JPH0445577B2 - - Google Patents
Info
- Publication number
- JPH0445577B2 JPH0445577B2 JP57084990A JP8499082A JPH0445577B2 JP H0445577 B2 JPH0445577 B2 JP H0445577B2 JP 57084990 A JP57084990 A JP 57084990A JP 8499082 A JP8499082 A JP 8499082A JP H0445577 B2 JPH0445577 B2 JP H0445577B2
- Authority
- JP
- Japan
- Prior art keywords
- flat tube
- extruded
- aluminum
- extrusion
- sprayed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims description 28
- 229910052782 aluminium Inorganic materials 0.000 claims description 26
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 26
- 238000001125 extrusion Methods 0.000 claims description 18
- 238000009792 diffusion process Methods 0.000 claims description 17
- 238000005507 spraying Methods 0.000 claims description 10
- 238000000465 moulding Methods 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 5
- 238000001192 hot extrusion Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000000304 warm extrusion Methods 0.000 claims description 3
- 238000005253 cladding Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 17
- 239000000843 powder Substances 0.000 description 11
- 238000007751 thermal spraying Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 238000005219 brazing Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 239000011162 core material Substances 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- LNSPFAOULBTYBI-UHFFFAOYSA-N [O].C#C Chemical group [O].C#C LNSPFAOULBTYBI-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 235000012438 extruded product Nutrition 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 208000014451 palmoplantar keratoderma and congenital alopecia 2 Diseases 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C29/00—Cooling or heating work or parts of the extrusion press; Gas treatment of work
- B21C29/006—Gas treatment of work, e.g. to prevent oxidation or to create surface effects
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Extrusion Of Metal (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Coating By Spraying Or Casting (AREA)
Description
[産業上の利用分野]
本発明は、アルミニウム製熱交換器用扁平管の
表面にZnを拡散させたアルミニウム扁平管の製
造方法に関するものである。
[従来の技術]
アルミニウム製熱交換器コアは、扁平管とフイ
ンを主要な構成材とし、車両等に組付けられて、
過酷な環境のもとで使用されている。このような
コアにおける扁平管が腐食を受け、液漏れを生ず
ると、致命的な欠陥となる。そのために従来から
表面にZnを被覆したクラツド管が用いられてお
り、これはアルミニウム扁平管の孔食や隙間腐食
の防止にきわめて有効であるが、熱交換器の組立
てにおける扁平管とフイン材とのろう付けに際し
て、扁平管表面を被覆するZn層によつてろう付
け作業が阻害されたり、また、扁平管を被覆する
Zn分が過量の場合には、ろう付け時における加
熱に際して、Zn分が溶融流下するなどして作業
を困難とするなどの欠点を伴うものであつた。
本発明者らは、上記Zn被覆層を設ける代りに、
表面にZnの拡散浸透層を形成させたアルミニウ
ム押出扁平管を熱交換器用コアとして使用するこ
とによつて、上記欠点のない熱交換器を得ること
を試みた。しかしながら、表面に均整なZn浸透
層をもつたアルミニウム扁平押出管を得ること
は、極めて多くの手数を必要とし、しかも均整な
浸透層を得ることは困難なことであつた。すなわ
ち、アルミニウム材の表面にZn浸透層を形成さ
せる方法として、従来、例えばアルミニウム材を
溶融Zn浴中に浸漬するなどして、Znをアルミニ
ウム材の表面に被覆させた後、これを別の加熱炉
中にて長時間加熱保持してアルミニウム表面に付
着しているZn分をアルミニウム材面に浸透させ
る方法が知られているが、このような方法による
場合、浸透処理に多くの手数と時間を要するだけ
でなく、得られる浸透層の厚みの調整も難しく、
更に本発明における如く空中の扁平管を被処理材
として選んだ場合において、その外側表面のみ
Zn浸透層を形成させることが困難であるなどの
問題点があつた。
[発明が解決しょうとする課題]
そこで発明者らは、種々研究を重ねた結果、押
出し直後のアルミニウム扁平管の表面が酸化皮膜
未形成の著しく活性を有することに着目し、アル
ミニウム扁平管の押出成形時における押出口近辺
の箇所において、押出成形されたアルミニム材の
表面にZn線を使用して溶融Znを噴射するとき、
溶融Zn粒子は押出管材の加熱状態の活性面に吹
き付けられて、活性面に均整に拡がり、容易に活
性面中に拡散浸透して、均整は拡散浸透層を形成
し得るという事実を見出した。本発明は上記の知
見に基づいてなされたものである。
[課題を解決するための手段]
すなわち、本発明は熱交換器用アルミニウム扁
平管の熱間あるいは温間押出成形における成形機
の押出口近傍のアルミニウム扁平管の温度が少な
くとも400℃以上の箇所において、押出扁平管の
表面にZn線の溶射法によつてZnを溶射した後、
扁平管を自然冷却することによつて扁平管表面に
Zn拡散浸透層を形成させることを特徴とする熱
交換器用アルミニウム扁平管クラツド材の製造方
法である。
以下、本発明の方法について、更に、具体的に
説明する。
第1図は、本発明方法の実施態様を例示する側
面図、第2図は、溶射ガンの配置例を示す押出材
進行方向からの正面図、第3図は、押出扁平管の
拡大断面図、である。押出機1により熱間または
温間押出されたアルミニウムまたはアルミニウム
合金押出管材2は搬送用ローラ3により搬出され
る過程において、上方、及び下方の搬送ローラ3
群の間から押出材面に対して垂直溶射となるよう
に配置された溶射ガン4によつて、Znの溶射が
行われる。溶射ガン4は押出材の形状に応じて適
宜複数基を配置すればよい。溶射はZn線を使用
し、その先端を被溶射体に向けられた例えば酸素
−アセチレン炎中に連続的に送り出し、酸素−ア
セチレン炎によつて液状に溶融された液滴を激し
く被溶射面に吹き付ける所謂線式溶射によつて行
われる。被溶射材に対するZn高温液滴の溶射は、
成形機の押出口近傍の熱間または温間圧延された
アルミニウム押出扁平管の温度が少なくともZn
の溶融温度である400℃程度以上に保つている箇
所に行なうことが望ましい。溶射箇所における扁
平管の温度が低過ぎると、その後の拡散が十分に
行われ難く、過剰のZnが被溶射体の表面を被覆
した状態の儘で残留するので好ましくない。
溶射されたZn液滴は、激しく押出直後の被溶
射面に吹き付けられ、押出し直後の活性化された
被溶射面の表面に拡がり、その大部分は容易に被
溶射面内部に拡散浸透し、被溶射面内に拡散浸透
層が形成される。Zn液滴を溶射された被溶射材
である押出し直後の扁平管は、溶射後直ちに急冷
することを避けることが望ましい。Znを溶射さ
れた被溶射材を溶射後直ちに人為的に急冷する
と、被溶射材表面に吹き付けられたZn液滴の被
溶射面内に拡散浸透することが妨げられて十分な
厚みをもつた拡散浸透層を形成させることが困難
となる。したがつて、Znを溶射された被溶射材
は空気中における自然放冷程度の緩やかな速度で
冷却することが望ましい。
上記のように、本発明は、アルミニウム扁平管
の熱間あるいは温間押出成形における押出口近傍
において、押出成形された扁平管の表面に、Zn
線材を使用した溶射法によるZn液滴の溶射を行
なうことによつて、押出扁平管に均整なZn拡散
浸透層を直接に形成させる方法であるが、本発明
における拡散浸透層の厚みの調整は、押出機にお
ける扁平管の押出速度と溶射ガンに供給するZn
線材の供給速度を適切に調整することによつて容
易に行なうことができる。
また、本発明の方法においてZn線材を使用し
た溶射法の代りに、既知のZn粉末を使用した所
謂粉末溶射法によつて、本発明におけると同様に
押出直後の扁平管の表面にZn粉末を吹き付けた
のでは、本発明におけるような十分に均整な拡散
浸透層の形成した扁平管を、押出成形工程のみに
よつて得ることは難かしい。これは、粉末吹付法
によつた場合、押出成形機から押出されてきた高
温状態の成形体にZn粉末を吹き付けたとしても、
Zn粉末は、単に成形体表面に融着しこれを被覆
するのみであり、また、例えば酸素−アセチレン
炎をもつて、Zn粉末を成形体表面に吹き付ける
ようにした場合においても、粉末の供給量を一定
にすることが困難であり、また、この程度の短時
間の加熱によつたのでは、成形体表面の吹き付け
られたZn粉末の全てが必ずしも液状化されてお
らず、その場合は表面においてのみ融体化された
状態で成形体表面に融着し、その大部分は扁平管
を被覆するのみであつて、扁平管面に拡散浸透す
るのはその一部に過ぎない。したがつて、粉末法
を使用した場合には、押出成形工程によつて十分
にZn拡散浸透層の形成された扁平管材を得るこ
とが難かしく、押出成形によつて得られたZn被
覆層を有する押出材を、更に加熱炉中において、
長時間の加熱処理することによつてZnを押出面
内に拡散浸透させるという工程を経なければなら
ない。
[実施例]
次に本発明の実施例を掲げる。
実施例 1
第1図及び第2図に示すように、押出機のダイ
ス端近傍に自動溶射機4基を設置し、第1表に示
す組成のアルミニウム材A1050連続鋳造ピレツト
径148mm×長さ500mmを用いて、第3図に示す断面
形状の幅26mm、高さ5mmの4本の流路を有し、管
厚0.8mm、隔壁厚1.0mmの扁平管を押出速度、約
15m/分で熱間押出成形し、押出中に押出成形体
の表面温度550℃の箇所に、第2表に示す溶射条
件でZn線を用いて押出材表面に約20g/m2の割
合で、Znを連続的に溶射した。
得られた押出扁平管はそのまま自然冷却して、
Zn拡散層を有するアルミニウム扁平管を得た。
[Industrial Field of Application] The present invention relates to a method of manufacturing an aluminum flat tube for use in a heat exchanger, in which Zn is diffused on the surface of the aluminum flat tube. [Prior Art] An aluminum heat exchanger core has flat tubes and fins as its main components, and is assembled into a vehicle, etc.
It is used in harsh environments. If the flat tube in such a core is corroded and leaks, it will be a fatal defect. For this purpose, clad tubes whose surfaces are coated with Zn have traditionally been used, and this is extremely effective in preventing pitting corrosion and crevice corrosion of aluminum flat tubes. When brazing, the brazing process may be hindered by the Zn layer covering the surface of the flat tube, or
If the Zn content is excessive, there are drawbacks such as the Zn content melting and flowing down during heating during brazing, making the work difficult. The present inventors, instead of providing the above Zn coating layer,
An attempt was made to obtain a heat exchanger free of the above drawbacks by using an extruded aluminum flat tube with a Zn diffusion layer formed on the surface as the core for the heat exchanger. However, obtaining a flat extruded aluminum tube with a uniform Zn permeation layer on its surface requires an extremely large number of steps, and it is difficult to obtain a uniform permeation layer. In other words, conventional methods for forming a Zn permeation layer on the surface of an aluminum material include coating the surface of the aluminum material with Zn by, for example, immersing the aluminum material in a molten Zn bath, and then applying another heating process. A method is known in which the Zn adhering to the aluminum surface is infiltrated into the surface of the aluminum material by heating and holding it in a furnace for a long time, but this method requires a lot of effort and time for the infiltration treatment. Not only is it necessary, but it is also difficult to adjust the thickness of the resulting permeation layer.
Furthermore, when a flat tube in the air is selected as the material to be treated as in the present invention, only the outer surface of the tube is
There were problems such as difficulty in forming a Zn permeation layer. [Problems to be Solved by the Invention] As a result of various studies, the inventors focused on the fact that the surface of aluminum flat tubes immediately after extrusion has no oxide film and is extremely active. When injecting molten Zn onto the surface of extruded aluminum material using a Zn wire near the extrusion port during molding,
It has been found that the molten Zn particles are sprayed onto the heated active surface of the extruded tubing, spread evenly over the active surface, and easily diffuse into the active surface to form a diffused and permeable layer. The present invention has been made based on the above findings. [Means for Solving the Problems] That is, the present invention provides hot or warm extrusion molding of aluminum flat tubes for heat exchangers at a location where the temperature of the aluminum flat tube near the extrusion exit of a molding machine is at least 400°C or higher, After spraying Zn on the surface of the extruded flat tube using the Zn wire spraying method,
By naturally cooling the flat tube,
This is a method for producing an aluminum flat tube cladding material for a heat exchanger, which is characterized by forming a Zn diffusion permeation layer. The method of the present invention will be explained in more detail below. Fig. 1 is a side view illustrating an embodiment of the method of the present invention, Fig. 2 is a front view from the extruded material advancing direction showing an example of the arrangement of thermal spray guns, and Fig. 3 is an enlarged sectional view of the extruded flat tube. , is. The aluminum or aluminum alloy extruded tube material 2 that has been hot or warm extruded by the extruder 1 is conveyed out by the conveyance rollers 3.
Thermal spraying of Zn is performed by a thermal spraying gun 4 arranged between the groups so as to spray perpendicularly to the surface of the extruded material. A plurality of thermal spray guns 4 may be appropriately arranged depending on the shape of the extruded material. Thermal spraying uses a Zn wire, and the tip of the wire is continuously sent into an oxygen-acetylene flame, for example, directed toward the object to be thermally sprayed. This is done by so-called wire thermal spraying. Thermal spraying of high-temperature Zn droplets on the material to be thermally sprayed is as follows:
The temperature of the hot or warm rolled aluminum extruded flat tube near the extrusion exit of the forming machine is at least Zn
It is desirable to carry out the process in a place where the melting temperature of the metal is kept at about 400℃ or higher. If the temperature of the flat tube at the spraying location is too low, subsequent diffusion will be difficult to take place, and excessive Zn will remain on the surface of the object to be thermally sprayed, which is undesirable. The sprayed Zn droplets are violently sprayed onto the surface to be thermally sprayed immediately after extrusion, and spread over the activated surface of the surface to be thermally sprayed immediately after extrusion, and most of them easily diffuse into the surface to be thermally sprayed and become A diffusion layer is formed within the sprayed surface. It is desirable to avoid rapidly cooling the flat tube immediately after extrusion, which is the material to be thermally sprayed with Zn droplets, immediately after thermal spraying. If a Zn-sprayed material is artificially quenched immediately after spraying, the Zn droplets sprayed onto the surface of the material will be prevented from diffusing into the surface of the material being sprayed, resulting in a sufficiently thick layer of diffusion. It becomes difficult to form a permeable layer. Therefore, it is desirable that the Zn-sprayed material be cooled at a slow rate comparable to natural cooling in the air. As described above, the present invention provides Zn on the surface of the extruded flat tube in the vicinity of the extrusion port during hot or warm extrusion molding of the aluminum flat tube.
This method directly forms a well-balanced Zn diffusion layer on an extruded flat tube by thermally spraying Zn droplets using a wire rod, but the thickness of the diffusion layer in the present invention cannot be adjusted. , extrusion speed of flat tube in extruder and Zn supplied to thermal spray gun
This can be easily done by appropriately adjusting the feeding speed of the wire rod. In addition, in the method of the present invention, instead of the thermal spraying method using Zn wire, a so-called powder spraying method using known Zn powder is used to apply Zn powder to the surface of the flat tube immediately after extrusion, as in the present invention. If spraying is used, it is difficult to obtain a flat tube with a sufficiently uniform diffusion and permeation layer formed thereon as in the present invention by only an extrusion molding process. This means that when using the powder spraying method, even if Zn powder is sprayed onto a hot molded product extruded from an extruder,
The Zn powder is simply fused to the surface of the compact and coats it, and even when the Zn powder is sprayed onto the surface of the compact using, for example, an oxygen-acetylene flame, the amount of powder supplied is It is difficult to keep the temperature constant, and with heating for such a short period of time, not all of the sprayed Zn powder on the surface of the compact is necessarily liquefied, and in that case, only the surface of the Zn powder is liquefied. It is fused to the surface of the molded body in a molten state, and most of it only covers the flat tube, and only a part of it diffuses into the surface of the flat tube. Therefore, when the powder method is used, it is difficult to obtain a flat tube material with a sufficient Zn diffusion layer formed through the extrusion process, and the Zn coating layer obtained by extrusion is difficult to obtain. Further, in a heating furnace, the extruded material having
It is necessary to go through a process of diffusing and permeating Zn into the extruded surface through long-term heat treatment. [Example] Next, examples of the present invention are listed. Example 1 As shown in Figures 1 and 2, four automatic thermal spraying machines were installed near the die end of the extruder, and aluminum material A1050 with the composition shown in Table 1 was continuously cast with a pillar diameter of 148 mm x length of 500 mm. Using a flat tube with a cross-sectional shape shown in Fig. 3, which has four channels with a width of 26 mm and a height of 5 mm, a tube thickness of 0.8 mm, and a partition wall thickness of 1.0 mm, the extrusion speed is approximately
Hot extrusion molding was carried out at a rate of 15 m/min, and during extrusion, Zn wire was applied to the surface of the extruded material at a rate of approximately 20 g/m 2 at a location where the surface temperature was 550°C under the thermal spraying conditions shown in Table 2. , Zn was continuously sprayed. The obtained extruded flat tube is naturally cooled,
An aluminum flat tube with a Zn diffusion layer was obtained.
【表】【table】
【表】
このようにして成形された押出扁平管と、芯材
の両面にろう材を被覆したブレージングシートで
成形されたコルゲートフインとを組合せて、次の
第3表に示す条件でろう付を行ない積層型のろう
付品を作成した。[Table] The extruded flat tube formed in this manner is combined with a corrugated fin formed from a brazing sheet whose core material is coated with brazing material on both sides, and brazed under the conditions shown in Table 3 below. A laminated brazed product was created using this method.
【表】
得られたろう付品を測定した結果、第4図に示
すような濃度分布で押出扁平管表層部にZn濃度
2〜3重量%、Zn拡散層の深さ70〜150μmの拡
散層が形成されていることがX線マイクロアナラ
イザーにより確認された。このろう付品をJIS H
8661に規定されているCASS試験720Hrを行な
つた結果、発生した腐食はいずれも面食形態で、
孔食の発生は認められず、均一に密着したZn拡
散層が形成されていることが示された。
実施例 2
実施例1と同一条件でアルミニウム材A1050連
続鋳造ピレツトを扁平状管に押出成形した。押出
成形中に押出成形体の表面温度約450℃の箇所に、
径1.6mmのZn線を使用し、アーク溶射法(二本の
Zn線を先端で突き合わせ、電流を流して先端部
を溶融させながら溶融液滴を圧縮空気をもつて被
溶射面に吹き付ける方法)によつて成形体の表面
に約10g/m2のZn被覆層を形成させると共に、
冷却フアンを使用せずに、そのまま自然冷却させ
た。
このサンプルについて表層部の断面をX線マイ
クロアナライザーを用いてZn濃度分布を測定し
た結果、肉厚方向に10〜20μmの拡散層の形成が
確認され、押出と同時にZn拡散層が均整に形成
されることが示された。
[発明の効果]
上述のように、本発明方法は、扁平管の押出成
形に際して、同時に成形材の表面にZnによる任
意厚みをもつた均整な拡散層を容易に、かつ確実
に形成させることができるという優れた効果を有
する発明である。[Table] As a result of measuring the obtained brazed product, it was found that the surface layer of the extruded flat tube had a Zn concentration of 2 to 3% by weight and a Zn diffusion layer with a depth of 70 to 150 μm, with a concentration distribution as shown in Figure 4. Its formation was confirmed by an X-ray microanalyzer. This brazed item is JIS H
As a result of conducting the CASS test for 720 hours as specified in 8661, all the corrosion that occurred was in the form of face corrosion.
No pitting corrosion was observed, indicating that a uniformly adhered Zn diffusion layer was formed. Example 2 Under the same conditions as in Example 1, an aluminum material A1050 continuous casting pillar was extruded into a flat tube. During extrusion molding, the surface temperature of the extruded product is about 450℃,
Using Zn wire with a diameter of 1.6 mm, arc spraying method (two
A Zn coating layer of about 10 g/m 2 is applied to the surface of the molded body using a method in which Zn wires are brought together at their tips, and a current is applied to melt the tips while blowing molten droplets onto the sprayed surface using compressed air. In addition to forming
It was allowed to cool naturally without using a cooling fan. As a result of measuring the Zn concentration distribution of this sample using an X-ray microanalyzer on a cross section of the surface layer, it was confirmed that a diffusion layer of 10 to 20 μm was formed in the thickness direction, indicating that the Zn diffusion layer was evenly formed during extrusion. Rukoto has been shown. [Effects of the Invention] As described above, the method of the present invention makes it possible to easily and reliably form a uniform diffusion layer of Zn with an arbitrary thickness on the surface of the molded material at the same time when extruding a flat tube. This invention has the excellent effect of being able to.
第1図は本発明方法実施態様例の側面図、第2
図は溶射ガンの配置例を示す押出材進行方向から
の正面図、第3図は押出扁平管の拡大断面図で、
第4図はアルミニウム材表層部へのZn拡散状態
を示す図面である。
1……押出機、2……押出材、3……搬送用ロ
ーラ、4……溶射ガン。
FIG. 1 is a side view of an embodiment of the method of the invention;
The figure is a front view from the extruded material advancing direction showing an example of the arrangement of thermal spray guns, and Figure 3 is an enlarged cross-sectional view of the extruded flat tube.
FIG. 4 is a drawing showing the state of Zn diffusion into the surface layer of the aluminum material. 1... Extruder, 2... Extruded material, 3... Conveyance roller, 4... Thermal spray gun.
Claims (1)
は温間押出成形における成形機の押出口近傍のア
ルミニウム扁平管の温度が少なくとも400℃以上
の箇所において、押出扁平管の表面にZn線の溶
射法によつてZnを溶射した後、扁平管を自然冷
却することによつて扁平管表面にZn拡散浸透層
を形成させることを特徴とする熱交換器用アルミ
ニウム扁平管クラツド材の製造方法。1. In hot or warm extrusion molding of aluminum flat tubes for heat exchangers, in areas where the temperature of the aluminum flat tube near the extrusion exit of the molding machine is at least 400°C or higher, Zn wire is thermally sprayed onto the surface of the extruded flat tube. A method for producing an aluminum flat tube cladding material for a heat exchanger, characterized in that a Zn diffusion permeation layer is formed on the surface of the flat tube by naturally cooling the flat tube after thermally spraying Zn.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57084990A JPS58204169A (en) | 1982-05-21 | 1982-05-21 | Manufacturing method of cladding material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57084990A JPS58204169A (en) | 1982-05-21 | 1982-05-21 | Manufacturing method of cladding material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58204169A JPS58204169A (en) | 1983-11-28 |
JPH0445577B2 true JPH0445577B2 (en) | 1992-07-27 |
Family
ID=13846059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57084990A Granted JPS58204169A (en) | 1982-05-21 | 1982-05-21 | Manufacturing method of cladding material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58204169A (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60145268A (en) * | 1984-01-04 | 1985-07-31 | Nippon Denso Co Ltd | Production of heat exchanging element |
BR8407268A (en) * | 1984-01-18 | 1985-12-24 | Norsk Hydro As | ALUMINUM PROFILES COATED WITH BOILING MATERIAL AND COATING PROCESS |
JPH02138455A (en) * | 1987-07-27 | 1990-05-28 | Furukawa Alum Co Ltd | Production of extruded flat perforated aluminum tube for heat exchanger |
US4852233A (en) * | 1987-07-27 | 1989-08-01 | Furukawa Aluminum Co., Ltd. | Method of manufacturing extruded flat multihole aluminum tube for heat-exchanger |
JPH01157794A (en) * | 1987-09-09 | 1989-06-21 | Nippon Denso Co Ltd | Aluminum base material for brazing its manufacture and manufacture of heat exchanger made of aluminum alloy |
JP2661976B2 (en) * | 1988-08-09 | 1997-10-08 | 古河電気工業株式会社 | Manufacturing method of zinc coated aluminum tube |
JPH0285348A (en) * | 1988-09-22 | 1990-03-26 | Furukawa Alum Co Ltd | Manufacture of heat exchanger tube material made of aluminum |
JPH02228464A (en) * | 1989-02-28 | 1990-09-11 | Showa Alum Corp | Uniform formation of thermally sprayed film onto surface of extruded material and device for forming this film |
JPH02228465A (en) * | 1989-02-28 | 1990-09-11 | Showa Alum Corp | Uniform formation of thermally sprayed film onto surface of extruded material and device for forming this film |
JPH09323166A (en) * | 1996-06-06 | 1997-12-16 | Suzuki Motor Corp | Joining method for aluminum |
FR2770156B1 (en) * | 1997-10-27 | 1999-12-24 | Rosenmund Ag | METHOD AND DEVICE FOR MAKING A SLEEPING BAR USABLE IN THE PAPER INDUSTRY |
KR100450126B1 (en) * | 2001-11-12 | 2004-09-30 | 모딘코리아 유한회사 | Header pipe joint method of heat exchanger |
KR100587156B1 (en) | 2004-10-20 | 2006-06-08 | 모딘코리아 유한회사 | Tube manufacturing method for heat exchanger and heat exchanger using same |
JP6229351B2 (en) * | 2013-07-26 | 2017-11-15 | 株式会社デンソー | Aluminum product manufacturing method and manufacturing apparatus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4831143A (en) * | 1971-08-30 | 1973-04-24 |
-
1982
- 1982-05-21 JP JP57084990A patent/JPS58204169A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4831143A (en) * | 1971-08-30 | 1973-04-24 |
Also Published As
Publication number | Publication date |
---|---|
JPS58204169A (en) | 1983-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU671309B2 (en) | Brazeable aluminum material and a method of producing same | |
JPH0445577B2 (en) | ||
US6200642B1 (en) | Method of producing brazeable aluminum material | |
EP0708846A1 (en) | Process for continuous hot dip zinc coating of aluminum profiles | |
US3354864A (en) | Apparatus for coating metallic strands | |
JP3356843B2 (en) | Manufacturing method of aluminum material for brazing | |
JP3165265B2 (en) | Manufacturing method of aluminum flat tube for heat exchanger | |
JPH07310162A (en) | Method for producing anticorrosion aluminum material for brazing | |
CA1253046A (en) | Aluminium shapes coated with brazing material and process of coating | |
JPS631152B2 (en) | ||
JPH06248413A (en) | Corrosion-resistant aluminum material for brazing and its production | |
JPS63119974A (en) | Covering method for brazing filler metal to aluminum extruded material | |
JP3215526B2 (en) | Manufacturing method of aluminum flat tube for heat exchanger | |
JP3291111B2 (en) | Method for producing hot-dip Al-coated steel sheet having Zn diffusion layer | |
JPS63216978A (en) | Manufacture of aluminum extruded material | |
JP2680763B2 (en) | Aluminum shaped article coated with brazing material | |
JP2006064294A (en) | Tube for heat exchanger and its manufacturing method | |
WO2020196740A1 (en) | Brazing tube, method for manufacturing same, and heat exchanger | |
JP3652719B2 (en) | Method for producing anti-corrosion aluminum material for brazing | |
JP2942116B2 (en) | Extruded zinc-coated material for heat exchanger and method for producing the same | |
JPH0575491B2 (en) | ||
JPH1177379A (en) | Covering method of aluminum alloy brazing filler metal | |
JPS61291956A (en) | Hot dipping apparatus for aluminum material | |
JPH0246913A (en) | Manufacture of zinc coated aluminum tube | |
JPH09323116A (en) | Manufacture of aluminum tubing coated with zinc layer on its inside surface |