直流電圧成分お
よび低周波電圧成分を通過させるローパスフイル
タ62と、ローパスフイルタ62からの直流電圧
成分および低周波電圧成分を電圧−電流変換して
増幅器51に負帰還入力させる増幅器63とを備
えている。
Further, the voltage detection device shown in FIG. 4 includes a photoelectric conversion element 5
0, an amplifier 51 that converts and amplifies the photocurrent photoelectrically converted by the photoelectric conversion element 50,
A low-pass filter 62 passes a DC voltage component and a low-frequency voltage component of the output voltage from the amplifier 51, and a voltage-current converter converts the DC voltage component and low-frequency voltage component from the low-pass filter 62 and inputs negative feedback to the amplifier 51. It is equipped with an amplifier 63 for

第4図の電圧検出装置では、増幅器51からの
外乱光による直流電圧成分および低周波電圧成分
は、ローパスフイルタ62、増幅器63を介して
増幅器51に負帰還入力するので、これにより増
幅器51の出力電圧から外乱光による直流電圧成
分、低周波電圧成分を取除くことができる。
In the voltage detection device shown in FIG. 4, the DC voltage component and low frequency voltage component due to the disturbance light from the amplifier 51 are input as negative feedback to the amplifier 51 via the low-pass filter 62 and the amplifier 63, so that the output of the amplifier 51 is DC voltage components and low frequency voltage components caused by disturbance light can be removed from the voltage.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら第3図の光検出装置では、増幅器
51からは信号光による交流電圧成分とは外乱光
による直流電圧成分、低周波電圧成分との両方が
出力され、しかる後結合コンデンサ52によつて
直流電圧成分、低周波電圧成分を取除いているの
で、外乱光の光量が多い場合に増幅器51にはそ
のダイナミツクレンジ以上の光電流が加わること
になり、増幅器51の出力特性が飽和し、その出
力中に含まれる信号光による交流電圧成分が消失
するという事態が生ずる。このために、増幅器5
1の入力電流のダイナミツクレンジをゲインに対
して相対的に大きくとる必要がある。換言すれ
ば、増幅器51の出力ダイナミツクレンジに対
し、ゲインを小さくしておく必要がある。しかし
ながら、増幅器51のゲインを小さくすると、外
乱光の光量が多い場合に増幅器55の出力特性が
飽和するという事態を防止できるものの、信号光
による交流電圧成分に対するゲインも小さくなる
ので、感度を良くするためには増幅器51の後段
でこれをさらに増幅しなければならないという問
題がある。
However, in the photodetector shown in FIG. 3, the amplifier 51 outputs both the AC voltage component due to the signal light, the DC voltage component due to the disturbance light, and the low frequency voltage component, and then the coupling capacitor 52 outputs the DC voltage component. Since the low-frequency voltage component is removed, when the amount of disturbance light is large, a photocurrent exceeding the dynamic range of the amplifier 51 is applied to the amplifier 51, and the output characteristics of the amplifier 51 become saturated, causing the output to decrease. A situation occurs in which the alternating current voltage component due to the signal light contained therein disappears. For this purpose, the amplifier 5
It is necessary to make the dynamic range of the input current relatively large with respect to the gain. In other words, it is necessary to keep the gain small relative to the output dynamic range of the amplifier 51. However, if the gain of the amplifier 51 is reduced, although it is possible to prevent the output characteristics of the amplifier 55 from becoming saturated when the amount of disturbance light is large, the gain for the AC voltage component due to the signal light is also reduced, which improves the sensitivity. There is a problem in that this must be further amplified at a stage subsequent to the amplifier 51 in order to achieve this.

また第4図の光検出装置では、増幅器51の入
力に直流電圧成分および低周波電圧成分が負帰還
されるので、増幅器51の入力は実質的に信号光
による交流電圧成分だけとなる。これにより、外
乱光の光量が多い場合でも、増幅器51が飽和す
ることはなく、増幅器51のゲインを小さくせず
とも外乱光に対してダイナミツクレンジを大きく
とることができる。しかしながら第4図の光検出
装置では、負帰還を行なうためのローパスフイル
タ62に大容量のコンデンサが必要であり、さら
には負帰還を行なうことで回路を常に安定して動
作させることが難かしいなどの問題があつた。
Further, in the photodetecting device shown in FIG. 4, since the DC voltage component and the low frequency voltage component are negatively fed back to the input of the amplifier 51, the input to the amplifier 51 is substantially only the AC voltage component due to the signal light. As a result, even when the amount of disturbance light is large, the amplifier 51 does not become saturated, and a large dynamic range can be achieved with respect to the disturbance light without reducing the gain of the amplifier 51. However, in the photodetection device shown in FIG. 4, a large capacitance capacitor is required for the low-pass filter 62 for negative feedback, and furthermore, it is difficult to always operate the circuit stably due to negative feedback. There was a problem.

本発明は、光電変換素子によつて光電変換され
た光電流のうち信号光によるもののみを安定した
状態で、高感度に出力することの可能な光検出装
置を提供することを目的としている。
An object of the present invention is to provide a photodetection device that is capable of stably and highly sensitively outputting only signal light of the photocurrent photoelectrically converted by a photoelectric conversion element.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、第1の光電変換素子と、第1の光電
変換素子と、第1の光電変換素子からの光電流を
電圧に変換して増倍する第1の電流−電圧変換増
幅手段と、第2の光電変換素子と、前記第1の電
流−電圧変換増幅手段の周波数帯域幅よりも狭い
帯域幅をもち第2の光電変換素子からの低周波の
光電流に応答しこれを電流に変換して増幅する第
2の電流−電圧変換増幅手段と、第2の電流−電
圧変換増幅手段からの出力電圧を所定の利得で電
流に変換して前記第1の電流−電圧変換増幅手段
の入力端に加える電圧−電流変換増幅手段とを備
え、前記電圧−電流変換増幅手段からの電流は、
前記第1の光電変換素子からの光電流を相殺する
方向に前記第1の電流−電圧変換増幅手段の入力
端に流入するようになつていることを特徴とする
光検出装置によつて、上記従来技術の問題点を改
善するものである。
The present invention includes a first photoelectric conversion element, a first photoelectric conversion element, a first current-voltage conversion amplification means that converts a photocurrent from the first photoelectric conversion element into a voltage and multiplies it, a second photoelectric conversion element, which has a frequency bandwidth narrower than the frequency bandwidth of the first current-voltage conversion amplification means, and responds to a low-frequency photocurrent from the second photoelectric conversion element and converts it into a current; and a second current-voltage conversion amplification means for converting and amplifying the output voltage from the second current-voltage conversion amplification means, and converting the output voltage from the second current-voltage conversion amplification means into a current with a predetermined gain to input the current to the first current-voltage conversion amplification means. voltage-current conversion amplification means applied to the terminal, and the current from the voltage-current conversion amplification means is
The above photodetecting device is characterized in that the photocurrent flows into the input terminal of the first current-voltage conversion and amplification means in a direction that cancels out the photocurrent from the first photoelectric conversion element. This improves the problems of the prior art.

〔作用〕[Effect]

本発明では、入射した光により第1の光電変換
素子から出力される光電流を第1の電流−電圧変
換増幅手段によつて電圧に変換し増幅して出力す
るようになつている。ところで本発明では、さら
に第2の光電変換素子と、第2の光電変換素子か
らの光電流を電圧に変換して増幅する第2の電流
−電圧変換増幅手段と、第2の電流−電圧変換増
幅手段からの出力電圧を電流に変換して第1の電
流−電圧変換増幅手段の入力端を加える電圧−電
流変換手段とを備えている。この第2の電流−電
圧変換増幅手段は、第1電流−電圧変換増幅手段
の周波数帯域幅よりも狭い帯域幅をもち、第2の
光電変換素子からの低周波の光電流だけに応答す
るので、第2の電流−電圧変換増幅手段から出力
される電圧は、第2の光電変換素子に入射する光
のうち、外乱光によるものだけとなり、これが電
圧−電流変換手段を介して第1の電流−電圧変換
増幅手段に第1の光電変換素子からの光電流を相
殺する方向に流入する。これにより、第1の電流
−電圧変換増幅手段に流入する光電流のうち外乱
光による直流電圧成分、低周波成分を減少させ、
第1の電流−電圧変換増幅手段の利得を小さく設
定せずとも、第1の電流−電圧変換増幅手段から
信号光による交流成分を感度良く出力させること
ができる。
In the present invention, the photocurrent output from the first photoelectric conversion element due to incident light is converted into a voltage by the first current-voltage conversion and amplification means, amplified, and output. By the way, the present invention further includes a second photoelectric conversion element, a second current-voltage conversion amplification means that converts the photocurrent from the second photoelectric conversion element into a voltage and amplifies it, and a second current-voltage conversion element. and voltage-current conversion means for converting the output voltage from the amplification means into a current and applying the current to the input terminal of the first current-voltage conversion amplification means. This second current-voltage conversion amplification means has a frequency bandwidth narrower than that of the first current-voltage conversion amplification means, and responds only to the low-frequency photocurrent from the second photoelectric conversion element. , the voltage output from the second current-voltage conversion amplification means is only due to disturbance light among the light incident on the second photoelectric conversion element, and this is converted into the first current through the voltage-current conversion means. - The photocurrent flows into the voltage conversion and amplification means in a direction that cancels out the photocurrent from the first photoelectric conversion element. This reduces the DC voltage component and low frequency component due to disturbance light among the photocurrent flowing into the first current-voltage conversion amplification means,
Even without setting the gain of the first current-voltage conversion amplification means small, the AC component of the signal light can be output with good sensitivity from the first current-voltage conversion amplification means.

なお、第2の光電変換素子の受光面積を第1の
光電変換素子の受光面積よりも小さくし、第2の
電流−電圧変換増幅手段と電圧−電流変換手段と
による利得を第1および第2の光電変換素子の受
光面積比とほぼ同じに設定すると、第1の電流−
電圧変換増幅手段の入力端において外乱光による
直流成分、低周波成分は完全に相殺されるので、
信号光による交流成分を一層感度良く出力させる
ことができる。また、第2の光電変換素子に入射
する光量に対する第2の電流−電圧変換増幅手段
のダイナミツクレンジを第1の光電変換素子に入
射する光量に対する第1の電流−電圧変換増幅手
段のダイナミツクレンジよりも大きく設定するこ
とにより、強い外乱光の場合にも、第1の電流−
電圧変換増幅手段を何ら飽和させずに、信号光に
よる交流成分だけを感度良くかつ精度良く出力さ
せることができる。
Note that the light-receiving area of the second photoelectric conversion element is made smaller than the light-receiving area of the first photoelectric conversion element, and the gain by the second current-voltage conversion amplification means and the voltage-current conversion means is When set to be almost the same as the light receiving area ratio of the photoelectric conversion element, the first current -
At the input end of the voltage conversion and amplification means, the DC component and low frequency component due to disturbance light are completely canceled out.
The alternating current component of the signal light can be output with even higher sensitivity. Furthermore, the dynamic range of the second current-voltage conversion amplification means with respect to the amount of light incident on the second photoelectric conversion element is the dynamic range of the first current-voltage conversion amplification means with respect to the amount of light incident on the first photoelectric conversion element. By setting it larger than the range, the first current -
Only the alternating current component of the signal light can be output with good sensitivity and accuracy without saturating the voltage conversion and amplification means.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明す
る。
Embodiments of the present invention will be described below based on the drawings.

第1図は本発明に係る光検出装置の実施例の構
成図である。
FIG. 1 is a block diagram of an embodiment of a photodetecting device according to the present invention.

第1図の光検出装置は、2つの光電変換素子
1,2と、光電変換素子1,2によつて光電変換
された光電流をそれぞれ電圧に変換する電流−電
圧変換増幅手段3,4と、電流−電圧変換増幅手
段4の出力端と電流−電圧変換増幅手段3の入力
端とを接続する抵抗5とを備えている。
The photodetector shown in FIG. 1 includes two photoelectric conversion elements 1 and 2, and current-voltage conversion amplification means 3 and 4 that convert photocurrents photoelectrically converted by the photoelectric conversion elements 1 and 2 into voltages, respectively. , a resistor 5 connecting the output end of the current-voltage conversion amplification means 4 and the input end of the current-voltage conversion amplification means 3.

光電変換素子1,2は、それぞれフオトダイオ
ードからなつており、光電変換素子1,2の受光
面積をそれぞれA,Bとすると、受光面積A,B
が、 A/B>1 ……(1) の関係を満たすように構成されている。
The photoelectric conversion elements 1 and 2 each consist of a photodiode, and if the light-receiving areas of the photoelectric conversion elements 1 and 2 are A and B, respectively, the light-receiving areas are A and B.
is configured to satisfy the relationship A/B>1...(1).

また電流−電圧変換増幅手段3は、高ゲインの
反転増幅器6と、反転増幅器6の出力をその入力
側に帰還させる帰還抵抗7とからなつており、電
流−電圧変換増幅手段4は、高ゲインの反転増幅
器8と、反転増幅器6の出力をその入力側に帰還
させる帰還抵抗9および帰還容量10とからなつ
ている。電流−電圧変換増幅手段3,4における
直流の電流−電圧変換利得すなわちゲインは、そ
れぞれの帰還抵抗7,9の抵抗値RF1,RF2によ
つて決定される。すなわち電流−電圧変換増幅手
段3,4のゲインはそれぞれ、RF1,RF2となる。
また、電流−電圧変換増幅手段4は、帰還容量1
0を有しているが、この帰還容量10の容量値
CFによつて、電流−電圧変換増幅手段4のカツ
トオフ周波数f0は、 f0=1/2πCFRF2 ……(2) となり、第2図に示すように、電流−電圧変換増
幅手段4の帯域幅f2は、電流−電圧変換増幅手段
3の帯域幅f1よりもかなり小さくなつている。
The current-voltage conversion amplification means 3 includes a high-gain inverting amplifier 6 and a feedback resistor 7 that feeds back the output of the inverting amplifier 6 to its input side. It consists of an inverting amplifier 8, a feedback resistor 9 and a feedback capacitor 10 that feed back the output of the inverting amplifier 6 to its input side. The DC current-voltage conversion gain in the current-voltage conversion amplification means 3 and 4 is determined by the resistance values R F1 and R F2 of the feedback resistors 7 and 9, respectively. That is, the gains of the current-voltage conversion amplification means 3 and 4 are R F1 and R F2 , respectively.
Further, the current-voltage conversion amplification means 4 has a feedback capacitance 1
0, but the capacitance value of this feedback capacitor 10 is
Due to C F , the cutoff frequency f 0 of the current-voltage conversion amplification means 4 becomes f 0 =1/2πC F R F2 ...(2), and as shown in FIG. The bandwidth f 2 of 4 is considerably smaller than the bandwidth f 1 of the current-voltage conversion amplification means 3.

電流−電圧変換増幅手段4の出力端と電流−電
圧変換増幅手段3の入力端とを接続する抵抗5
は、電流−電圧変換増幅手段4からの出力電圧を
電流に変換して電流−電圧変換増幅手段3の入力
に加えるためのものであり、電圧−電流変換器と
して機能する。なおこの抵抗5の抵抗値をRC
すると、この抵抗5による電圧−電流変換利得
は、1/RCとなる。
A resistor 5 connecting the output end of the current-voltage conversion amplification means 4 and the input end of the current-voltage conversion amplification means 3
is for converting the output voltage from the current-voltage conversion amplification means 4 into a current and applying it to the input of the current-voltage conversion amplification means 3, and functions as a voltage-current converter. Note that when the resistance value of this resistor 5 is R C , the voltage-current conversion gain due to this resistor 5 is 1/R C .

このような構成の光検出装置では、光電変換素
子1,2に同じ光量の光すなわち外乱光を含んだ
信号光を同時に入射させると、光電変換素子1,
2には光電流I1,I2がそれぞれ流れる。光電変換
素子1,2の受光面積A,Bは、前述の(1)式の関
係のようになつているので、光電流I1,I2間に
は、kを定数として、 I1=K・I2 ……(3) の関係が成立する。光電流I2が電流−電圧変換増
幅手段4に加わると、電流−電圧変換増幅手段4
の出力電圧V02は、 V02=−I2・RF2=−I1・RF2/k ……(4) となり、この出力電圧V02により抵抗5を介して
電流−電圧変換増幅手段3の入力端に流入する電
流ICは、 IC=V02/RC =−I1・RF2/(k・RC) ……(5) となる。いま、帰還抵抗9の抵抗値RF2と抵抗5
の抵抗値RCとを RF2/RC=k ……(6) の関係を満たすように選定すると、(5)式から、抵
抗5を介して電流−電圧変換増幅手段3の入力端
に流入する電流ICは、 IC=−I1 ……(7) となり、光電変換素子1からの光電流I1を相殺
し、電流−電圧変換増幅手段3に流入する電流を
零にすることができる。但し、全ての帯域におい
て電流を相殺すると、外乱光による直流成分、低
周波成分のみならず、信号光による交流成分も失
なわれてしまうので、本実施例では、帰還容量1
0によつて外乱光による直流成分、低周波成分の
電流だけを相殺するようにしている。すなわち第
2図に示すように帰還容量10によつて電流−電
圧変換増幅手段4の周波数帯域(帯域幅f1)を信
号光による交流成分の周波数帯域(帯域幅f2)に
対して十分低く設定すれば、電流−電圧変換増幅
手段4の出力電圧V02は、信号光による交流成分
を含まず外乱光による直流成分、低周波成分だけ
のものとなり、従つて抵抗5を介して電流−電圧
変換増幅手段3に流入する電流ICも、直流成分、
低周波成分だけのものとなる、これにより、光電
変換素子1からの光電流I1のうち直流成分、低周
波成分のものだけを電流ICにより実質的に取除く
ことができる。このようにして電流−電圧変換増
幅手段3の入力端には、光電流I1のうち信号光に
よる交流成分のもののみが、加わるので、電流−
電圧変換増幅手段3は、この信号光による光電流
だけをゲインを小さくする必要なく利得RF1で電
流−電圧変換して出力することができるので、従
来のものに比べて感度を著しく向上させることが
可能となる。
In a photodetector having such a configuration, when light of the same amount of light, that is, signal light containing disturbance light, is simultaneously incident on the photoelectric conversion elements 1 and 2, the photoelectric conversion elements 1 and 2
2, photocurrents I 1 and I 2 flow through them, respectively. Since the light-receiving areas A and B of the photoelectric conversion elements 1 and 2 have the relationship shown in equation (1) above, the relationship between the photocurrents I 1 and I 2 is given by I 1 =K, where k is a constant.・I 2 ……(3) holds true. When the photocurrent I2 is applied to the current-voltage conversion amplification means 4, the current-voltage conversion amplification means 4
The output voltage V 02 of is V 02 = −I 2・R F2 = −I 1・R F2 /k (4), and this output voltage V 02 causes the current-voltage conversion amplification means 3 to pass through the resistor 5. The current I C flowing into the input terminal of is I C =V 02 /R C =-I 1 ·R F2 /(k·R C ) (5). Now, the resistance value R F2 of feedback resistor 9 and resistor 5
If the resistance value R C is selected so as to satisfy the relationship R F2 /R C =k (6), then from equation (5), a The inflowing current I C becomes I C =-I 1 ...(7), which cancels out the photocurrent I 1 from the photoelectric conversion element 1 and makes the current flowing into the current-voltage conversion amplification means 3 zero. Can be done. However, if the currents are canceled in all bands, not only the DC component and low frequency component due to the disturbance light but also the AC component due to the signal light will be lost, so in this example, the feedback capacitance 1
0 cancels out only the DC component and low frequency component current due to disturbance light. That is, as shown in FIG. 2, the frequency band (bandwidth f 1 ) of the current-voltage conversion amplification means 4 is made sufficiently lower than the frequency band (bandwidth f 2 ) of the alternating current component due to the signal light by the feedback capacitor 10. If set, the output voltage V 02 of the current-voltage conversion amplification means 4 does not include the AC component caused by the signal light, but only the DC component and low frequency component caused by the disturbance light, and therefore the current-voltage is converted through the resistor 5. The current I C flowing into the conversion amplification means 3 also has a DC component,
As a result, only the direct current component and low frequency component of the photocurrent I 1 from the photoelectric conversion element 1 can be substantially removed by the current I C . In this way, only the alternating current component due to the signal light of the photocurrent I1 is applied to the input terminal of the current-voltage conversion amplification means 3, so that the current -
The voltage conversion amplification means 3 can convert only the photocurrent caused by this signal light into a voltage with a gain R F1 and output it without reducing the gain, so the sensitivity can be significantly improved compared to the conventional one. becomes possible.

また第1図の光検出装置において、光電変換素
子2、電流−電圧変換増幅手段4、抵抗5が設け
られておらず電流−電圧変換増幅手段3の入力端
に抵抗5からの電流ICを流入させない場合には
(すなわち第3図に示すような従来の光検出装置
と同様の構成では)、光電変換素子1に入射する
光の光量は、電流−電圧変換増幅手段3の反転増
幅器6の飽和出力電圧VTHによつて制限される。
Furthermore, in the photodetecting device shown in FIG. 1, the photoelectric conversion element 2, the current-voltage conversion amplification means 4, and the resistor 5 are not provided, and the current I C from the resistor 5 is supplied to the input terminal of the current-voltage conversion amplification means 3. When the light is not allowed to flow in (that is, in a configuration similar to the conventional photodetecting device as shown in FIG. 3), the amount of light incident on the photoelectric conversion element 1 is equal to Limited by the saturated output voltage VTH .

すなわち反転増幅器6を飽和させず動作させる
限界の光電流I1THは、 I1TH=VTH/RF1 ……(8) となる。
That is, the limit photocurrent I 1TH that allows the inverting amplifier 6 to operate without saturation is I 1TH =V TH /R F1 (8).

これに対して、本実施例のように光電変換素子
1の受光面積Aに対して受光面積Bが1/kだけ
小さな光変換素子2と、電流−電圧変換増幅手段
4と、抵抗5とを設け、電流−電圧変換増幅手段
3の入力端に抵抗5からの電流ICを流入させる場
合には、電流ICを流入させない場合に比べてダイ
ナミツクレンジは著しく広くなる。すなわち、電
流−電圧変換増幅手段3の入力端に電流を流入さ
せる場合には、ダイナミツクレンジは、電流−電
圧変換増幅手段4の反転増幅器8の飽和出力電圧
によつて決定される。反転増幅器8が反転増幅器
6と同じ飽和出力電圧VTHをもつているとする
と、反転増幅器8を飽和させずに正常に動作させ
る限界の光電流I2THは、 I2TH=VTH/RF2 ……(9) となる。(9)式を(8)式と比較するとわかるように電
流−電圧変換増幅手段4のダイナミツクレンジ
は、電流−電圧変換増幅手段3単体のダイナミツ
クレンジに比べて、 (I1TH・RF1)/(I2TH・RF2) =k・RF1/RF2 ……(10) 倍、増加することになる。例えば帰還抵抗値
RF1,RF2が同じ値であるとすると、電流−電圧
変換増幅手段4では飽和出力電圧VTHになるまで
にk倍の光量を入射させることができる。従つ
て、電流ICを流入させないときの光量の限界値が
例えば1000ルクスであつたのを、1000kルクスの
光量まで許容することができることになる。電流
−電圧変換増幅手段4の出力がダイナミツクレン
ジ内にある限り、電流−電圧変換増幅手段3には
外乱光による直流成分、低周波成分の出力は現わ
れないので、本実施例の光検出装置では電流IC
流入させないときに比べて、外乱光に対するダイ
ナミツクレンジを全体としてK・RF1/RF2倍に
することが可能となる。
On the other hand, as in this embodiment, the photoconversion element 2 whose light-receiving area B is smaller than the light-receiving area A of the photoelectric conversion element 1 by 1/k, the current-voltage conversion amplification means 4, and the resistor 5 are used. When the current I C from the resistor 5 is caused to flow into the input terminal of the current-voltage conversion amplification means 3, the dynamic range becomes significantly wider than when no current I C is caused to flow therein. That is, when a current is caused to flow into the input terminal of the current-voltage conversion amplification means 3, the dynamic range is determined by the saturated output voltage of the inverting amplifier 8 of the current-voltage conversion amplification means 4. Assuming that the inverting amplifier 8 has the same saturation output voltage V TH as the inverting amplifier 6, the limit photocurrent I 2TH that allows the inverting amplifier 8 to operate normally without saturating it is I 2TH = V TH /R F2 ... …(9) becomes. As can be seen by comparing equation (9) with equation (8), the dynamic range of the current-voltage conversion amplification means 4 is smaller than that of the current-voltage conversion amplification means 3 alone . )/(I 2TH・R F2 ) =k・R F1 /R F2 ...(10) This will increase by a factor of 1. For example, feedback resistance value
Assuming that R F1 and R F2 are the same value, the current-voltage conversion amplification means 4 can allow k times the amount of light to enter until the saturated output voltage V TH is reached. Therefore, the limit value of the light amount when the current I C is not flowing is, for example, 1000 lux, but it is now possible to tolerate a light amount of 1000 k lux. As long as the output of the current-voltage conversion amplification means 4 is within the dynamic range, no DC component or low frequency component output due to disturbance light will appear in the current-voltage conversion amplification means 3. In this case, the dynamic range against disturbance light can be increased by K·R F1 /R F2 as a whole compared to when no current I C is introduced.

また本実施例の装置は、第4図に示す従来の装
置のような全体負帰還を有しておらず、外乱光の
直流成分、低周波成分を負帰還しないので、装置
全体を安定して動作させることができる。
Furthermore, the device of this embodiment does not have an overall negative feedback like the conventional device shown in FIG. It can be made to work.

このように、本実施例の光検出装置では、外乱
光に対するダイナミツクレンジが大きくかつ交流
変調光としての信号光に対する電流−電圧変換利
得が大きいので、信号光とともに強い外乱光が入
射したとしても、信号光による光信号のみを感度
良く増幅することができて、これにより電流−電
圧変換増幅手段3の後段に接続される信号処理回
路を簡素化することが可能となり、全体の回路規
模を小さくすることができる。
In this way, the photodetector of this embodiment has a large dynamic range for disturbance light and a large current-voltage conversion gain for signal light as AC modulated light, so even if strong disturbance light is incident along with signal light, , it is possible to amplify only the optical signal from the signal light with high sensitivity, and this makes it possible to simplify the signal processing circuit connected to the latter stage of the current-voltage conversion amplification means 3, reducing the overall circuit scale. can do.

また全体負帰還しないことにより装置全体を安
定して動作させることができるので、容量10の
容量値CFを小さな値にしても良く、これにより
容量10を光電変換素子1,2、反転増幅器6,
8、抵抗7,9および信号処理回路(図示せず)
とともに1つのモノリシツクIC内に集積化して
形成することができる。
In addition, since the entire device can operate stably by not having negative feedback as a whole, the capacitance value C F of the capacitor 10 may be set to a small value. ,
8. Resistors 7, 9 and signal processing circuit (not shown)
They can also be integrated into one monolithic IC.

なお、電流−電圧変換増幅手段3は、(3)式乃至
(7)式の条件が満たされれば、外乱光の直流成分、
低周波成分に対して全く応答しないが、光電変換
素子1,2の面積比A/Bのずれ、あるいは抵抗
値RF2,RCの抵抗比RF2,RCのずれによつて、電
流−電圧変換増幅手段3が外乱光の直流成分、低
周波成分に対し僅かに応答することも考えられ
る。このために電流−電圧変換増幅手段3とこの
後段の信号処理回路(図示せず)との間に結合容
量を直列に接続し、電流−電圧変換増幅手段3か
ら出力される恐れのある外乱光の僅かな直流成
分、低周波成分を結合容量により取除いて後段の
信号処理回路に入力させるようにしても良い。
Note that the current-voltage conversion amplification means 3 is based on equation (3) or
If the condition of equation (7) is satisfied, the DC component of the disturbance light,
Although it does not respond to low frequency components at all , the current - It is also conceivable that the voltage conversion and amplification means 3 slightly responds to the DC component and low frequency component of the disturbance light. For this purpose, a coupling capacitor is connected in series between the current-voltage conversion amplification means 3 and a signal processing circuit (not shown) at the subsequent stage, and disturbance light that may be output from the current-voltage conversion amplification means 3 is connected in series. The slight DC component and low frequency component of the signal may be removed by a coupling capacitor and input to the subsequent signal processing circuit.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明によれば、第2
の光電変換素子からの低周波の光電流だけに応答
しこれを電圧に変換する第2の電流−電圧変換増
幅手段と、第2の電流−電圧変換増幅手段からの
出力電圧を電流に変換し、この電流を第1の光電
変換素子からの光電流を相殺する方向で第1の電
流−電圧変換増幅手段の入力端に流入させるよう
にしているので、第1の電流−電圧変換増幅手段
において信号光による交流成分のみを安定した状
態で高感度に出力することができる。
As explained above, according to the present invention, the second
a second current-voltage conversion amplification means that responds only to the low-frequency photocurrent from the photoelectric conversion element and converts it into a voltage; , this current is made to flow into the input terminal of the first current-voltage conversion amplification means in a direction that cancels out the photocurrent from the first photoelectric conversion element, so that in the first current-voltage conversion amplification means, Only the alternating current component of the signal light can be output in a stable state with high sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光検出装置の実施例の構
成図、第2図は電流−電圧変換増幅手段の周波数
応答特性を示す図、第3図および第4図はそれぞ
れ従来の光検出装置の構成図である。 1,2……光電変換素子、3,4……電流−電
圧変換増幅手段、5……抵抗、6,8……反転増
幅器、7,9……帰還抵抗、10……帰還容量、
f0……カツトオフ周波数、f1,f2……周波数帯域
幅。
FIG. 1 is a block diagram of an embodiment of the photodetection device according to the present invention, FIG. 2 is a diagram showing the frequency response characteristics of the current-voltage conversion and amplification means, and FIGS. 3 and 4 are respectively related to conventional photodetection devices. FIG. 1, 2... Photoelectric conversion element, 3, 4... Current-voltage conversion amplification means, 5... Resistor, 6, 8... Inverting amplifier, 7, 9... Feedback resistor, 10... Feedback capacitor,
f 0 ... Cutoff frequency, f 1 , f 2 ... Frequency bandwidth.

Claims (1)

【特許請求の範囲】 1 第1の光電変換素子と、第1の光電変換素子
からの光電流を電圧に変換して増倍する第1の電
流−電圧変換増幅手段と、第2の光電変換素子
と、前記第1の電流−電圧変換増幅手段の周波数
帯域幅よりも狭い帯域幅をもち第2の光電変換素
子からの低周波の光電流に応答しこれを電流に変
換して増幅する第2の電流−電圧変換増幅手段
と、第2の電流−電圧変換増幅手段からの出力電
圧を所定の利得で電流に変換して前記第1の電流
−電圧変換増幅手段の入力端に加える電圧−電流
変換増幅手段とを備え、前記電圧−電流変換増幅
手段からの電流は、前記第1の光電変換素子から
の光電流を相殺する方向に前記第1の電流−電圧
変換増幅手段の入力端に流入するようになつてい
ることを特徴とする光検出装置。 2 前記第2の光電変換素子は、前記第1の光電
変換素子の受光面積よりも小さな受光面積をも
ち、前記第2の電流−電圧変換増幅手段と前記電
圧−電流変換手段とによる利得は、前記第1およ
び第2の光電変換素子の受光面積比とほぼ同じに
設定されていることを特徴とする特許請求の範囲
第1項に記載の光検出装置。 3 前記第2の光電変換素子に入射する光量に対
する前記第2の電流−電圧変換増幅手段のダイナ
ミツクレンジは、前記電圧−電流変換手段から前
記第1の電流−電圧変換増幅手段の入力端に電流
が流入しないとしたときの前記第1の光電変換素
子に入射する光量に対する前記第1の電流−電圧
変換増幅手段のダイナミツクレンジよりも大きく
なつていることを特徴とする特許請求の範囲第1
項に記載に光検出装置。
[Claims] 1. A first photoelectric conversion element, a first current-voltage conversion amplification means that converts a photocurrent from the first photoelectric conversion element into a voltage and multiplies it, and a second photoelectric conversion element. a second photoelectric conversion element, which has a frequency bandwidth narrower than the frequency bandwidth of the first current-voltage conversion amplification means, and responds to a low-frequency photocurrent from the second photoelectric conversion element, converts it into a current, and amplifies it. a voltage that converts the output voltage from the second current-voltage conversion amplification means into a current with a predetermined gain and applies it to the input terminal of the first current-voltage conversion amplification means; current conversion amplification means, the current from the voltage-current conversion amplification means is directed to the input terminal of the first current-voltage conversion amplification means in a direction that cancels the photocurrent from the first photoelectric conversion element. A light detection device characterized in that the light detection device is configured to allow an inflow. 2. The second photoelectric conversion element has a light-receiving area smaller than the light-receiving area of the first photoelectric conversion element, and the gain by the second current-voltage conversion amplification means and the voltage-current conversion means is 2. The photodetecting device according to claim 1, wherein the light receiving area ratio of the first and second photoelectric conversion elements is set to be substantially the same. 3. The dynamic range of the second current-voltage conversion amplification means with respect to the amount of light incident on the second photoelectric conversion element is determined by the dynamic range from the voltage-current conversion means to the input terminal of the first current-voltage conversion amplification means. Claim 1, characterized in that the dynamic range of the first current-voltage conversion and amplification means is larger than the amount of light incident on the first photoelectric conversion element when no current flows in. 1
Photodetection device as described in Section.
JP17676387A 1987-07-15 1987-07-15 Photodetecting device Granted JPS6420418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17676387A JPS6420418A (en) 1987-07-15 1987-07-15 Photodetecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17676387A JPS6420418A (en) 1987-07-15 1987-07-15 Photodetecting device

Publications (2)

Publication Number Publication Date
JPS6420418A JPS6420418A (en) 1989-01-24
JPH0451774B2 true JPH0451774B2 (en) 1992-08-20

Family

ID=16019387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17676387A Granted JPS6420418A (en) 1987-07-15 1987-07-15 Photodetecting device

Country Status (1)

Country Link
JP (1) JPS6420418A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019015A (en) * 1998-06-30 2000-01-21 Toshiba Corp Infrared detecting device
US7507982B2 (en) * 2003-05-15 2009-03-24 Niles Co. Ltd. Rain sensor with ambient light compensation
JP2004340712A (en) * 2003-05-15 2004-12-02 Nippon Sheet Glass Co Ltd Signal detecting circuit for rain sensor and signal detecting method
JP4926408B2 (en) * 2005-03-14 2012-05-09 浜松ホトニクス株式会社 Photodetection circuit
JP2011007622A (en) * 2009-06-25 2011-01-13 Sharp Corp Sensor apparatus, cellular phone and digital camera
JP5895232B2 (en) * 2011-04-19 2016-03-30 パナソニックIpマネジメント株式会社 Infrared detector

Also Published As

Publication number Publication date
JPS6420418A (en) 1989-01-24

Similar Documents

Publication Publication Date Title
US4626678A (en) Light detecting circuit
JPH0451774B2 (en)
EP3715803B1 (en) Optical detection circuit
JPS6215909A (en) optical receiver circuit
JPH04252923A (en) Photo detecting circuit
JP2928616B2 (en) Photodetector
CN116545390A (en) Operational amplifier circuit and photoelectric detection system
JPS5928389A (en) Photo receiving circuit
JPS6388871A (en) Optical hybrid integrated circuit device
JP2674110B2 (en) Temperature compensation circuit for avalanche photodiode bias circuit
JPS6276329A (en) Optical reception circuit
JPH03296309A (en) Optical reception circuit
JP2558691B2 (en) AC light component amplifier
JP2645918B2 (en) Amplifier circuit
JPH04247761A (en) Synchronization detection circuit
KR100221655B1 (en) Optical signal detection method and detector
JPH0574243B2 (en)
JPS5942668Y2 (en) sensor circuit
JPS62123811A (en) Optical reception circuit
KR20240130935A (en) Optoelectronic device
JPS63178613A (en) Agc circuit for photodetector
JPS6259822A (en) Photodetecting circuit
JPH1019675A (en) Photometry circuit
JP2006005599A (en) Light receiving device
JPH02164112A (en) optical receiver

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term