[go: up one dir, main page]

JPH01257922A - Waveguide type wavelength converting element - Google Patents

Waveguide type wavelength converting element

Info

Publication number
JPH01257922A
JPH01257922A JP8519588A JP8519588A JPH01257922A JP H01257922 A JPH01257922 A JP H01257922A JP 8519588 A JP8519588 A JP 8519588A JP 8519588 A JP8519588 A JP 8519588A JP H01257922 A JPH01257922 A JP H01257922A
Authority
JP
Japan
Prior art keywords
optical waveguide
channel optical
waveguide
fundamental wave
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8519588A
Other languages
Japanese (ja)
Inventor
Yoshinori Ota
太田 義徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8519588A priority Critical patent/JPH01257922A/en
Publication of JPH01257922A publication Critical patent/JPH01257922A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To eliminate the wave front aberration of a secondary higher harmonic by providing a phase matching grating which almost satisfies a specific relation between the phase constant of a 1st channel optical waveguide to a fundamental wave and the phase constant of a 2nd channel optical waveguide to the 2nd higher harmonic of the fundamental wave. CONSTITUTION:When the phase constant of a Ti diffusion optical waveguide 3 to the fundamental wave is denoted as beta<(omega)> and the phase constant of an H<+> exchange optical waveguide 4 to the secondary higher harmonic is denoted as beta<(2omega)>, efficient wavelength conversion is performed on condition that beta<(2omega)>-2beta<(omega)>=2pi/LAMBDA, i.e. n<(2omega)>-n<(omega)>=0.415/LAMBDA. The phase matching grating which is a dielectric provided on two optical waveguides 3 and 4 formed at the same position on a crystal substrate 1 serves for said function. At the time of said equivalent refractive index, this period LAMBDA is about 2mum and the phase matching grating 5 can be formed by using a normal SiO2 film forming method and lithography technique.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コヒーレントな短波長小型光源の実現を可能
にする、半導体レーザ用波長変換素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a wavelength conversion element for a semiconductor laser, which makes it possible to realize a coherent short-wavelength compact light source.

〔従来の技術〕[Conventional technology]

波長変換素子、特に第2次高調波発生(SHG)素子は
、エキシマレーザなどでは得にくいコヒーレントな短波
長光を得るデバイスとして産業上極めて重要である。
Wavelength conversion elements, particularly second harmonic generation (SHG) elements, are extremely important in industry as devices that obtain coherent short wavelength light that is difficult to obtain with excimer lasers or the like.

半導体レーザは小型で高出力のコヒーレント光を発振す
る光源として各種の光通信機器や光情報機器に使用され
ている。現在、この半導体レーザから得られる光の波長
は0.78μm−1,55μmの近赤外領域の波長であ
る。この半導体レーザをデイスプレィ等、さらに広く機
器に応用するために、赤色、緑色、青色等、より短波長
の光が求められているが、現在の技術ではこの種の半導
体レーザをにわかに実現するのは難しい。したがって半
導体レーザの出力程度でも効率よく波長変換できる波長
変換素子が実現できると、その効果は甚大である。
Semiconductor lasers are used in various optical communication devices and optical information devices as compact light sources that oscillate high-power coherent light. Currently, the wavelength of light obtained from this semiconductor laser is in the near-infrared region of 0.78 μm-1.55 μm. In order to apply this semiconductor laser to a wider range of devices such as displays, light with shorter wavelengths such as red, green, and blue is required, but with current technology, it is difficult to quickly realize this type of semiconductor laser. difficult. Therefore, if a wavelength conversion element capable of efficiently converting wavelength even with the output of a semiconductor laser could be realized, the effect would be enormous.

近年、半導体レーザの製作技術が発達して、従来にも増
して高出力の特性が得られるようになってきた。このた
め、光導波路型のSHO素子を構成すれば、光の回折に
よるエネルギ密度の減少を回避でき、半導体レーザ程度
の光強度でも、比較的高い変換効率で波長変換素子を実
現できる可能性がある。その様な例として、ニオブ酸リ
チウム結晶に光導波路を形成し、この光導波路に近赤外
光を透過し、これから結晶基板中に放射(チェレンコフ
輻射)される第2次高調波を得る方式のSHG素子の発
明がある(特開昭60−14222号公報。
In recent years, semiconductor laser manufacturing technology has developed, and it has become possible to obtain higher output characteristics than ever before. Therefore, by constructing an optical waveguide-type SHO element, it is possible to avoid a decrease in energy density due to light diffraction, and it is possible to realize a wavelength conversion element with relatively high conversion efficiency even with a light intensity comparable to that of a semiconductor laser. . An example of such a method is to form an optical waveguide in a lithium niobate crystal, transmit near-infrared light through the optical waveguide, and obtain second harmonics that are radiated into the crystal substrate (Cherenkov radiation). There is an invention of an SHG element (Japanese Patent Laid-Open No. 14222/1983).

特開昭61−94031号公報)。JP-A-61-94031).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の方式のSHG素子は、基本波と第2次高調波との
位相整合条件が自動的にとれているため、精密な温度調
節が必要ないという特長を持つ反面、第2次高調波出力
が基板放射光であるため波面が特異で、収差のきつい、
あたかも「細い眉毛」の様な強度分布の光が基板の端面
から出てくる。このため、この光をガウス状強度分布の
通常の使いやすいビームに変換するには、この収差を補
正する高級なレンズを必要とする。しかし、第2次高調
波出力光も半導体レーザの出射光と同じようにチャンネ
ル導波光であれば、このような不便は生じない。
The above-mentioned SHG element has the advantage that it does not require precise temperature control because the phase matching conditions between the fundamental wave and the second harmonic are automatically established, but the second harmonic output is Because it is substrate radiation, the wavefront is unique and has severe aberrations.
Light with an intensity distribution similar to that of "thin eyebrows" comes out from the edge of the substrate. Therefore, converting this light into a normal, easy-to-use beam with a Gaussian intensity distribution requires a high-grade lens that corrects for this aberration. However, if the second harmonic output light is also channel guided light like the light emitted from the semiconductor laser, such inconvenience will not occur.

本発明の目的は、上述の従来の導波型SHG素子の持つ
難点を取り除き、第2次高調波出力光がチャンネル導波
光となる構造の導波路型波長変換素子を提供することに
ある。
An object of the present invention is to eliminate the drawbacks of the conventional waveguide type SHG element described above and to provide a waveguide type wavelength conversion element having a structure in which the second harmonic output light becomes channel guided light.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の導波路型波長変換素子は、 X板またはY板ニオブ酸リチウム結晶面上のZ軸にほぼ
直交する方向に進み、平行する2本の側壁と、 これら2本の側壁の間の同一場所に形成され、互いに重
なり合う第一及び第二の2本のチャンネル光導波路と、 第一のチャンネル光導波路の基本波(周波数ω)に対す
る位相定数β(ω)と第二のチャンネル光導波路の前記
基本波の第2高調波に対する位相定数β(2ω)との間
で、β(2ω)−2β(ω)=2π/Δなる関係をほぼ
満たすように、第一及び第二のチャンネル光導波路の光
透過方向に屈折率の変化の周期Aを与える位相整合グレ
ーティングとを有している。
The waveguide type wavelength conversion element of the present invention proceeds in a direction substantially perpendicular to the Z-axis on the X-plate or Y-plate lithium niobate crystal plane, and has two parallel side walls, and an identical space between these two side walls. two channel optical waveguides, first and second, formed at a location and overlapping each other; a phase constant β (ω) for the fundamental wave (frequency ω) of the first channel optical waveguide; The first and second channel optical waveguides are arranged so that the phase constant β(2ω) for the second harmonic of the fundamental wave approximately satisfies the relationship β(2ω)−2β(ω)=2π/Δ. It has a phase matching grating that provides a period A of change in refractive index in the light transmission direction.

〔実施例〕〔Example〕

以下本発明を実施例に基づき図面を用いて詳細に説明す
る。
The present invention will be described in detail below based on embodiments and with reference to the drawings.

第1図は本発明の一実施例である導波路型波長変換素子
の構造を示す斜視図、第2図はその断面図である。Iは
LiNbos結晶基板であり、基板方位はX板(すなわ
ち、基板に立てた法線はX軸)である。この結晶面上に
、Z軸にほぼ直交する方向に進む側壁2a+  2bを
設け、これらの側壁の間に、これらの側壁に沿って、ニ
オブ酸リチウム結晶面上に第一のチャンネル光導波路3
が形成されている。そして、この第一のチャンネル光導
波路3を形成した同一の結晶面上の同一位置に、第二の
チャンネル光導波路4が併せて設けられている。第一の
チャンネル光導波路3は、ニオブ酸リチウム結晶面にT
iを拡散して形成されたTi拡散チャンネル光導波路で
あり、第二のチャンネル光導波路4は、イオン交換法で
形成されたH+交換チャンネル光導波路である。
FIG. 1 is a perspective view showing the structure of a waveguide type wavelength conversion element according to an embodiment of the present invention, and FIG. 2 is a sectional view thereof. I is a LiNbos crystal substrate, and the substrate orientation is the X plate (that is, the normal line to the substrate is the X axis). On this crystal plane, side walls 2a+2b extending in a direction substantially orthogonal to the Z axis are provided, and between these side walls, along these side walls, a first channel optical waveguide 3 is formed on the lithium niobate crystal plane.
is formed. A second channel optical waveguide 4 is also provided at the same position on the same crystal plane on which the first channel optical waveguide 3 is formed. The first channel optical waveguide 3 has T on the lithium niobate crystal plane.
The second channel optical waveguide 4 is a Ti diffusion channel optical waveguide formed by diffusing i, and the second channel optical waveguide 4 is an H+ exchange channel optical waveguide formed by an ion exchange method.

第一のチャンネル光導波路3には半導体レーザ6の出力
光が入射基本波(周波数ω)7として結合される。第二
のチャンネル光導波路4は、基本波7から変換された第
2次高調波8を導く。導波路端面から放射された導波路
第2次高調波8は、円レンズ9によって円形コリメート
光10に変換される。
The output light of the semiconductor laser 6 is coupled to the first channel optical waveguide 3 as an incident fundamental wave (frequency ω) 7. The second channel optical waveguide 4 guides the second harmonic 8 converted from the fundamental wave 7 . The waveguide second harmonic 8 emitted from the waveguide end face is converted into circular collimated light 10 by a circular lens 9 .

上記2本の光導波路3及び4と位相整合グレーティング
5は以下のような構造をしている。半導体レーザ6から
の入射光であり結晶基板1のZ方向に平行な電界成分を
持つTE波である基本波7を伝搬させるTi拡散光導波
路3の、波長0.83μm基本波に対する等価屈折率n
(ω)は2.177であり、第2次高調波が伝搬するH
°交換光導波路4の、波長0.47.5μm第2次高調
波に対する等価屈折率n +zω)は2.387であり
、2つの波の位相定数(β)に差がある。このため、こ
のままでは基本波から第2次高調波への変換は生じない
The two optical waveguides 3 and 4 and the phase matching grating 5 have the following structure. The equivalent refractive index n of the Ti diffused optical waveguide 3 for propagating the fundamental wave 7, which is the incident light from the semiconductor laser 6 and is a TE wave having an electric field component parallel to the Z direction of the crystal substrate 1, with respect to the fundamental wave with a wavelength of 0.83 μm.
(ω) is 2.177, and H
The equivalent refractive index n + zω) of the °-exchanged optical waveguide 4 for the second harmonic having a wavelength of 0.47.5 μm is 2.387, and there is a difference in the phase constant (β) of the two waves. Therefore, no conversion from the fundamental wave to the second harmonic will occur if the current state remains as it is.

Ti拡散光導波路3の基本波に対する位相定数をβ1ω
)、H゛交換光導波路4の第2次高調波に対する位相定
数をβ32ω) としたとき、今、β12ω〉−2β1
ω)−2π/八 すなわち、 ntzω)−n(ω’ =0.415/Aの関係を満た
す周期Δμmの屈折率の変化の周期があれば、効率のよ
い波長変換が行われる。結晶基板1上の同一場所に形成
された2本の光導波路3.4の導波路上に設けた誘電体
である位相整合グレーティング5は、この役割を果たす
。上記の等価屈折率の値の場合、この周期Δは、2μm
程度となり、通常のSin、成膜法やリソグラフィー技
術を用いて位相整合グレーティング5を形成することが
出来る。
The phase constant for the fundamental wave of the Ti diffused optical waveguide 3 is β1ω
), and the phase constant for the second harmonic of the exchanged optical waveguide 4 is β32ω), now β12ω〉−2β1
If there is a period of change in the refractive index with a period Δμm that satisfies the relationship ω)-2π/8, that is, ntzω)-n(ω' = 0.415/A, efficient wavelength conversion can be performed.Crystal Substrate 1 The phase matching grating 5, which is a dielectric material provided on the waveguides of the two optical waveguides 3.4 formed at the same location above, plays this role.In the case of the above equivalent refractive index value, this period Δ is 2 μm
Therefore, the phase matching grating 5 can be formed using a normal Sin film formation method or lithography technique.

第1図の実施例における側壁2a及び2bは以下の理由
で設けである。ニオブ酸リチウム結晶のもつ光学的異方
性の特性から、体積平面波の波面伝搬方向がY方向から
Z方向に回転すると、屈折率は増大する。Y軸から16
〜17度程度振れると、体積平面波の屈折率n !1L
ILI[(2ω) は、上式と同様の関係を満たすよう
になる。すなわち、n IIULK (2ω)−n(ω
’ =0.415/Δが成り立つ。このことは、Y軸か
ら16〜17度程度振れた方向にも第2次高調波が放射
されることになる。2つの側壁が無く平面構造であった
ならば、この条件はY軸を挟んで+2.−2両方向に存
在し、第2次高調波は導波路4を伝わる波だけではなく
体積波にも変換され、狙いとする導波路第2次高調波8
への変換効率は大幅に減少する。本発明によれば、側壁
2a、’lbを設けであるため、導波路第2次高調波8
へ効率よく変換が達成される。
The side walls 2a and 2b in the embodiment of FIG. 1 are provided for the following reasons. Due to the optical anisotropy characteristic of the lithium niobate crystal, when the wavefront propagation direction of the volume plane wave is rotated from the Y direction to the Z direction, the refractive index increases. 16 from Y axis
When the deflection is approximately 17 degrees, the refractive index of the volume plane wave is n! 1L
ILI[(2ω) satisfies the same relationship as the above equation. That is, n IIULK (2ω)−n(ω
'=0.415/Δ holds true. This means that the second harmonic is also radiated in a direction deviated by about 16 to 17 degrees from the Y axis. If it were a planar structure without two side walls, this condition would be +2. -2 Exists in both directions, and the second harmonic is converted not only into a wave that propagates through the waveguide 4 but also into a volume wave, and the second harmonic is aimed at the waveguide 8.
The conversion efficiency to is significantly reduced. According to the present invention, since the side walls 2a and 'lb are provided, the waveguide second harmonic 8
The conversion to is efficiently achieved.

一方、導波路の厚さや結晶屈折率などにゆらぎや温度変
化があると、導波路の等価屈折率は変化し、上式が満た
されなくなり、波長変換は極めて不安定になる。これを
避けるために、導波路上に設けた誘電体の周期を、光透
過方向に徐々に変化させることによって、等価屈折率の
ゆらぎや温度変化を吸収して安定な波長変換を実現する
ことが出来る。図では最大の周期をΔlで、最小の周期
をΔ、で示している。
On the other hand, if there are fluctuations or temperature changes in the waveguide thickness or crystal refractive index, the equivalent refractive index of the waveguide will change, the above equation will no longer be satisfied, and wavelength conversion will become extremely unstable. To avoid this, by gradually changing the period of the dielectric provided on the waveguide in the direction of light transmission, it is possible to absorb fluctuations in the equivalent refractive index and temperature changes and achieve stable wavelength conversion. I can do it. In the figure, the maximum period is shown as Δl, and the minimum period is shown as Δ.

以上の構成の導波路型波長変換素子によれば、半導体レ
ーザ6から入射された基本波7は、波面収差のない第2
次高調波に変換されて出力され、円レンズ9によって円
形コリメート光10に変換される。
According to the waveguide type wavelength conversion element having the above configuration, the fundamental wave 7 incident from the semiconductor laser 6 is converted into a second wave having no wavefront aberration.
It is converted into harmonics and output, and converted into circular collimated light 10 by a circular lens 9.

チャンネル光導波路4が、イオン交換法等の単一プロセ
スで形成されていて、結晶端面から放射される第2次高
調波の導波路垂直方向への強度分布に非対称が生じ、円
レンズ9で変換されたコリメート光10が、ガウス状円
形ビームから形状が隔たる場合には、チャンネル光導波
路4を埋め込み構造にして、放射光強度分布を対称化す
ることも、  可能である。これは、上記のプロセスの
後、マグネシウム等の屈折率を低下させる原子を熱拡散
法等で、追拡散させるという公知の技術を用いることで
実現される。
The channel optical waveguide 4 is formed by a single process such as an ion exchange method, and the intensity distribution of the second harmonic emitted from the crystal end face in the vertical direction of the waveguide becomes asymmetrical, which is converted by the circular lens 9. When the collimated light 10 is separated from a Gaussian circular beam in shape, it is also possible to make the emitted light intensity distribution symmetrical by making the channel optical waveguide 4 into a buried structure. This is achieved by using a known technique of additionally diffusing atoms that lower the refractive index, such as magnesium, by thermal diffusion or the like after the above process.

〔発明の効果〕〔Effect of the invention〕

以上の説明のように本発明によれば、第2次高調波に波
面収差のない、安定な導波路型波長変換素子が得られる
As described above, according to the present invention, a stable waveguide type wavelength conversion element without wavefront aberration in the second harmonic can be obtained.

また、本発明によれば、結晶基板にXFiないしはY板
を用いており、Z板を用いていないために、半導体レー
ザを導波路端面に直接に接続でき、Z板の場合のように
半波長板を介したり、半導体レーザチップを90度傾け
たりする必要がなく、実装上極めて好都合である。
Further, according to the present invention, since an XFi or Y plate is used as the crystal substrate and no Z plate is used, the semiconductor laser can be directly connected to the end face of the waveguide, and unlike the case of the Z plate, the semiconductor laser can be connected directly to the end face of the waveguide. There is no need to use a plate or tilt the semiconductor laser chip by 90 degrees, which is extremely convenient for mounting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の導波路型波長変換素子の構
造を説明する斜視図、 第2図はその断面図である。 1・・・LiNb0+結晶基板 2a、’lb・・側壁 3・・・第一のチャンネル光導波路 4・・・第二のチャンネル光導波路 5・・・位相整合グレーティング 6・・・半導体レーザ 7・・・基本波 8・・・第2次高調波 9・・・円レンズ 10・・・円形コリメート光 代理人 弁理士  岩 佐  義 幸 −(へ)
FIG. 1 is a perspective view illustrating the structure of a waveguide type wavelength conversion element according to an embodiment of the present invention, and FIG. 2 is a sectional view thereof. 1...LiNb0+crystal substrate 2a, 'lb...Side wall 3...First channel optical waveguide 4...Second channel optical waveguide 5...Phase matching grating 6...Semiconductor laser 7...・Fundamental wave 8...Second harmonic 9...Circular lens 10...Circular collimated light Agent Patent attorney Yoshiyuki Iwasa - (to)

Claims (1)

【特許請求の範囲】[Claims] (1)X板またはY板ニオブ酸リチウム結晶面上のZ軸
にほぼ直交する方向に進み、平行する2本の側壁と、 これら2本の側壁の間の同一場所に形成され、互いに重
なり合う第一及び第二の2本のチャンネル光導波路と、 第一のチャンネル光導波路の基本波(周波数ω)に対す
る位相定数β^(^ω^)と第二のチャンネル光導波路
の前記基本波の第2高調波に対する位相定数β^(^2
^ω^)との間で、β^(^2^ω^)−2β^(^ω
^)=2π/Λなる関係をほぼ満たすように、第一及び
第二のチャンネル光導波路の光透過方向に屈折率の変化
の周期Λを与える位相整合グレーティングとを有する導
波路型波長変換素子。
(1) Two parallel side walls running in a direction almost perpendicular to the Z axis on the X-plate or Y-plate lithium niobate crystal plane, and a second side wall formed at the same location between these two side walls and overlapping each other. two channel optical waveguides, a first channel optical waveguide and a second channel optical waveguide, a phase constant β^(^ω^) for the fundamental wave (frequency ω) of the first channel optical waveguide, and a second Phase constant β^(^2
Between β^(^2^ω^)-2β^(^ω
A waveguide-type wavelength conversion element having a phase matching grating that provides a period of refractive index change Λ in the light transmission direction of the first and second channel optical waveguides so as to substantially satisfy the relationship: ^) = 2π/Λ.
JP8519588A 1988-04-08 1988-04-08 Waveguide type wavelength converting element Pending JPH01257922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8519588A JPH01257922A (en) 1988-04-08 1988-04-08 Waveguide type wavelength converting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8519588A JPH01257922A (en) 1988-04-08 1988-04-08 Waveguide type wavelength converting element

Publications (1)

Publication Number Publication Date
JPH01257922A true JPH01257922A (en) 1989-10-16

Family

ID=13851865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8519588A Pending JPH01257922A (en) 1988-04-08 1988-04-08 Waveguide type wavelength converting element

Country Status (1)

Country Link
JP (1) JPH01257922A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498227A (en) * 1990-08-17 1992-03-30 Nec Corp Waveguide type wavelength conversion element
EP0576197A3 (en) * 1992-06-17 1994-06-01 Matsushita Electric Ind Co Ltd Short wavelength coherent light generating apparatus
US5321709A (en) * 1993-05-17 1994-06-14 Cygnus Laser Corporation Pulsed intracavity nonlinear optical frequency converter
EP0625811A1 (en) * 1993-05-21 1994-11-23 Matsushita Electric Industrial Co., Ltd. A short wavelength light source apparatus
CN111061072A (en) * 2020-03-16 2020-04-24 南京南智先进光电集成技术研究院有限公司 Photoelectric device based on lithium niobate thin film and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498227A (en) * 1990-08-17 1992-03-30 Nec Corp Waveguide type wavelength conversion element
EP0576197A3 (en) * 1992-06-17 1994-06-01 Matsushita Electric Ind Co Ltd Short wavelength coherent light generating apparatus
US5387998A (en) * 1992-06-17 1995-02-07 Matsushita Electric Industrial Co., Ltd. Shorter wavelength light generating apparatus in which coherent light is converted into shorter wavelength light
US5321709A (en) * 1993-05-17 1994-06-14 Cygnus Laser Corporation Pulsed intracavity nonlinear optical frequency converter
EP0625811A1 (en) * 1993-05-21 1994-11-23 Matsushita Electric Industrial Co., Ltd. A short wavelength light source apparatus
CN111061072A (en) * 2020-03-16 2020-04-24 南京南智先进光电集成技术研究院有限公司 Photoelectric device based on lithium niobate thin film and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS61290426A (en) Higher harmonic generator
JPH0669582A (en) Short wavelength light source
EP0377988A2 (en) Wavelength converting optical device
JPH04107536A (en) Second harmonic generation device
JP3129028B2 (en) Short wavelength laser light source
JPH02254427A (en) Optical wavelength converter
JPH01257922A (en) Waveguide type wavelength converting element
JP2725302B2 (en) Waveguide type wavelength conversion element
CN111416263B (en) Terahertz source based on non-collinear phase matching difference frequency of phosphorus-germanium-zinc crystal
JPS6118934A (en) Device for changing wavelength of light
JP2676743B2 (en) Waveguide type wavelength conversion element
JPH04335328A (en) Second harmonic generating element and production thereof and light source device formed by using second harmonic generating element
JP2658381B2 (en) Waveguide type wavelength conversion element
JP2002287193A (en) Wavelength conversion element, wavelength conversion device and laser device
JPH09179155A (en) Optical wavelength converting device
JPH02189527A (en) Waveguide type wavelength converting element
US5502590A (en) Harmonic wave generating element for coherent light having short wavelength
JP2666540B2 (en) Waveguide type wavelength conversion element
JPH01238630A (en) Waveguide type wavelength transducing element
JPH0627509A (en) Wavelength shifting element
JP2688102B2 (en) Optical wavelength converter
JPH02282233A (en) Waveguide type wavelength converting element
JPH06194703A (en) Wavelength converting element
JPH0223323A (en) Waveguide type wavelength converting element
JP2906615B2 (en) Waveguide type wavelength conversion element