[go: up one dir, main page]

JPH0448781A - Image sensor integrated with light source and its manufacture - Google Patents

Image sensor integrated with light source and its manufacture

Info

Publication number
JPH0448781A
JPH0448781A JP2155049A JP15504990A JPH0448781A JP H0448781 A JPH0448781 A JP H0448781A JP 2155049 A JP2155049 A JP 2155049A JP 15504990 A JP15504990 A JP 15504990A JP H0448781 A JPH0448781 A JP H0448781A
Authority
JP
Japan
Prior art keywords
light
layer
transparent substrate
receiving element
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2155049A
Other languages
Japanese (ja)
Inventor
Masao Funada
雅夫 舟田
Kiichi Yamada
紀一 山田
Kazuhisa Ando
和久 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2155049A priority Critical patent/JPH0448781A/en
Priority to US07/593,971 priority patent/US5101099A/en
Priority to EP96110663A priority patent/EP0740349A3/en
Priority to DE69030574T priority patent/DE69030574T2/en
Priority to EP90119594A priority patent/EP0461302B1/en
Priority to KR1019900016312A priority patent/KR960001343B1/en
Publication of JPH0448781A publication Critical patent/JPH0448781A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/80Constructional details of image sensors

Landscapes

  • Facsimile Heads (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To prevent a flare by which an output is generated at a photodetector only by turning on an EL light-emitting element and to reduce a dark output by a method wherein a gas layer is laid on the photodetector side of the EL light-emitting element and interface states on both side faces of a transparent substrate are set so as to be the same. CONSTITUTION:The whole surface of an insulating substrate 1 is coated with an adhesive in which spherical spacers 31 have been mixed and dispersed; an adhesive layer 30 is formed; a transparent substrate 2 is arranged in such a way that light-incident windows 26 are faced with individual photodetectors 10; a uniform pressure is exerted on the transparent substrate 20. Both are bonded. Since the film thickness of metal electrodes 25 is made thick, the depth of grooves of the light-incident windows 26 can be made deep. The adhesive does not creep to the side of a dielectric 24 of the light-incident windows 26 and a gas layer 40 can be formed at this part. The whole of reflected light which is reflected totally on the side face of a source document 100 on the transparent substrate 2 out of light emitted to the side of the source document from a light-transmitting layer 23 is again reflected totally at the interface between the transparent substrate 2 and the gas layer 40 and is not incident on the individual photodetectors 10.

Description

【発明の詳細な説明】 (従来の技術) 従来、ファクシミリやスキャナ等に使用される密着型の
画像読取装置は、蛍光灯光源と、原稿幅員を有するイメ
ージセンサと、原稿からの反射光をイメージセンサに結
像させる等倍光学系とから成り、原稿からの濃度に応じ
た反射光による光信号を電気信号として直線状に配置さ
れたイメージセンサの受光素子に蓄積し、この電気信号
を時系列的に出力して原稿の1ライン(主走査方向)に
相当する画像信号を得るものである。この画像読取装置
によれば、縮小光学系を用いる方式に比較して装置の小
型化を図ることができるが、等倍光学系としてロッドレ
ンズアレイ等を使用するので装置の小型化に限度がある
という欠点があった。
DETAILED DESCRIPTION OF THE INVENTION (Prior Art) Conventionally, a contact type image reading device used in a facsimile, a scanner, etc. uses a fluorescent lamp light source, an image sensor having an original width, and an image sensor that captures light reflected from the original into an image. It consists of a same-magnification optical system that forms an image on the sensor, and the light signal from the reflected light according to the density from the original is accumulated as an electrical signal in the light receiving element of the image sensor arranged in a straight line, and this electrical signal is transmitted in a time series. This is to obtain an image signal corresponding to one line (main scanning direction) of the document. According to this image reading device, the size of the device can be reduced compared to a method using a reduction optical system, but there is a limit to how small the device can be made because a rod lens array, etc. is used as the same-magnification optical system. There was a drawback.

そこで、光源としてEL発光素子を用い、EL発光素子
と密着型イメージセンサとを一体化した超小型の光源一
体型イメージセンサが提案されている。
Therefore, an ultra-compact light source-integrated image sensor has been proposed that uses an EL light emitting element as a light source and integrates the EL light emitting element and a contact type image sensor.

この光源一体型イメージセンサは、例えば第4図に示す
ように、絶縁基板1上にライン状に多数配設された受光
素子10と、ガラス等から成る透明基板2上に形成され
たEL発光素子20とを、透光性の接着剤層30を挟ん
で相対向するように配置して構成される。
For example, as shown in FIG. 4, this light source integrated image sensor includes a plurality of light receiving elements 10 arranged in a line on an insulating substrate 1, and an EL light emitting element formed on a transparent substrate 2 made of glass or the like. 20 are arranged to face each other with a translucent adhesive layer 30 in between.

EL発光素子20から発光した光は、透明基板2の反発
光素子側に配置した原稿(図示せず)面を照射し、その
反射光が受光素子10に入射するようになっている。
The light emitted from the EL light emitting element 20 illuminates the surface of an original (not shown) placed on the side of the repulsion light element of the transparent substrate 2, and the reflected light enters the light receiving element 10.

(発明が解決しようとする課題) 上述のような構造の光源一体型イメージセンサによると
、ガラスの透明基板2の屈折率n2 (1゜5程度)、
一般的な接着剤層30の屈折率n3(1,4程度)、空
気の屈折率n、は、n2≧n>n、中1.0を満足して
いる。透明基板2と原稿面との間には空気が存在すると
考えられる(透明基板2に原稿か完全に密着していない
)ので、EL発光素子20ら発光した光のうち、次式で
示される角度03以上のものは、透明基板2の原稿側の
面で全反射してしまう。
(Problem to be Solved by the Invention) According to the light source integrated image sensor having the structure described above, the refractive index n2 (about 1°5) of the transparent glass substrate 2,
The refractive index n3 (about 1.4) of the general adhesive layer 30 and the refractive index n of air satisfy n2≧n>n, which is 1.0. Since it is considered that air exists between the transparent substrate 2 and the document surface (the document is not in complete contact with the transparent substrate 2), the angle of the light emitted from the EL light emitting element 20 is determined by the following formula. 03 or more will be totally reflected by the surface of the transparent substrate 2 on the document side.

θ、−s in −’  (n+ /n、)また、全反
射した光のうち、次式で示される角度θ、以下のものは
、界面で全反射せずEL発光素子20に形成された光入
射窓26を通過して受光素子10へ入射してしまう。
θ, -s in -' (n+ /n,) Also, among the totally reflected light, the light below the angle θ shown by the following formula is the light that is not totally reflected at the interface and is formed on the EL light emitting element 20. The light passes through the entrance window 26 and enters the light receiving element 10 .

θ2−s s n −’  (n3 / n2 )上述
した全反射光は原稿の有無に関係なく発生するので、E
L発光素子20を点灯するだけて受光素子10にEL発
光光の一部が常に入射してしまい(フレア)、受光素子
10の暗出力がグランドレベルより大きくなり、受光素
子10のダイナミックレンジを狭め、多階調読み取りに
際して不都合であるという問題点があった。
θ2-s s n -' (n3 / n2) Since the total internal reflection mentioned above occurs regardless of the presence or absence of the original, E
Just by lighting the L light emitting element 20, a part of the EL emitted light always enters the light receiving element 10 (flare), and the dark output of the light receiving element 10 becomes higher than the ground level, narrowing the dynamic range of the light receiving element 10. However, there was a problem in that it was inconvenient when reading multiple gradations.

本発明は上記実情に鑑みてなされたもので、光源一体型
イメージセンサにおいて、EL発光素子を点灯するたけ
で受光素子に出力が発生するフレアを防止する構造及び
その製造方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a structure and manufacturing method thereof that prevents flare in which an output is generated in a light receiving element simply by lighting up an EL light emitting element in an image sensor with an integrated light source. shall be.

(課踊を解決するための手段) 上記従来例の問題点を解決するため請求項1記載の発明
は、絶縁基板上に形成された多数の受光素子と、透明基
板上に形成された発光素子とを透光層を挾んで相対向す
るように配置し、前記発光素子からの光を前記透明基板
の反発光素子側に配置した原稿面に照射させ、その反射
光か前記受光素子に入射するようにした光線一体型イメ
ージセンサにおいて、前記受光素子上の透光層の一部若
しくは全部を除去して、発光素子側に臨む気体層を介在
させたことを特徴としている。
(Means for Solving the Problems) In order to solve the problems of the conventional example described above, the invention according to claim 1 provides a method using a plurality of light-receiving elements formed on an insulating substrate and a light-emitting element formed on a transparent substrate. and are arranged to face each other with a light-transmitting layer in between, and the light from the light emitting element is irradiated onto the document surface arranged on the repulsion light element side of the transparent substrate, and the reflected light is incident on the light receiving element. The light integrated image sensor is characterized in that part or all of the light-transmitting layer on the light-receiving element is removed, and a gas layer facing the light-emitting element is interposed.

また、請求項2記載の光源一体型イメージセンサの製造
方法は、次の工程を具備することを特徴としている。
Further, a method of manufacturing a light source integrated image sensor according to a second aspect of the present invention is characterized by comprising the following steps.

受光素子形成工程として、絶縁基板上に受光素子を形成
する。
In the light receiving element forming step, a light receiving element is formed on an insulating substrate.

発光素子形成工程として、透明基板上に透明電極、誘電
体層1発光層、誘電体層、金属電極を順次積層し、前記
金属電極に光入射窓を設けてEL発光素子を形成する。
As a light emitting element forming step, a transparent electrode, a dielectric layer 1 light emitting layer, a dielectric layer, and a metal electrode are sequentially laminated on a transparent substrate, and a light entrance window is provided on the metal electrode to form an EL light emitting element.

接着工程として、受光素子が形成された絶縁基板上に接
着剤に塗布し、光入射窓の誘電体層側に気体層を保持し
たまま、前記受光素子とEL発光素子との光入射窓とか
対向するように接着する。
In the adhesion process, an adhesive is applied onto the insulating substrate on which the light receiving element is formed, and while the gas layer is maintained on the dielectric layer side of the light entrance window, the light receiving element and the EL light emitting element are placed opposite each other to the light entrance window. Glue as shown.

(作用) 本発明によれば、EL発光素子受光素子側に気体層を介
在させ、透明基板の両側面での界面状態を同じように設
定したので、EL発光素子から発光して原稿側の透明基
板界面で全反射した全ての光が、EL発光素子と気体層
との界面で再び全反射し、受光素子側に入射することが
ない。
(Function) According to the present invention, a gas layer is interposed on the side of the EL light emitting element and the light receiving element, and the interface state on both sides of the transparent substrate is set to be the same. All the light totally reflected at the substrate interface is totally reflected again at the interface between the EL light emitting element and the gas layer, and does not enter the light receiving element side.

(実施例) 本発明の一実施例について図面を参照しながら説明する
(Example) An example of the present invention will be described with reference to the drawings.

第1図は実施例に係る光源一体型イメージセンサの主走
査方向に沿った面での断面説明図である。
FIG. 1 is a cross-sectional explanatory diagram of a light source-integrated image sensor according to an embodiment taken along the main scanning direction.

この光源一体型イメージセンサは、絶縁基板1上にライ
ン状に多数の受光素子10を形成したイメージセンサと
、透明基板2上に形成されたEL発光素子20とで、透
光性部材から成る接着剤層30を挟んで構成されている
This light source-integrated image sensor consists of an image sensor in which a large number of light receiving elements 10 are formed in a line on an insulating substrate 1, and an EL light emitting element 20 formed on a transparent substrate 2, which are bonded together using a transparent material. It is configured with a chemical layer 30 sandwiched therebetween.

イメージセンサは、絶縁基板1上にドツト分離形状の多
数の個別電極11.該個別電極11を覆う帯状の光導電
層12.帯状の共通電極13を順次積層し、光導電層1
2を個別電極11と共通電極13とで挾んだ部分が各受
光素子10を構成している。
The image sensor includes a large number of individual electrodes 11 . A band-shaped photoconductive layer 12 covering the individual electrodes 11. Strip-shaped common electrodes 13 are sequentially laminated to form a photoconductive layer 1.
2 between the individual electrodes 11 and the common electrode 13 constitutes each light receiving element 10.

EL発光素子20は、100μmの基板厚を有する透明
基板2上に透明電極21.絶縁層22゜発光層23.絶
縁層24.金属電極25を順次積層して構成されている
。金属電極25には、発光層23から発光した光が原稿
面100で反射し、反射光が前記受光素子10に入射す
るように、各受光素子10上に対応する位置に方形状の
光入射窓26が開口形成されている。
The EL light emitting element 20 includes a transparent electrode 21. on a transparent substrate 2 having a substrate thickness of 100 μm. Insulating layer 22゜Light emitting layer 23. Insulating layer 24. It is constructed by sequentially stacking metal electrodes 25. The metal electrode 25 is provided with a rectangular light incident window at a position corresponding to each light receiving element 10 so that the light emitted from the light emitting layer 23 is reflected on the document surface 100 and the reflected light is incident on the light receiving element 10. 26 is formed with an opening.

また、前記金属電極25の膜厚は通常の膜厚(0,5〜
1μm)より厚め(3μm程度)にし、前記光入射窓2
6内において、接着剤層30と絶縁層24との間に低屈
折率材料を充填した薄い(3μm程度)気体層40を介
在させるようにしている。気体層40には、空気(屈折
率1.000)、アルゴン(屈折率1.0003)、窒
素(屈折率1.0003)、ヘリウム(屈折率1゜00
04)、ネオン(屈折率1.00007)等、屈折率が
略1600の気体が充填されている。
Further, the film thickness of the metal electrode 25 is a normal film thickness (0.5~
1 μm) to be thicker (about 3 μm), and the light entrance window 2
6, a thin (about 3 μm) gas layer 40 filled with a low refractive index material is interposed between the adhesive layer 30 and the insulating layer 24. The gas layer 40 contains air (refractive index 1.000), argon (refractive index 1.0003), nitrogen (refractive index 1.0003), and helium (refractive index 1.000).
04), neon (refractive index 1.00007), or other gas having a refractive index of approximately 1600 is filled.

接着剤層30は球状スペーサ31を混合して含んでおり
、EL発光素子20と受光素子10との距離を一定距離
(本実施例では90μm程度とした)に確保している。
The adhesive layer 30 contains a mixture of spherical spacers 31, and maintains a constant distance between the EL light emitting element 20 and the light receiving element 10 (about 90 μm in this embodiment).

次に上述の光源一体型イメージセンサの製造方法につい
て説明する。
Next, a method of manufacturing the above-mentioned light source integrated image sensor will be explained.

絶縁基板1上に第1図の左右方向に複数個配設する個別
電極(クロムパターン)11.アモルファスシリコン(
a−5i)12.帯状の透明電極(ITO)13を順次
積層してアレイ状に配置される受光素子10を形成する
A plurality of individual electrodes (chrome patterns) 11 are arranged on the insulating substrate 1 in the left-right direction in FIG. Amorphous silicon (
a-5i)12. Band-shaped transparent electrodes (ITO) 13 are sequentially stacked to form light-receiving elements 10 arranged in an array.

透明基板2上にITO,In、O,,5nO7等から成
る透明電極21. Y、Ol、  Si、 N、 。
A transparent electrode 21 made of ITO, In, O, 5nO7, etc. is formed on the transparent substrate 2. Y, Ol, Si, N,.

BaTiOs等から成る絶縁層22.ZnS:Mn等か
ら成る発光層23.同上の絶縁層24.アルミニウム等
の金属から成る不透明な金属電極25を順次積層してE
L発光素子20を形成し、前記金属電極25をフォトリ
ソ法によりエツチングして前記受光素子10に対応する
光入射窓26を形成する。この際、金属電極25は通常
の膜厚より厚く (3μm程度)着膜する。
Insulating layer 22 made of BaTiOs or the like. A light emitting layer 23 made of ZnS:Mn or the like. Insulating layer 24 as above. Transparent metal electrodes 25 made of metal such as aluminum are sequentially laminated to form an E
An L light emitting element 20 is formed, and the metal electrode 25 is etched by photolithography to form a light entrance window 26 corresponding to the light receiving element 10. At this time, the metal electrode 25 is deposited thicker than usual (about 3 μm).

球状スペーサ31(例えば、積木ファインケミカル(株
)製 ミクロパール SP)を混合分散させた接着剤(
トーレシリコーン製 J CR6123、住良化学製 
5X2016  等)を絶縁基板1上の全面に塗布して
接着剤層30を形成し、各受光素子10に前記光入射窓
26が対向するよう透明基板2を配置させ、透明基板2
0上に均一な圧力を与えて両者の接着を行なう。このと
き、金属電極25の膜厚を厚くしたので、光入射窓26
の溝の深さを深くでき、光入射窓26の誘電体24側ま
で前記接着剤が入り込まず、この部分に気体層40が形
成される。前記球状スペーサ31は、真球形硬質プラス
チック微粒子から成り、耐熱性、絶縁性を有している。
Adhesive in which spherical spacers 31 (for example, Micro Pearl SP manufactured by Tsukiki Fine Chemical Co., Ltd.) are mixed and dispersed (
Made by Toray Silicone J CR6123, Made by Sumira Chemical
5X2016 etc.) on the entire surface of the insulating substrate 1 to form an adhesive layer 30, and the transparent substrate 2 is arranged so that the light incidence window 26 faces each light receiving element 10.
Adhesion of both is performed by applying uniform pressure on the 0. At this time, since the thickness of the metal electrode 25 was increased, the light incidence window 26
The depth of the groove can be increased, the adhesive does not penetrate to the dielectric 24 side of the light entrance window 26, and a gas layer 40 is formed in this part. The spherical spacer 31 is made of true spherical hard plastic particles and has heat resistance and insulation properties.

前記気体層40に保持される気体は、接着工程をどのよ
うな環境下で行なうかで決まる。すなわち、気体層40
を空気層とするには、乾燥空気環境下で接着工程を行な
えばよい。また、空気以外の気体層とするためには、絶
縁基板1及び透明基板2をグローブボックスに入れ、−
旦真空にした後、所望の気体(アルゴン、窒素、ヘリウ
ム等)をグローブボックス中に充填し、その中で接着工
程を行なえばよい。
The gas retained in the gas layer 40 depends on the environment in which the bonding process is performed. That is, the gas layer 40
To form an air layer, the bonding process may be performed in a dry air environment. In addition, in order to create a gas layer other than air, the insulating substrate 1 and transparent substrate 2 are placed in a glove box, and -
After creating a vacuum, the glove box may be filled with a desired gas (argon, nitrogen, helium, etc.), and the bonding process may be performed therein.

そして、最後に150℃、1時間で接着剤を硬化させる
Finally, the adhesive is cured at 150° C. for 1 hour.

上述した光源一体型イメージセンサによれば、EL発光
素子20の受光素子側10に気体層40を介在させ、透
明基板2の両側面での界面状態を同じように設定したの
で、発光層23から原稿100側に発光した光のうち透
明基板2の原稿側面(透明基板2の上面)で全反射する
反射光は、その全てが透明基板2と気体層40との界面
(透明基板2の下面)で再び全反射し、各受光素子10
に入射しないようになっている。
According to the light source integrated image sensor described above, the gas layer 40 is interposed on the light receiving element side 10 of the EL light emitting element 20, and the interface state on both sides of the transparent substrate 2 is set to be the same, so that the light emitting layer 23 Of the light emitted toward the document 100 side, all of the reflected light that is totally reflected on the document side surface of the transparent substrate 2 (the top surface of the transparent substrate 2) is reflected at the interface between the transparent substrate 2 and the gas layer 40 (the bottom surface of the transparent substrate 2). It is totally reflected again at each light receiving element 10.
It is designed so that it does not enter.

また、気体層40の厚さを3μm程度の薄層としたので
、原稿100で反射し気体層40中を通過する光200
(原稿の画像情報を含んだもの)が気体層40と接着剤
層30との界面で屈折し、この屈折光が主走査方向に離
れた位置まで届かないようにしている。その結果、1つ
の受光素子10に注目した場合、この受光素子の直上の
光入射窓46から遠く離れた光入射窓を通過した光、す
なわち注目受光素子に本来入射すべきでない不要な光が
当該注目受光素子に入射するのを防ぎ、受光素子の分解
能(MTF)の低下を防止することができる。
Further, since the thickness of the gas layer 40 is set to be a thin layer of about 3 μm, the light 200 that is reflected by the document 100 and passes through the gas layer 40
(containing image information of the original) is refracted at the interface between the gas layer 40 and the adhesive layer 30, and this refracted light is prevented from reaching a position far away in the main scanning direction. As a result, when focusing on one light-receiving element 10, the light that has passed through the light-incidence window far away from the light-incidence window 46 directly above this light-receiving element, that is, unnecessary light that should not originally be incident on the light-receiving element of interest, is the relevant light. It is possible to prevent the light from entering the light-receiving element of interest and to prevent the resolution (MTF) of the light-receiving element from decreasing.

また本実施例によれば、原稿100からの反射光のうち
、前記した角度θ1 より大きな入射角の光が受光素子
10に到達できなくなり(透明基板2の下面で全反射す
る)、受光素子の分解能(MTF)を向上させることが
できる。
Further, according to this embodiment, among the reflected light from the original 100, light having an incident angle larger than the angle θ1 described above cannot reach the light receiving element 10 (it is totally reflected on the lower surface of the transparent substrate 2), Resolution (MTF) can be improved.

第2図は本発明の他の実施例を示すもので、第1図と同
様の構成をとる部分については同−符号兎を付している
FIG. 2 shows another embodiment of the present invention, in which parts having the same configuration as in FIG. 1 are given the same reference numerals.

本実施例では、EL発光素子20の金属電極25の膜厚
を通常の膜厚(0,5〜1μm)とし、受光素子10上
に帯状の気体層40を形成している。
In this embodiment, the metal electrode 25 of the EL light emitting element 20 has a normal thickness (0.5 to 1 μm), and a band-shaped gas layer 40 is formed on the light receiving element 10.

この光源一体型イメージセンサは、通常の工程で透明基
板2上にEL発光素子20を形成し、2つの帯状開口部
51.51が形成されたエマルジョン厚のスクリーンマ
スク50(第3図(a))を絶縁基板1上に配置して前
記実施例同様のスペーサを混合した接着剤30′を塗布
し、スキージ60を使用して印刷し、受光素子アレイに
対応する長方形の溝部32を形成する(第3図(b))
This light source-integrated image sensor is manufactured by forming an EL light emitting element 20 on a transparent substrate 2 in a normal process, and using an emulsion-thick screen mask 50 (see FIG. 3(a)) in which two band-shaped openings 51 and 51 are formed. ) is placed on an insulating substrate 1, an adhesive 30' mixed with a spacer similar to the above embodiment is applied, and printed using a squeegee 60 to form a rectangular groove 32 corresponding to the light receiving element array ( Figure 3(b))
.

第3図(a)(b)においては、受光素子10の光導電
層12及び共通電極13を省略している。
In FIGS. 3(a) and 3(b), the photoconductive layer 12 and common electrode 13 of the light receiving element 10 are omitted.

スキージ60の硬度は、スクリーンマスクの厚さで接着
剤層30の膜厚を設定てきるようにするため、高いほう
が好ましい。また、前記スクリーンマスク50の厚さは
、球状スペーサの直径より5〜30μm厚いものを使用
する。
The hardness of the squeegee 60 is preferably high so that the thickness of the adhesive layer 30 can be set by the thickness of the screen mask. Further, the thickness of the screen mask 50 is 5 to 30 μm thicker than the diameter of the spherical spacer.

そして、受光素子10が形成された絶縁基板1と透明基
板2とを、受光素子アレイ上に前記溝部32(接着剤が
印刷されていない場所)が位置し、EL発光素子20の
光入射窓26と受光素子1゜とかり1応するように透明
基板2上から均一に加圧して両者を接合接合する。この
接合工程を行なう環境下によって気体層40に充填され
る気体の種類が決まるのは前記実施例と同様である。
Then, the insulating substrate 1 and the transparent substrate 2 on which the light-receiving elements 10 are formed are placed so that the groove portion 32 (where no adhesive is printed) is located on the light-receiving element array, and the light-incidence window 2 of the EL light-emitting element 20 Pressure is applied uniformly from above the transparent substrate 2 so that the light receiving element corresponds to the angle of 1°, and the two are bonded together. As in the previous embodiment, the type of gas filled in the gas layer 40 is determined by the environment in which this bonding step is performed.

また、前記スクリーンマスク50の代わりにメタルマス
クを使用してもよい。
Further, a metal mask may be used instead of the screen mask 50.

(発明の効果) 本発明によれば、EL発光素子の受光素子側に気体層を
介在させ、透明基板の両側面での界面状態を同じように
設定し、EL発光素子から発光して原稿側の透明基板で
全反射した光が、EL発光素子と気体層との界面で再び
全反射し、受光素子側に入射することがないので、EL
発光素子を点灯するだけで受光素子に出力が発生するフ
レアを防止し、暗出力を減少させてダイナミックレンジ
を広くとることかできる。また、暗出力をグランドレベ
ルに近づけることにより、暗出力補正回路の負担を軽減
することかできる。
(Effects of the Invention) According to the present invention, a gas layer is interposed on the light receiving element side of the EL light emitting element, the interface state on both sides of the transparent substrate is set to be the same, and light is emitted from the EL light emitting element to the original side. EL
By simply turning on the light-emitting element, it is possible to prevent flare caused by output from the light-receiving element, reduce dark output, and widen the dynamic range. Furthermore, by bringing the dark output close to the ground level, the burden on the dark output correction circuit can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面説明図、第2図は
他の実施例を示す断面説明図、第3図(a)(b)は光
源一体型イメージセンサの製造工程の一部を示す斜視説
明図、第4図は従来の光源一体型イメージセンサの断面
説明図である。 1・・・・・・絶縁基板 10・・・・・・受光素子 11・・・・・・個別電極 12・・・・・・光導電層 13・・・・・共通電極 2・・・・・・透明基板 20・・・・・EL発光素子 21・・・・・・透明電極 22・・・・・・絶縁層 23・・・・・・発光層 24・・・・・・絶縁層 25・・・・・・金属電極 26・・・・・・光入射窓 30・・・・・・接着剤層 40・・・・・・気体層 出  願  人 富士ゼロックス株式会社代理人 弁理
士 阪  本  清  孝代理人 弁理士 船  津 
 暢  宏第2図 □f本食方向 □主走査方向 第3図(0) 第3因(b)
Fig. 1 is an explanatory cross-sectional view showing one embodiment of the present invention, Fig. 2 is an explanatory cross-sectional view showing another embodiment, and Figs. FIG. 4 is a cross-sectional view of a conventional light source integrated image sensor. 1... Insulating substrate 10... Light receiving element 11... Individual electrode 12... Photoconductive layer 13... Common electrode 2... ...Transparent substrate 20...EL light emitting element 21...Transparent electrode 22...Insulating layer 23...Light emitting layer 24...Insulating layer 25 ...Metal electrode 26...Light entrance window 30...Adhesive layer 40...Gas layer Applicant: Fuji Xerox Co., Ltd. Agent Patent attorney Sakamoto Kiyotaka Agent Patent Attorney Tsu Funa
Nobuhiro Figure 2 □ f main scanning direction □ main scanning direction Figure 3 (0) 3rd cause (b)

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁基板上に形成された多数の受光素子と、透明
基板上に形成された発光素子とを透光層を挟んで相対向
するように配置し、前記発光素子からの光を前記透明基
板の反発光素子側に配置した原稿面に照射させ、その反
射光が前記受光素子に入射するようにした光源一体型イ
メージセンサにおいて、 前記受光素子上の透光層の一部若しくは全部を除去して
、発光素子側に臨む気体層を介在させたことを特徴とす
る光源一体型イメージセンサ。
(1) A large number of light-receiving elements formed on an insulating substrate and a light-emitting element formed on a transparent substrate are arranged to face each other with a light-transmitting layer in between, and light from the light-emitting elements is transmitted to the transparent substrate. In a light source-integrated image sensor in which a document surface placed on a repulsion light element side of a substrate is irradiated and the reflected light enters the light receiving element, part or all of the light-transmitting layer on the light receiving element is removed. An image sensor integrated with a light source, characterized in that a gas layer facing the light emitting element side is interposed.
(2)絶縁基板上に受光素子を形成する受光素子形成工
程と、 透明基板上に透明電極、誘電体層、発光層、誘電体層、
金属電極を順次積層し、前記金属電極に光入射窓を設け
てEL発光素子を形成する発光素子形成工程と、 受光素子が形成された絶縁基板上に接着剤に塗布し、光
入射窓の誘電体層側に気体層を保持したまま、前記受光
素子とEL発光素子との光入射窓とが対向するように接
着する接着工程と、 を具備する光源一体型イメージセンサの製造方法。
(2) A light receiving element forming step of forming a light receiving element on an insulating substrate, and a transparent electrode, a dielectric layer, a light emitting layer, a dielectric layer,
A light emitting element forming step in which metal electrodes are sequentially laminated and a light entrance window is provided on the metal electrodes to form an EL light emitting element; and an adhesive is applied onto the insulating substrate on which the light receiving element is formed to form a dielectric layer of the light entrance window. A method for manufacturing an image sensor integrated with a light source, comprising: adhering the light receiving element and the light incident window of the EL light emitting element so that they face each other while maintaining a gas layer on the body layer side.
JP2155049A 1990-06-15 1990-06-15 Image sensor integrated with light source and its manufacture Pending JPH0448781A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2155049A JPH0448781A (en) 1990-06-15 1990-06-15 Image sensor integrated with light source and its manufacture
US07/593,971 US5101099A (en) 1990-06-15 1990-10-09 Image reading device with different reflectivity coefficients in a transparent layer and a substrate
EP96110663A EP0740349A3 (en) 1990-06-15 1990-10-12 Light-source contained image sensor or reading device and a method for manufacturing the same
DE69030574T DE69030574T2 (en) 1990-06-15 1990-10-12 Image sensor or image reader containing light source and manufacturing method
EP90119594A EP0461302B1 (en) 1990-06-15 1990-10-12 Image sensor or reading device containing a light source and a method for manufacturing the same
KR1019900016312A KR960001343B1 (en) 1990-06-15 1990-10-15 Light source integrated image sensor and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2155049A JPH0448781A (en) 1990-06-15 1990-06-15 Image sensor integrated with light source and its manufacture

Publications (1)

Publication Number Publication Date
JPH0448781A true JPH0448781A (en) 1992-02-18

Family

ID=15597557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2155049A Pending JPH0448781A (en) 1990-06-15 1990-06-15 Image sensor integrated with light source and its manufacture

Country Status (2)

Country Link
JP (1) JPH0448781A (en)
KR (1) KR960001343B1 (en)

Also Published As

Publication number Publication date
KR920001921A (en) 1992-01-30
KR960001343B1 (en) 1996-01-26

Similar Documents

Publication Publication Date Title
JPS60191548A (en) image sensor
US4232219A (en) Photosensor
US5101099A (en) Image reading device with different reflectivity coefficients in a transparent layer and a substrate
JPS54116890A (en) Photoelectric converter
JPH0262847B2 (en)
US5164580A (en) Electroluminescent light-source-incorporated image sensor
JPH0448781A (en) Image sensor integrated with light source and its manufacture
JPS5846181B2 (en) Close-contact image sensor
US4143399A (en) Imaging device
JPS59148372A (en) photosensitive device
JPS6394671A (en) Optical scanning type image scanner
JPH0658272B2 (en) Tactile sensor
JPS6317554A (en) photoconductive device
JP2769812B2 (en) Document reading device
JPH0583025B2 (en)
JP2697180B2 (en) Image reading device
JPH0548062A (en) Method for cutting substrate end sections of image sensor substrate
JP2847962B2 (en) Light emitting device, method of manufacturing light emitting device, and image reading device
CN119403378A (en) Display substrate and display device
JPH05236200A (en) Light source integral type image sensor
JPS63124460A (en) Fully contact image sensor
JP2005150592A (en) CCD image sensor
JPH0568134A (en) Contact type image sensor
JPH0795792B2 (en) Contact image sensor
JPS5984476A (en) Method for manufacturing substrates for optical equipment