[go: up one dir, main page]

JPH0446253A - Actuator mechanism having displacement enlarging and power assisting function - Google Patents

Actuator mechanism having displacement enlarging and power assisting function

Info

Publication number
JPH0446253A
JPH0446253A JP2147962A JP14796290A JPH0446253A JP H0446253 A JPH0446253 A JP H0446253A JP 2147962 A JP2147962 A JP 2147962A JP 14796290 A JP14796290 A JP 14796290A JP H0446253 A JPH0446253 A JP H0446253A
Authority
JP
Japan
Prior art keywords
displacement
bimorph
force
actuator
elastic joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2147962A
Other languages
Japanese (ja)
Inventor
Kunio Koizumi
小泉 邦雄
Akio Osada
昭夫 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UCHI NIPPON SYST KK
Original Assignee
UCHI NIPPON SYST KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UCHI NIPPON SYST KK filed Critical UCHI NIPPON SYST KK
Priority to JP2147962A priority Critical patent/JPH0446253A/en
Publication of JPH0446253A publication Critical patent/JPH0446253A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission Devices (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To enable positioning highly accurately and finely for very small working and assembly by generating displacement and force on the output point for working through bending of a plurality of members due to drive energy from the outside. CONSTITUTION:A lever mechanism member 1 is composed of a rigid member 11 and a bimorph member 12 bendingly deforming, and the rigid member 11 is combined with a base through a rigid or an elastic joint. A member 2 is a bimorph member, and joined with the member 12 through an elastic joint 32. A working output point 4 is joined with a member 22 through an elastic joint 33. The member 1 is pushed with a cutout 13 as the input point of the rigid member 11 sideways, and received input displacement and force. Then the member 1 is worked as the lever mechanism supported with the combined part with the base, and displacement is laterally magnified at an elastic joint 31 part. This displacement is transmitted to the toggle mechanism member 12 and magnified in the second step. Further the bimorph members 12,22 are driven, and displacement, speed, and force are added to a tool 41.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、互に連結した複数の部材に与えた駆動エネ
ルギによって部材自体が曲がることで、微小な変位を発
生して仕事を行うアクチュエータに関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to an actuator that performs work by generating minute displacements by bending the members themselves by driving energy applied to a plurality of members connected to each other. It is.

[発明の技術的背景とその問題点〕 エレクトロニクス及び精密機器部品において、ミクロン
やサブミクロン・オーダの微細化、構成素材の薄箔化が
急速に進んでいる。これらの部品の生産システムは、微
細かつ高精度な動きが要求されている。現在、微小部品
の生産現場で最も多く使用されている加工機は機械プレ
スであり、特に高速精密プレスと称せられるものが使わ
れている。これは、高い加工精度を得るために工具の動
作精度を高める必要があるが、工具を支持するうムの運
動精度と、加工物の位置決めや金型の下型を支持する加
工台、更には加工部が微小であるにもかかわらず、可動
部が大きいために、機械全体の剛性を高めることが不可
欠となり、大きく頑丈な本体を要する。このため必然的
に機械の価格が高く、広い据え付は面積を要し、所要動
力のほとんどは、機械の動作に使われ、仕事に必要な分
はわずかである。又、仕事ができる微小さの限界が比較
的大きい等、微小な仕事をするのに遺していないという
問題があった。これらは、元来、機械が微小な仕事をす
ることを考慮して制作されていないことにある。
[Technical background of the invention and its problems] In electronics and precision equipment parts, miniaturization on the order of microns and submicrons and thinning of constituent materials are rapidly progressing. The production system for these parts requires minute and highly accurate movements. Currently, the processing machine most commonly used in the production of micro parts is a mechanical press, and in particular, what is called a high-speed precision press is used. In order to obtain high machining accuracy, it is necessary to improve the movement accuracy of the tool, but it is necessary to improve the movement accuracy of the arm that supports the tool, the positioning of the workpiece, the processing table that supports the lower part of the mold, and even more. Although the processing part is minute, the moving parts are large, so it is essential to increase the rigidity of the entire machine, which requires a large and sturdy main body. As a result, the cost of the machine is necessarily high, a large installation requires a large area, and most of the power required is used to operate the machine, with only a small amount needed for the job. In addition, there was a problem that the limit of the microscopic work that could be done was relatively large, and that there was not enough room left to perform microscopic work. The reason for this is that these machines were not originally created with the idea that the machines would perform minute tasks.

上記微小仕事の問題点を解決するには、高精度かつ微小
な仕事に遺した構造で、しかも本体が小さくまとまった
機構を開発することである。その構成原理を第1図に示
す0部材1は、ベースと剛あるいは弾性関節で結合され
ていてガタがないレバー機構部であり、入力点3で入力
変位・力を受けて横から押され、1段目の変位拡大をす
る0部材2け、部材lと弾性関節で結合されたトグル機
構部を構成しており、2段目の変位拡大をする。
In order to solve the above-mentioned problem of minute work, it is necessary to develop a mechanism with a structure that allows for high precision and minute work, and whose main body is compact. The principle of its construction is shown in Fig. 1. The member 1 is a lever mechanism part that is connected to the base by a rigid or elastic joint and has no play.It receives input displacement and force at the input point 3 and is pushed from the side. Two members 0 and 1, which expand the displacement of the first stage, constitute a toggle mechanism unit connected with the member L by elastic joints, and expand the displacement of the second stage.

破#sAは、駆動前の静止状態であり、入力点3に入力
、が入ると状BBとなる。更に部材1及び部材2は、そ
れぞれ駆動エネルギを受けて自身で能動的に変形する部
材を構成しており、左右の4II所が独立に駆動される
。これにより、見かけは剛性が低いが、出力の反力を受
けて曲げ変形を抑えて状態Cとなり、耐荷重を増すこと
ができることや入力変位に対する出力点の変位・速度・
発生力の変化特性が調節可能となる。この特性は、駆動
量の調節1部材1.2の長さ及びオフセット角θ、。
Break #sA is a stationary state before driving, and when input is input to input point 3, it becomes state BB. Further, member 1 and member 2 each constitute a member that actively deforms itself upon receiving drive energy, and the left and right four parts are driven independently. As a result, although the apparent rigidity is low, the bending deformation is suppressed under the reaction force of the output, resulting in state C, which increases the withstand load, and changes the output point's displacement, speed, and
The change characteristics of the generated force can be adjusted. This characteristic is the length and offset angle θ of the driving amount adjustment member 1.2.

θ2によって変えることができる。4箇所の能動部材の
駆動量を独立に調節することで、出力点4の軸芯の偏り
、倒れ等の動作補正もできる。又、従来の剛部材に比べ
て慣性が小さくできるために高速応答性が良くなるので
、出力点4の動作において、加速度が大きくなると発生
する残留振動を抑止することや微小位置決めの精度に影
響する摩擦力を低減させるために出力点4の動作に振動
成分を重畳することが容易に可能になる。
It can be changed by θ2. By independently adjusting the amount of drive of the active members at four locations, it is possible to correct operations such as deviation or tilting of the axis of the output point 4. In addition, since the inertia can be reduced compared to conventional rigid members, high-speed response is improved, so in the operation of output point 4, residual vibrations that occur when acceleration increases are suppressed, and the accuracy of minute positioning is affected. It is easily possible to superimpose a vibration component on the operation of the output point 4 in order to reduce the frictional force.

[発明の目的] この発明は、アクチュエータが微小かつ高精度な仕事に
適するように、動作精度を悪化させる原因となる可動部
の摩擦やガタを皆無にするよう軸受を廃し、て弾性関節
にする。又、伝動のみの機構を無くして伝動部材自身が
原動部あるいはその一部を兼ね、可動部の慣性を低く抑
え、動作の応答性を良くした構造にして、全体を小さな
寸法に納め、微小かつ密集した加工や微小な部品の組み
つはのための高精度・微細な位置決めを可能にしたもの
である。
[Purpose of the Invention] This invention eliminates bearings and uses elastic joints to eliminate friction and play in moving parts that cause deterioration of movement accuracy, so that actuators are suitable for small and high-precision tasks. . In addition, by eliminating the transmission-only mechanism, the transmission member itself serves as the driving part or a part of it, keeping the inertia of the moving part low and improving the responsiveness of the movement. This enables high precision and fine positioning for dense machining and assembly of minute parts.

[発明の概要] 本発明のアクチュエータ機構は、入力変位をレバー機構
部で1段目の拡大を行い、その変位をレバー機構部に結
合されたトグル機構部で2段目の拡大をするのに加えて
、レバー及びトグル機構部に形成したバイモルフ部材を
駆動して曲げモーメントを部材自身に発生させ、更に出
力点の変位の拡大と力の増大及び可変調節、軸芯の偏り
・倒れ等の補正、残留振動の抑止、逆に動作への振動の
重畳を可能にしたものである。
[Summary of the Invention] The actuator mechanism of the present invention uses a lever mechanism to amplify input displacement in the first stage, and a toggle mechanism connected to the lever mechanism to amplify the input displacement in a second stage. In addition, the bimorph member formed in the lever and toggle mechanism is driven to generate a bending moment in the member itself, further increasing the displacement of the output point, increasing the force, making variable adjustments, and correcting deviations, tilting, etc. of the axis center. , it is possible to suppress residual vibrations or, conversely, to superimpose vibrations on motion.

[発明の実施例] こ、の発明のアクチュエータ機構を実施例の図面である
第2図及び第3図によって説明する。
[Embodiments of the Invention] The actuator mechanism of this invention will be explained with reference to FIGS. 2 and 3, which are drawings of embodiments.

基本的には、一対の積層型圧電素子5、バイモルフ型圧
電素子部材12と22、出力部4及び金属板芯材と切り
欠き部で形成される弾性間!7531.32.33で構
成される。積層型圧電素子5の設置時に必要だったクリ
アランスを無くし、がっ予圧をかけるために、押込みね
じ6でサポート71を押すと、切り欠き部を支点として
サポート部が回転変位し、積層型圧電素子5に押付けら
れる。積層型圧電素子5を支持するもう一方のサポート
72には、バイモルフ型圧電素子を形成するレバー!5
!溝部材】2の両端が埋め込まれて固定される。レバー
機構部1とトグル機構部2は、工具41に対して対称な
規定の形状に折り曲げ成形した同一の金属板芯材を共有
し、芯材のそれぞれの部分の表裏に圧電セラミックス板
を張り付けて、バイモルフ型圧電素子部材12と22を
形成する。出力部4とトグル機構部材22との間の芯材
33.トグル機構部材22とレバー機構部材12との間
の芯材32及びベースと一体の切り欠き部31は、弾性
関節として機能し、ガタや摩擦の無い真向の役目をする
Basically, an elastic gap formed by a pair of laminated piezoelectric elements 5, bimorph piezoelectric element members 12 and 22, an output part 4, a metal plate core material, and a notch part! Consisting of 7531.32.33. In order to eliminate the clearance required when installing the laminated piezoelectric element 5 and to apply a preload, when the support 71 is pushed with the push-in screw 6, the support part rotates around the notch as a fulcrum, and the laminated piezoelectric element Pressed to 5. The other support 72 that supports the laminated piezoelectric element 5 has a lever that forms a bimorph piezoelectric element! 5
! Groove member] Both ends of groove member 2 are embedded and fixed. The lever mechanism section 1 and the toggle mechanism section 2 share the same metal plate core material which is bent and formed into a prescribed shape symmetrical to the tool 41, and piezoelectric ceramic plates are attached to the front and back of each part of the core material. , bimorph type piezoelectric element members 12 and 22 are formed. A core material 33 between the output section 4 and the toggle mechanism member 22. The core member 32 between the toggle mechanism member 22 and the lever mechanism member 12 and the cutout portion 31 integrated with the base function as an elastic joint, and serve as direct opposites without backlash or friction.

レバー機構部材1は、剛部材11と曲げ変形するバイモ
ルフ部材12から成り、剛部材11は、ベースと剛ある
いは弾性関節で結合されている0部材2もバイモルフ部
材であり、部材12と弾性関節32で結合されている。
The lever mechanism member 1 consists of a rigid member 11 and a bimorph member 12 that bends and deforms. are combined with.

仕事をする出力点4は、部材22と弾性関節33で結合
されている0部材lは、剛部材11の入力点である切り
欠き13で横から押され、入力変位・力を受ける。する
とベースとの結合部を支点としてレバー機構として働き
、弾性関節31の部分で横方向に変位拡大される。この
変位をトグル機構部材12に伝達して2段目の変位拡大
をする。更にバイモルフ部材12及び22を駆動して、
工具に変位・速度及び力を付加する。このとき、工具4
1の軸芯の振れや倒れは、ビン82に固定したニードル
81との相対位置関係より検出して補正駆動することが
可能である。
The output point 4 that performs work is connected to the member 22 by an elastic joint 33, and the member 1 is pushed from the side by the notch 13, which is the input point of the rigid member 11, and receives input displacement and force. Then, it acts as a lever mechanism using the joint with the base as a fulcrum, and the elastic joint 31 is displaced and expanded in the lateral direction. This displacement is transmitted to the toggle mechanism member 12 to expand the displacement to the second stage. Furthermore, driving the bimorph members 12 and 22,
Adds displacement, speed, and force to the tool. At this time, tool 4
It is possible to detect the deflection or inclination of the axial center of the needle 1 from the relative positional relationship with the needle 81 fixed to the bottle 82, and to perform corrective driving.

〔発明の効果〕〔Effect of the invention〕

この発明によるアクチュエータ機構は・積層型圧電、素
子5に電圧を印加してしようする伸びが小さすぎるため
に変位拡大せねばならず、レバー機構部1とトグル機構
部2の2段拡大を行った上に、この両種構部に形成した
バイモルフ型圧電部材に電圧を印加して曲げモーメント
を発生させ、更にたわませる。これにより、次のような
機能が追加される効果を生ずることが、本発明の特長で
ある。
The actuator mechanism according to the present invention is a laminated piezoelectric, and since the elongation caused by applying a voltage to the element 5 is too small, the displacement must be expanded, so the lever mechanism section 1 and the toggle mechanism section 2 are expanded in two steps. Then, a voltage is applied to the bimorph piezoelectric member formed on both types of structural parts to generate a bending moment and further bend the bimorph type piezoelectric member. A feature of the present invention is that this provides the effect of adding the following functions.

バイモルフ部材の駆動によって、第一に、出力部の変位
・速度及び発生力の増大と積層型圧電素子の変位に対す
るこれら出力部の変位・速度および発生力の特性を調節
することができる。第二に、駆動によって等測的に部材
の曲げ剛性を増すことができ、印加電圧の直流分による
静的曲げ剛性の増大による出力点の耐荷重の増大だけで
な(、出力点の動作によって生ずる残留振動を抑止する
ために、印加電圧に交流分を重畳して残留振動を干渉さ
せて打ち消すことで動的曲げ剛性を増すことができる。
By driving the bimorph member, first, it is possible to increase the displacement, speed, and generated force of the output section, and to adjust the characteristics of the displacement, speed, and generated force of the output section relative to the displacement of the laminated piezoelectric element. Second, the bending stiffness of the member can be increased isometrically by driving, and the load capacity of the output point is increased not only by increasing the static bending stiffness due to the DC component of the applied voltage (but also by increasing the load capacity of the output point by the movement of the output point). In order to suppress the residual vibration that occurs, dynamic bending rigidity can be increased by superimposing an alternating current component on the applied voltage to interfere and cancel out the residual vibration.

第三に、左右の積層型圧電素子5.4箇所のバイモルフ
部材を独立に駆動することで、出力部の工具の軸芯の偏
り、倒れ等の動作精度の補正ができる。第四に、バイモ
ルフ部材を励振駆動して共振させ、工具動作に振動成分
を重畳して、微小位置決めの精度に影響する摩擦力を低
減させることができる。
Thirdly, by independently driving the bimorph members at 5.4 locations of the left and right laminated piezoelectric elements, it is possible to correct operational accuracy such as deviation and tilting of the axis of the tool in the output section. Fourthly, the bimorph member is excited and driven to resonate, and a vibration component is superimposed on the tool operation, thereby reducing the frictional force that affects the precision of minute positioning.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明によるアクチュエータ機構の動作原理
図、第2図は、本発明によるアクチュエータ機構の構造
例を示す縦断面図、第3図は、その平面図である。 ■・・・レバー機構部、11・・・剛部材、12.22
・・・バイモルフ部材、13・・切り欠き、2・・・ト
グル機構部、31.32.33・・・弾性関節、4・・
・出力部、41・・・工具、5・・・積層型圧電素子、
6・・・押込みねじ、71.72・・・サポート、81
・・・ニードル、82・・・ビン、A・・・無駆動状態
、B・・・入力点のみの駆動状態、C・・・入力点の駆
動に部材1.2の駆動を付加した状態 31図 と
FIG. 1 is a diagram of the operating principle of an actuator mechanism according to the present invention, FIG. 2 is a longitudinal sectional view showing a structural example of the actuator mechanism according to the present invention, and FIG. 3 is a plan view thereof. ■...Lever mechanism part, 11...Rigid member, 12.22
... Bimorph member, 13... Notch, 2... Toggle mechanism section, 31.32.33... Elastic joint, 4...
・Output part, 41... Tool, 5... Laminated piezoelectric element,
6...Pushing screw, 71.72...Support, 81
. . . Needle, 82 . . . Bottle, A . . . Non-driving state, B . . . Driving state of only the input point, C . . . State 31 in which the driving of member 1.2 is added to the driving of the input point. Figure and

Claims (3)

【特許請求の範囲】[Claims] (1)互に剛に結合されるかあるいは回転弾性を持った
関節で連結されたレバー及びトグル機構を構成する複数
の部材自身が、外部から与えられた駆動エネルギによっ
て静的及び動的に曲がることで、部材に取り付けられた
出力点に変位と力を発生し、仕事をするアクチュエータ
(1) A plurality of members constituting the lever and toggle mechanism, which are rigidly connected to each other or connected by joints with rotational elasticity, bend statically and dynamically by externally applied driving energy. An actuator that generates displacement and force at an output point attached to a member to perform work.
(2)発生変位が微小なアクチュエータの出力点を部材
に連結して変位を拡大する機構として用いる特許請求の
範囲第1項に記載の微小仕事をするアクチュエータ。
(2) An actuator that performs minute work according to claim 1, which is used as a mechanism for expanding displacement by connecting the output point of the actuator that generates minute displacement to a member.
(3)部材を構成する材料の全てあるいは一部に圧電、
電歪、磁歪材料等を用いての電磁気エネルギ、あるいは
形状記憶合金等を用いての熱エネルギ、更にはメカノケ
ミカル材料等を用いての化学エネルギを機械エネルギに
変換する機能性材料を用いた特許請求の範囲第1項に記
載の微小仕事をするアクチュエータ。
(3) All or part of the material constituting the member is piezoelectric,
Patents that use functional materials that convert electromagnetic energy using electrostrictive or magnetostrictive materials, thermal energy using shape memory alloys, etc., or chemical energy using mechanochemical materials, etc. An actuator that performs minute work according to claim 1.
JP2147962A 1990-06-06 1990-06-06 Actuator mechanism having displacement enlarging and power assisting function Pending JPH0446253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2147962A JPH0446253A (en) 1990-06-06 1990-06-06 Actuator mechanism having displacement enlarging and power assisting function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2147962A JPH0446253A (en) 1990-06-06 1990-06-06 Actuator mechanism having displacement enlarging and power assisting function

Publications (1)

Publication Number Publication Date
JPH0446253A true JPH0446253A (en) 1992-02-17

Family

ID=15442027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2147962A Pending JPH0446253A (en) 1990-06-06 1990-06-06 Actuator mechanism having displacement enlarging and power assisting function

Country Status (1)

Country Link
JP (1) JPH0446253A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173587A (en) * 2005-12-22 2007-07-05 Tokyo Seimitsu Co Ltd Expanding method, apparatus and dicing apparatus
JP2009038901A (en) * 2007-08-01 2009-02-19 Toshiba Corp Piezoelectric motor, and camera device
JP2009052977A (en) * 2007-08-24 2009-03-12 Hitachi Plant Technologies Ltd Load cell and load lifting method
CN113938051A (en) * 2021-09-29 2022-01-14 东北电力大学 Two parallel bending oscillator composite actuation stepping piezoelectric driver and its working method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173587A (en) * 2005-12-22 2007-07-05 Tokyo Seimitsu Co Ltd Expanding method, apparatus and dicing apparatus
JP2009038901A (en) * 2007-08-01 2009-02-19 Toshiba Corp Piezoelectric motor, and camera device
JP2009052977A (en) * 2007-08-24 2009-03-12 Hitachi Plant Technologies Ltd Load cell and load lifting method
CN113938051A (en) * 2021-09-29 2022-01-14 东北电力大学 Two parallel bending oscillator composite actuation stepping piezoelectric driver and its working method
CN113938051B (en) * 2021-09-29 2023-09-29 东北电力大学 Two-parallel bending vibrator compound actuation stepping piezoelectric driver and working method thereof

Similar Documents

Publication Publication Date Title
EP3098637B1 (en) Ultrasonic motor and lens apparatus including the same
JP3053620B1 (en) Rotary blade flap drive
JP2822809B2 (en) Position control method and position control device
WO1993009911A1 (en) Feed screw device and precisely positioning micromotion feed system
EP3093980B1 (en) Ultrasonic motor and lens apparatus including the same
JP3919560B2 (en) Vibration control apparatus, vibration control method, exposure apparatus, and device manufacturing method
EP2679349A1 (en) Compliant parallel manipulator system
Tian et al. A novel friction-actuated 2-DOF high precision positioning stage with hybrid decoupling structure
US6518721B2 (en) Oscillation isolator
JPH1190867A (en) Micromanipulator
JPH1014262A (en) Highly dynamic piezoelectric drive
KR100396021B1 (en) Ultra-precision moving apparatus
JPH0446253A (en) Actuator mechanism having displacement enlarging and power assisting function
JP3434709B2 (en) Table mechanism
JP2007184621A (en) Device for controlling vibration and method of controlling vibration, exposure device and method of fabricating device
CN110855181B (en) Rotary piezoelectric driving device based on asymmetric triangular hinge mechanism
Jie et al. Design and simulation of a macro-micro dual-drive high acceleration precision XY-stage for IC bonding technology
JP2019213311A (en) Vibration wave motor and driving device having vibration wave motor
JP2000009867A (en) Stage moving device
JP2004140946A (en) Actuator
JPS61159349A (en) Minute distance moving device
JPS62159088A (en) Moving stage device
CN116381892B (en) A secondary macro and micro camera lens focusing device based on a direct-drive air flotation platform
JP2614662B2 (en) Fine movement mechanism
JP2780335B2 (en) XY stage support structure