[go: up one dir, main page]

JPH0451124A - Waveguide type wavelength converting element - Google Patents

Waveguide type wavelength converting element

Info

Publication number
JPH0451124A
JPH0451124A JP16010190A JP16010190A JPH0451124A JP H0451124 A JPH0451124 A JP H0451124A JP 16010190 A JP16010190 A JP 16010190A JP 16010190 A JP16010190 A JP 16010190A JP H0451124 A JPH0451124 A JP H0451124A
Authority
JP
Japan
Prior art keywords
waveguide
film
crystal
refractive index
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16010190A
Other languages
Japanese (ja)
Inventor
Yoshinori Ota
太田 義徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16010190A priority Critical patent/JPH0451124A/en
Publication of JPH0451124A publication Critical patent/JPH0451124A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow the conversion with high efficiency in conversion to the same polarized light by providing a film of dielectrics having refractive index lower than the refractive index of a channel-type waveguide formed on the (z) face of a specific crystalline material on this waveguide and further, providing the film exhibiting a film having a specific conductive characteristic on this dielectric film at the width covering the channel waveguide varied in the optically equiv. direction. CONSTITUTION:The light transmission direction of the strip-shaped waveguide 2 provided on the surface of the (z) face of the crystal having a quadratic nonlinear optical effect, for example, an LiNbO3 (LN) crystal 1 is taken in the y-axis direction of the crystal. The surface of the LN crystal having the proton exchange channel waveguide 2 is put over the entire surface of an SiO2 film 3 having the refractive index lower than the refractive index of the LN crystal. Further, a thin film 4 consisting of ZnO (zinc oxide) is provided on the SiO2 film 3. The width of the thin film 4 is so set as to vary gradually in the light transmission direction on the channel waveguide 2. The waveguide type wavelength converting element having high productivity is obtd. stably with the same polarization for both of the basic wave light and second harmonic generation (SHG) output light.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コヒーレントな短波長小型光源の実現を可能
にする、導波路型の波長変換素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a waveguide-type wavelength conversion element that makes it possible to realize a coherent short-wavelength compact light source.

〔従来の技術〕[Conventional technology]

波長変換素子とくに第2次高調波発生(SHG)素子は
、エキシマレーザなどでは得にくいコヒーレントな短波
長光を得るデバイスとして産業上極めて重要である。
Wavelength conversion elements, especially second harmonic generation (SHG) elements, are extremely important in industry as devices that obtain coherent short wavelength light that is difficult to obtain with excimer lasers or the like.

半導体レーザ(LDンは小型で高出力のコヒーレント光
を高能率で発振する光源として各種の光通信機器や光情
報機器に使用されている。現在この半導体レーザから得
られる光の波長は0.78μm〜1,55μmの近赤外
領域の波長である。
Semiconductor lasers (LDs) are used in various optical communication devices and optical information devices as small light sources that oscillate high-power coherent light with high efficiency.Currently, the wavelength of light obtained from this semiconductor laser is 0.78 μm. The wavelength is in the near-infrared region of ~1,55 μm.

この半導体レーザをデイスプレィ等、さらに広く機器に
応用するために、赤色、緑色、青色等、より短波長の光
が求められているが、現在の技術ではこの種の半導体レ
ーザをにわかに実現するのは難しい、半導体レーザ出力
程度の低入力パワーでも、効率よく波長変換できる波長
変換素子が実現されれば、その効果は甚大である。
In order to apply this semiconductor laser to a wider range of devices such as displays, light with shorter wavelengths such as red, green, and blue is required, but with current technology, it is difficult to quickly realize this type of semiconductor laser. If a wavelength conversion element that can efficiently convert wavelengths even with difficult input power as low as the output of a semiconductor laser could be realized, the effect would be enormous.

近年半導体レーザの製作技術が発達して、従来にも増し
て高出力の特性が得られるようになってきた。このため
、先導波路型のSHG素子を構成すれば、基本波を導波
路に閉じ込めることによるパワー密度の増大と、光の回
折によるエネルギー密度の減少の回避が期待でき、半導
体レーザ程度の光強度でも、比較的高い変換効率で波長
変換素子を実現できる可能性がある。その様な例として
、ニオブ酸リチウム結晶に光導波路を形成し、この光導
波路に近赤外光を透過し、これから結晶基板中に放射(
チェレンコフ輻射)される第2次高調波を得る方式のS
HG素子の発明がある(特開昭60−14222.特開
昭6l−94031)、この方式のSHG素子は、基本
波と二次高調波との位相整合条件(位相速度の一致化)
が自動的に取れているため、精密な温度調節が必要ない
という特長を持つ反面、二次高調波出力が基板放射光で
あるため波面が特異で、収差のきつい、あたかも「細い
眉毛」の様な強度分布の光が基板の端面から出てくる。
In recent years, semiconductor laser manufacturing technology has developed, and it has become possible to obtain higher output characteristics than ever before. Therefore, by configuring a guided waveguide type SHG element, it is expected that the power density will increase by confining the fundamental wave in the waveguide and the decrease in energy density due to light diffraction can be avoided. , it is possible to realize a wavelength conversion element with relatively high conversion efficiency. As an example of this, an optical waveguide is formed in a lithium niobate crystal, near-infrared light is transmitted through this optical waveguide, and then emitted (
S of the method to obtain the second harmonic caused by Cerenkov radiation
There is an invention of the HG element (Japanese Patent Application Laid-Open No. 60-14222, Japanese Patent Application Laid-Open No. 61-94031), and this type of SHG element has a phase matching condition (matching of phase velocity) between the fundamental wave and the second harmonic.
is automatically taken, so there is no need for precise temperature control.However, since the second harmonic output is substrate radiation, the wavefront is unique and has severe aberrations, resembling "thin eyebrows". Light with a uniform intensity distribution emerges from the edge of the substrate.

このため、この光をガウス状強度分布の通常の使いやす
いビームに変換するには、この収差を補正する高級なレ
ンズを必要とする。また、この構成では二次高調波の伝
搬方向が基本波とは角度を有して異なるなめ、交換効率
が同方向の場合には素子の長さしの2乗に比較するのに
反し、単にLを1乗に比例するだけであって、導波路型
SHG素子の特徴である、素子長りを大きくでき、変換
効率を高くできるという特長は生かされていない。二次
高調波も基本波も同じチャンネル導波光であれば、この
ような不都合は生じない。
Therefore, converting this light into a normal, easy-to-use beam with a Gaussian intensity distribution requires a high-grade lens that corrects for this aberration. In addition, in this configuration, the propagation direction of the second harmonic is angularly different from that of the fundamental wave, and when the exchange efficiency is in the same direction, it is compared to the square of the length of the element, but it is simply Since L is only proportional to the first power, the characteristics of the waveguide type SHG element, such as being able to increase the element length and increasing the conversion efficiency, are not utilized. If the second harmonic and the fundamental wave are guided in the same channel, such a problem will not occur.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

高い効率の導波路型波長変換素子を設計する要件は、上
記の二次高調波も基本波も同じチャンネル導波光と成る
ように設計することの他に、用いる材料の持つ最大の非
線形光学定数を利用するようにすることである。非線形
光学定数は光の伝搬方向や偏光方向で異なる、いわゆる
テンソル量である。有機結晶を含めた多くの非線形材料
では、基本波と二次高調波との偏光の関係が同一となる
、例えばd、3(とくに無機結晶)やdos(とくに有
機結晶)、d33が最大となっている場合が多い、しか
しながら、これらの定数を利用して位相整合条件を満た
すことは困難であった。すなわち、基本波、二次高調波
ともに異常光、ないしは両方ともに常光であってしかも
位相整合条件である、屈折率(位相速度)が等しくなる
という条件は、一般に屈折率は波長分散を有するため、
これを満たす事は不可能である。
In addition to designing a highly efficient waveguide-type wavelength conversion element so that both the second harmonic and the fundamental wave are guided in the same channel, the requirements for designing a highly efficient waveguide-type wavelength conversion element are to design the maximum nonlinear optical constant of the material used. The goal is to make sure that they are used. The nonlinear optical constant is a so-called tensor quantity that differs depending on the propagation direction and polarization direction of light. In many nonlinear materials, including organic crystals, the polarization relationship between the fundamental wave and the second harmonic is the same, for example, d,3 (especially inorganic crystals), dos (especially organic crystals), and d33 are the largest. However, it has been difficult to satisfy the phase matching condition using these constants. In other words, the fundamental wave and the second harmonic are both extraordinary lights, or both are ordinary lights, and the condition that the refractive index (phase velocity) is equal, which is a phase matching condition, is because the refractive index generally has wavelength dispersion.
It is impossible to satisfy this requirement.

位相整合条件すなわち位相速度(等価屈折率)の−敗北
の程度は、10−5以下の精度を必要とする。導波光の
等価屈折率は、波長や屈折率の温度変化のみならず、導
波路の屈折率、厚さ、幅によって大きく影響を受け、各
種の導波路製作技術を駆使しても、再現性、生産性よく
上記の条件を実現するのは困難であり、直交する偏光へ
の変換を利用したものであっても、導波路型の波長変換
素子は工業製品として世にまだ出現していない。
The degree of failure of the phase matching condition, ie the phase velocity (equivalent refractive index), requires an accuracy of 10@-5 or less. The equivalent refractive index of guided light is affected not only by temperature changes in wavelength and refractive index, but also by the refractive index, thickness, and width of the waveguide, and even if various waveguide manufacturing techniques are used, reproducibility and It is difficult to achieve the above conditions with good productivity, and waveguide-type wavelength conversion elements have not yet appeared in the world as industrial products, even if they utilize conversion to orthogonal polarized light.

本発明の目的は、上述の従来の導波型SHG素子の持つ
難点を取り除いた、基本波光もSHG出力光もともにチ
ャンネル導波光となる構成であり、しかも同一偏光への
変換で高効率の変換を可能にした構成であって、さらに
生産性の高い構造の導波路型波長変換素子を提供するこ
とにある。
An object of the present invention is to provide a configuration in which both the fundamental wave light and the SHG output light become channel guided light, which eliminates the drawbacks of the conventional waveguide type SHG element described above, and moreover achieves high conversion efficiency by converting to the same polarized light. It is an object of the present invention to provide a waveguide-type wavelength conversion element having a structure that enables the above-mentioned functions, and has a structure with higher productivity.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、同一偏光間の2次の非線型光学効果に関与す
る定数dzz(z=1.2.3)を有する結晶材料の2
面に、直線のチャンネル状の導波路を形成し、該チャン
ネル状導波路の上に該導波路の有する屈折率よりも低い
屈折率の誘電体の膜を設け、さらに該誘電体膜の上にあ
って、基本波には電導性を示さず二次高調波に対しては
電導特性を示す膜を、前記チャンネル導波路を覆う幅を
光等価方向に変化させて設けた導波路型波長変換素子で
ある。
The present invention relates to a crystalline material with a constant dzz (z=1.2.3) that is involved in second-order nonlinear optical effects between the same polarized light.
A straight channel-shaped waveguide is formed on the surface, a dielectric film having a refractive index lower than that of the waveguide is provided on the channel-shaped waveguide, and further on the dielectric film. A waveguide-type wavelength conversion element is provided with a film that does not exhibit electrical conductivity for the fundamental wave but exhibits electrical conductivity for the second harmonic, the width of which covers the channel waveguide is varied in the optical equivalent direction. It is.

〔実施例〕〔Example〕

以下本発明を実施例に基づき、図面を用いて詳細に説明
する。
Hereinafter, the present invention will be described in detail based on examples and with reference to the drawings.

第1図は本発明の導波路型波長変換素子の一実施例の構
造を示す図である。lは二次の非線型光学効果を有する
結晶、例えばLiNbO3にオブ酸リチウム結晶、通称
LN)結晶板であり、基板方位は2板(すなわち、基板
に立てた法線は2軸)である。2はLN結晶1の2面の
表面に形成された例えばプロタン交換法などで設けたス
トリップ状導波路で、その光透過方向は結晶のy軸方向
に採っである。プロトン交換チャンネル導波路2をもっ
たLN結晶の表面は、LN結晶より屈折率の低い誘電体
、この実施例では5i02膜3をCVD法やスパッタ法
等の成膜法を用いて全面にかぶせである。さらに、該S
 i 02膜3の上には、Zn0(酸化亜鉛)の薄膜4
が設けである。
FIG. 1 is a diagram showing the structure of an embodiment of the waveguide type wavelength conversion element of the present invention. 1 is a crystal having a second-order nonlinear optical effect, for example, a LiNbO3 and lithium oxide crystal (commonly known as LN) crystal plate, and the substrate orientation is two plates (that is, the normal line to the substrate is two axes). Reference numeral 2 denotes a strip-shaped waveguide formed on two surfaces of the LN crystal 1 by, for example, a protane exchange method, and the light transmission direction thereof is taken in the y-axis direction of the crystal. The surface of the LN crystal having the proton exchange channel waveguide 2 is covered with a dielectric material having a refractive index lower than that of the LN crystal, in this example, a 5i02 film 3 using a film forming method such as CVD or sputtering. be. Furthermore, the S
A thin film 4 of Zn0 (zinc oxide) is formed on the i02 film 3.
is the provision.

この薄膜4は5i02膜3の全面ではなく部分的であっ
て、図示の如く、膜の幅がチャンネル導波路2の上で光
透過方向に徐々に変わるように設定されている。
This thin film 4 is not formed over the entire surface of the 5i02 film 3, but only partially, and is set so that the width of the film gradually changes in the light transmission direction above the channel waveguide 2, as shown in the figure.

基本波として波長0.83μmのTM波5を導波路の一
端から入射させる。入射基本波5は、チャンネル導波路
2付近に閉じ込められて進むにつれて、LN結晶1の持
つ二次の非線型光学定数d3sを介して、基本波5と偏
光の同一のTM波の二次高調波が励起されていく、この
二次高調波も基本波と同様にチャネル導波路2付近に閉
じ込められた導波モードとなって伝搬し出射光6となっ
てLN結晶から出射する。
A TM wave 5 having a wavelength of 0.83 μm is input as a fundamental wave from one end of the waveguide. As the incident fundamental wave 5 is confined near the channel waveguide 2 and advances, it becomes a second harmonic of the TM wave with the same polarization as the fundamental wave 5 via the second-order nonlinear optical constant d3s of the LN crystal 1. Like the fundamental wave, this second harmonic, which is excited, becomes a waveguide mode confined near the channel waveguide 2, propagates, becomes an output light 6, and is output from the LN crystal.

7Mモードの基本波から7Mモードの二次高調波に効率
よく変換されるためには、位相整合条件(各々のモード
の位相定数すなわち等価屈折シが等しい)が満たされな
くてはならない。LiNbO3結晶の屈折率の波長分散
は第2図に示すようである0本実施例の場合のようにZ
板の7Mモードの等偏屈折率は結晶の異常光屈折率n8
より僅かに大きい(0,003>程度で、その波長特性
はneの振舞いと殆どおなしである。従って、単に結晶
上に導波路を築いただけは、この屈折率の分散があるた
めに、同じ7Mモードである、基本波と二次高調波とで
等偏屈折率は一致をみることなく、変換を実現するため
には、等偏屈折率を一致させるなんらかの工夫を必要と
する。その働きを成すのが導波路の上に誘電体層を介し
て設けたZnO膜4である。
In order to efficiently convert the fundamental wave of the 7M mode into the second harmonic of the 7M mode, a phase matching condition (the phase constant of each mode, that is, the equivalent refraction ratio is the same) must be satisfied. The wavelength dispersion of the refractive index of the LiNbO3 crystal is as shown in FIG.
The equipolarized refractive index of the 7M mode of the plate is the extraordinary refractive index of the crystal n8
It is slightly larger (on the order of 0,003>), and its wavelength characteristics are almost the same as the behavior of ne. Therefore, simply building a waveguide on a crystal will result in the same behavior due to this refractive index dispersion. In the 7M mode, the fundamental wave and the second harmonic do not have the same polarized refractive index, so in order to realize the conversion, some kind of device is needed to make the equal polarized refractive index match. What constitutes this is a ZnO film 4 provided on the waveguide via a dielectric layer.

0.5から0.6μm付近に吸収端をもつ、ZnO,G
aP、Se等の半導体は一般に波長0.4μm付近以下
の短波長では、導電特性を示すのに対し、それより長い
波長に対しては単なる誘電体の特性を示す。
ZnO, G with an absorption edge around 0.5 to 0.6 μm
Semiconductors such as aP and Se generally exhibit conductive characteristics at short wavelengths of around 0.4 μm or less, whereas they exhibit mere dielectric characteristics at longer wavelengths.

一方、良く知られているように、導波路の上に低屈折率
誘電体層(クラッド層)を介して導電体が接近しである
と、7Mモードの等偏屈折率は大幅に減少し、逆にTE
モードは殆ど変化しない(この現象を理論的ならびに実
験的に検討した論文としては、電子通信学会論文誌C所
収、論文番号昭55−141、伊藤正隆他著「モードカ
ットオフ型金属クラツド光ストリップライン構造モード
フィルタjがある。)、従って、ZnO膜4がクラッド
層(SiOz)3を介して導波路2上にあると、0.8
3μm波長の基本波7Mモードにとっては、その等偏屈
折率は殆ど変化を受けないのに対して、0.415μm
の二次高調波TMモードの等偏屈折率は、この膜の導電
効果に依って大幅に(〜1O−2)低下する。低下の大
きさは、導波路と導電体の間に介するクラッド層の厚さ
で定まる。従ってその厚さが適切であれば、基本波7M
モードの等偏屈折率と二次高調波のそれとを一致させる
ことは原理的に可能である。しかしながら、この一致の
程度を1O−5以下に設定することは、「発明が解決し
ようとする課題Jの欄で述べたように神業に近く実現性
は薄い。
On the other hand, as is well known, when a conductor is placed close to the waveguide through a low refractive index dielectric layer (cladding layer), the equipolarized refractive index of the 7M mode decreases significantly. On the contrary, TE
The mode hardly changes (papers that examine this phenomenon both theoretically and experimentally include the Institute of Electronics and Communication Engineers Transactions C, paper number 1982-141, and Masataka Ito et al.'s ``Mode cut-off metal clad optical strip line ), therefore, if the ZnO film 4 is on the waveguide 2 via the cladding layer (SiOz) 3, then 0.8
For the fundamental wave 7M mode with a wavelength of 3 μm, its equipolarized refractive index hardly changes, whereas at 0.415 μm
The equipolarized refractive index of the second harmonic TM mode of is significantly reduced (~1O-2) due to the conductive effect of this film. The magnitude of the decrease is determined by the thickness of the cladding layer interposed between the waveguide and the conductor. Therefore, if the thickness is appropriate, the fundamental wave 7M
In principle, it is possible to match the equipolarized refractive index of the mode with that of the second harmonic. However, setting the degree of coincidence to 1O-5 or less is close to a miracle and has little feasibility, as stated in the column ``Problem J to be Solved by the Invention.''

第1図の実施例の構造で示したように、チャンネル導波
路2上にクラッド層3を介して載っているZnO膜4の
幅が光透過方向に徐々に変化している構成にすると、基
本波7Mモードおよび二次高調波TMモード各々の等偏
屈折率の光透過方向への変化の様子は、第3図に示すよ
うに、二次高調波TMモードの等偏屈折率は、光の進む
方向につれチャンネル導波路の上に位置する金属膜の面
積の増大に連れて徐々に低下するのに対し、2次高調波
TEモードは殆ど一定であり、導波路途中の何処かで二
つの等偏屈折率は交差する。
As shown in the structure of the embodiment shown in FIG. The change in the equipolarized refractive index of the wave 7M mode and the second harmonic TM mode in the light transmission direction is shown in Figure 3. The equipolarized refractive index of the second harmonic TM mode is In contrast, the second harmonic TE mode is almost constant, and there are two equal parts somewhere along the waveguide, whereas it gradually decreases as the area of the metal film located on the channel waveguide increases in the advancing direction. The polarized refractive indexes intersect.

これも良く知られているように、二つの結合しな波動の
チャンネル導波路(この場合には、基本波TMモードと
二次高調波TEモード)の位相定数(等偏屈折率)が伝
搬方向に斜めに交差しており、その傾き角が適切であれ
ば、チャンネル導波路の長さを成る長さ以上にしておけ
ば長さを厳密に定めなくとも、一方の波動のエネルギー
は伝搬するにつれ他方に(理論的に100%)変換され
る(M、G、F、ウィルソン氏ならびにG、A。
As is also well known, the phase constant (equal polarized refractive index) of two uncoupled wave channel waveguides (in this case, the fundamental wave TM mode and the second harmonic TE mode) is If the angle of inclination is appropriate, the energy of one wave will be absorbed as it propagates, even if the length is not strictly determined, as long as the length of the channel waveguide is greater than or equal to the length of the channel waveguide. converted (theoretically 100%) to the other (M, G, F, Mr. Wilson and G, A.

チー誌の共著の論文「楔状光方向結合号r Taper
ed 0ptical Directional Co
upler)」I E E E Transactio
n on  Micowave Theory and
 Tech n1ques第23巻、第1号、85頁か
ら94頁、1975年1月発行に詳述されている。)。
A paper co-authored in Qi magazine, “Wedge-shaped light directional coupling issue r Taper
ed 0ptical Directional Co
upler)” I E E E Transaction
n on Microwave Theory and
Techniques Vol. 23, No. 1, pp. 85-94, published January 1975. ).

即ち、第1図の本実施例においては、5i02膜3の厚
さや、Zn0M4のチャンネル導波路上の輪郭線の導波
路となす傾きやカーブを適切に定めておけば、基本波か
ら二次高調波への完全変換が実現する。さらに、等偏屈
折率の交差は光透過方向の何処かで生ずる。このため、
周囲の温度の変動による等偏屈折率の変化や製造誤差に
よる設定誤差が成程度あっでも、変換効率の変動が起こ
ることが無く、安定性に富み、生産性に富む。
That is, in this embodiment shown in FIG. 1, if the thickness of the 5i02 film 3 and the slope and curve of the contour line on the channel waveguide of Zn0M4 are appropriately determined, the second harmonic can be adjusted from the fundamental wave. Complete conversion to waves is achieved. Furthermore, the intersection of equipolarized refractive indices occurs somewhere in the light transmission direction. For this reason,
Even if there is a change in the equipolarized refractive index due to fluctuations in ambient temperature or a setting error due to manufacturing error, the conversion efficiency does not change, resulting in high stability and high productivity.

このような条件は、非線形光学結晶としては上の実施例
で上げたLiNbO5結晶に限るものではない。短い波
長まで透過波長領域が延びており、同一の偏光間の2次
の非線形光学効果に関与する定数d33が大きい他の非
線形光学結晶材料、例えば、KNbO3(ポタシウム・
ナイオベイト・ニオブ酸カリウム)結晶、K T i 
OP 04  (ボタシウム・タイタニル・フォスフエ
イト)結晶等を用いても可能である。
Such conditions are not limited to the LiNbO5 crystal used in the above embodiment as a nonlinear optical crystal. Other nonlinear optical crystal materials, such as KNbO3 (potassium
niobate/potassium niobate) crystal, K Ti
It is also possible to use OP 04 (botanium titanyl phosphate) crystal or the like.

また、近年材料開発のすすんでいる、d目定数の極めて
大きい有機非線結晶も同様に用いることが出来る。
Furthermore, organic nonlinear crystals with extremely large d-eye constants, which have been developed as materials in recent years, can also be used.

また、用いる光導電体もZnOに限るものではなく、前
述の種々の半導体材料を用いることができる。また、他
の有機光電導体なども用いることが出来る。また、本実
施例では、基本波に0.8μm帯を想定した場合を述べ
たが、他の波長の場合には、基本波長と二次高調波長と
の間に吸収端を有する半導体材料を用いればよい。
Furthermore, the photoconductor used is not limited to ZnO, and the various semiconductor materials described above can be used. Other organic photoconductors can also be used. Furthermore, in this example, the case where the fundamental wave is assumed to be in the 0.8 μm band has been described, but in the case of other wavelengths, a semiconductor material having an absorption edge between the fundamental wavelength and the second harmonic wavelength may be used. Bye.

また、導波路を形成する方法としてプロトンで代表され
るイオン交換法の場合を述べたが、良く知られているT
i等の原子半径の大きい原子の熱拡散や、Liイオンの
外拡散法などの方法や、そのような方法の取れない結晶
の場合には、誘電体を装荷するなどの、他の導波路形成
技術を用いることもできる。
In addition, as a method for forming a waveguide, the case of ion exchange method, which is typified by protons, was described, but the well-known T
Methods such as thermal diffusion of atoms with a large atomic radius such as i, out-diffusion of Li ions, or in the case of crystals for which such methods cannot be used, other waveguide formation methods such as loading a dielectric material can be used. Technology can also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、基本波光もSH
G出力光もともに同一の偏光でしかもチャンネル導波光
となる構造であって、従って高効率で、またSHG出力
光に波面収差のない、また設計トレランス、製作トレラ
ンス、周囲温度変化に対するトレランスのいずれも高く
、安定で生産性の高い導波路型波長変換素子が得られる
As explained above, according to the present invention, the fundamental wave light can also be
Both G output lights have the same polarization and are channel guided lights, so they are highly efficient, and the SHG output light has no wavefront aberration, and has excellent design tolerance, manufacturing tolerance, and tolerance to ambient temperature changes. A waveguide type wavelength conversion element that is expensive, stable, and highly productive can be obtained.

L i N b O3結晶のバルク屈折率の分散特性を
示す図、第3図は、本発明の詳細な説明するための基本
波、二次高調波の等偏屈折率の振舞いを説明する図であ
る。
FIG. 3 is a diagram showing the dispersion characteristics of the bulk refractive index of the L i N b O3 crystal, and is a diagram illustrating the behavior of the equipolarized refractive index of the fundamental wave and second harmonic to provide a detailed explanation of the present invention. be.

1・・・LiNbO5結晶、2・・・チャンネル導波路
、 3 ・−3i02  膜、 4 ・−ZnO3l。
DESCRIPTION OF SYMBOLS 1...LiNbO5 crystal, 2...Channel waveguide, 3.-3i02 film, 4.-ZnO3l.

Claims (1)

【特許請求の範囲】[Claims] 同一偏光間の2次の非線型光学効果に関与する定数d_
z_z(z=1、2、3)を有する結晶材料のz面に、
直線のチャネル状の導波路を形成し、該チャンネル状導
波路の上に該導波路の有する屈折率よりも低い屈折率の
誘電体の膜を設け、さらに該誘電体膜の上にあって、基
本波にたいしては電導特性を示さない誘電体として振舞
い、二次高調波に対しては電導性を示す膜を、前記チャ
ンネル導波路を覆う幅を光透過方向に変化させて設けた
ことを特徴とする導波路型波長変換素子。
Constant d_ involved in the second-order nonlinear optical effect between the same polarized light
In the z-plane of the crystal material with z_z (z=1, 2, 3),
A straight channel-shaped waveguide is formed, a dielectric film having a refractive index lower than that of the waveguide is provided on the channel-shaped waveguide, and further on the dielectric film, The invention is characterized in that a film that behaves as a dielectric material that exhibits no electrical conductivity for fundamental waves and exhibits electrical conductivity for secondary harmonics is provided with a width that covers the channel waveguide changing in the light transmission direction. Waveguide type wavelength conversion element.
JP16010190A 1990-06-19 1990-06-19 Waveguide type wavelength converting element Pending JPH0451124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16010190A JPH0451124A (en) 1990-06-19 1990-06-19 Waveguide type wavelength converting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16010190A JPH0451124A (en) 1990-06-19 1990-06-19 Waveguide type wavelength converting element

Publications (1)

Publication Number Publication Date
JPH0451124A true JPH0451124A (en) 1992-02-19

Family

ID=15707875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16010190A Pending JPH0451124A (en) 1990-06-19 1990-06-19 Waveguide type wavelength converting element

Country Status (1)

Country Link
JP (1) JPH0451124A (en)

Similar Documents

Publication Publication Date Title
US4111523A (en) Thin film optical waveguide
US4583817A (en) Non-linear integrated optical coupler and parametric oscillator incorporating such a coupler
Yang et al. Efficient terahertz generation scheme in a thin-film lithium niobate-silicon hybrid platform
US3990775A (en) Thin-film optical waveguide
Feng et al. A bond-free PPLN thin film ridge waveguide
JP2676743B2 (en) Waveguide type wavelength conversion element
JPH0451124A (en) Waveguide type wavelength converting element
Ito et al. Phase-matched guided, optical second-harmonic generation in nonlinear ZnS thin-film waveguide deposited on nonlinear LiNbO3 substrate
JPH05341344A (en) Wavelength conversion element
JP2658381B2 (en) Waveguide type wavelength conversion element
JPH01257922A (en) Waveguide type wavelength converting element
CN113612108B (en) Frequency converter based on chamfer nonlinear crystal ridge waveguide and preparation method thereof
JPH0445430A (en) Waveguide type wavelength converting element
Petrov Acoustooptic and electrooptic guided wave conversion to leaky waves in an anisotropic optical waveguide
JPS6118933A (en) Device for changing wavelength of light
WO2024100865A1 (en) Optical waveguide element and method for manufacturing same
Lotspeich Single-crystal electrooptic thin-film waveguide modulators for infrared laser systems
JP2982366B2 (en) Waveguide type wavelength conversion element
JP2906615B2 (en) Waveguide type wavelength conversion element
JP2738155B2 (en) Waveguide type wavelength conversion element
de Michel et al. Nonlinear integrated optics
Risk et al. Dielectric overlayer for polarization discrimination in KTP channel waveguides
Uesugi Nonlinear optical phenomenon in a three‐dimensional LiNbO3 optical waveguide
JPS5945424A (en) Waveguide type electrooptic modulator
De Micheli Second Harmonic Generation in “Cerenkov Configuration”