[go: up one dir, main page]

JP2942116B2 - Extruded zinc-coated material for heat exchanger and method for producing the same - Google Patents

Extruded zinc-coated material for heat exchanger and method for producing the same

Info

Publication number
JP2942116B2
JP2942116B2 JP25014093A JP25014093A JP2942116B2 JP 2942116 B2 JP2942116 B2 JP 2942116B2 JP 25014093 A JP25014093 A JP 25014093A JP 25014093 A JP25014093 A JP 25014093A JP 2942116 B2 JP2942116 B2 JP 2942116B2
Authority
JP
Japan
Prior art keywords
zinc
coated
extruded
aluminum
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25014093A
Other languages
Japanese (ja)
Other versions
JPH0783596A (en
Inventor
政男 竹本
正和 平野
治男 梶山
洗治 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP25014093A priority Critical patent/JP2942116B2/en
Publication of JPH0783596A publication Critical patent/JPH0783596A/en
Application granted granted Critical
Publication of JP2942116B2 publication Critical patent/JP2942116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Extrusion Of Metal (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム押出形材
の表面上に亜鉛(Zn)又は亜鉛基合金からなる亜鉛被
覆層が設けられた熱交換器用亜鉛被覆押出形材及びその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc-coated extruded member for a heat exchanger in which a zinc-coated layer made of zinc (Zn) or a zinc-based alloy is provided on the surface of an extruded aluminum member and a method for producing the same.

【0002】[0002]

【従来の技術】アルミニウム製熱交換器コアは、アルミ
ニウム偏平管と、この偏平管にろう付けされたフィンと
により構成されており、前記偏平管内に液体(伝熱媒
体)が通流するようになっている。車輌等に組み付けら
れたアルミニウム製熱交換器コアは、過酷な環境で使用
されるため、前記偏平管が腐食されやすく、液漏れが発
生する虞れがある。このため、車輌等に組み付けられ過
酷な環境で使用されるアルミニウム製熱交換器コアに
は、アルミニウム押出形材に亜鉛材をクラッドして亜鉛
被覆層を設けたクラッド管が使用されている。
2. Description of the Related Art An aluminum heat exchanger core comprises an aluminum flat tube and fins brazed to the flat tube so that a liquid (heat transfer medium) flows through the flat tube. Has become. Since the aluminum heat exchanger core assembled in a vehicle or the like is used in a severe environment, the flat tube is easily corroded, and there is a possibility that liquid leakage may occur. For this reason, a clad tube in which a zinc material is clad on an extruded aluminum material and a zinc coating layer is provided is used for an aluminum heat exchanger core that is assembled in a vehicle or the like and used in a severe environment.

【0003】このクラッド管は、孔食及び隙間腐食に対
する耐食性が極めて良好であるものの、フィン材をろう
付けする際にクラッド管表面の亜鉛被覆層によってろう
付け作業が阻害されるという欠点がある。特に、亜鉛被
覆層の層厚が厚い場合は、ろう付け時の加熱により亜鉛
が溶融して流下することがあり、ろう付け作業が著しく
困難になる。
[0003] Although this clad tube has extremely good corrosion resistance against pitting and crevice corrosion, it has a drawback that the brazing operation is hindered by the zinc coating layer on the clad tube surface when brazing the fin material. In particular, when the thickness of the zinc coating layer is large, the zinc may melt and flow down due to heating during brazing, and the brazing operation becomes extremely difficult.

【0004】このため、亜鉛被覆層をクラッドにより形
成する方法に替えて、アルミニウム押出形材の表面にZ
n又はZn基合金を溶射し、Znをアルミニウム形材の
表面に拡散浸透させた亜鉛被覆押出管が提案されている
(特公平4−45577号)。
For this reason, instead of forming the zinc coating layer by cladding, the surface of the extruded aluminum material has a Z
A zinc-coated extruded tube in which n or a Zn-based alloy is thermally sprayed and Zn is diffused and permeated into the surface of an aluminum shape has been proposed (Japanese Patent Publication No. 4-45577).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た従来の亜鉛被覆押出管においては、亜鉛被覆層の表面
にZnの表面付着粉(所謂表面ちびり)が付着してお
り、この表面付着粉によりコアの組立工程及びフィンの
ろう付け工程等において管表面に疵が発生しやすいとい
う問題点がある。このため、表面付着粉が極めて少ない
亜鉛被覆押出形材が要望されている。
However, in the above-described conventional zinc-coated extruded tube, Zn-adhered powder (so-called surface dust) adheres to the surface of the zinc-coated layer. There is a problem that flaws are easily generated on the pipe surface in the core assembling step, the fin brazing step, and the like. For this reason, there is a demand for a zinc-coated extruded member having very little powder adhering to the surface.

【0006】本発明はかかる問題点に鑑みてなされたも
のであって、管表面の疵の原因となる表面付着粉が極め
て少なく表面形状が良好な亜鉛被覆層を備えた熱交換器
用亜鉛被覆押出形材及びその製造方法を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has a zinc-coated extrusion for a heat exchanger provided with a zinc-coated layer having a very small amount of powder adhering to the surface and causing a flaw on the surface of the tube. An object of the present invention is to provide a shape member and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明に係る熱交換器用
亜鉛被覆押出形材は、アルミニウム押出形材の表面上に
亜鉛又は亜鉛基合金を溶射して亜鉛被覆層を形成した熱
交換器用亜鉛被覆押出形材において、前記亜鉛被覆層の
表面粗さRmaxが30μm以下であることを特徴とす
る。
According to the present invention, there is provided a zinc-coated extruded shape for a heat exchanger, comprising a zinc-coated layer formed by spraying zinc or a zinc-based alloy on the surface of an extruded aluminum material. In the coated extruded profile, the zinc coating layer has a surface roughness Rmax of 30 μm or less.

【0008】本発明に係る熱交換器用亜鉛被覆押出形材
の製造方法は、熱間押出法により所定の形状のアルミニ
ウム押出形材を形成する工程と、このアルミニウム押出
形材の表面上に亜鉛又は亜鉛基合金を溶射して亜鉛被覆
層を形成する工程と、この亜鉛被覆層を備えたアルミニ
ウム押出形材を10℃/秒以上の冷却速度で冷却する冷
却工程と、を有することを特徴とする。
The method for producing a zinc-coated extruded member for a heat exchanger according to the present invention comprises a step of forming an extruded aluminum member having a predetermined shape by a hot extrusion method, and a step of forming zinc or aluminum on the surface of the extruded aluminum member. A step of spraying a zinc-based alloy to form a zinc coating layer, and a cooling step of cooling the extruded aluminum material provided with the zinc coating layer at a cooling rate of 10 ° C./sec or more. .

【0009】なお、本願においてアルミニウムとは、純
アルミニウムの外にアルミニウム合金を含むものとす
る。
[0009] In the present application, aluminum means an aluminum alloy in addition to pure aluminum.

【0010】[0010]

【作用】本願発明者等は、熱交換器用亜鉛被覆押出形材
の表面状態を改善すべく、種々実験研究を行った。その
結果、亜鉛被覆層に付着した比較的大きな表面付着粉を
除去することにより、熱交換器製造工程における管表面
の疵の発生を防止することができるとの知見を得た。
The present inventors conducted various experimental studies in order to improve the surface condition of a zinc-coated extruded member for a heat exchanger. As a result, it has been found that by removing relatively large powder adhering to the surface of the zinc coating layer, it is possible to prevent generation of flaws on the tube surface in the heat exchanger manufacturing process.

【0011】即ち、本発明においては、前記亜鉛被覆層
の表面粗さRmaxを30μm以下とする。亜鉛被覆層の
表面粗さRmaxが30μmを超える場合は、亜鉛被覆層
に付着した比較的大きな表面付着粉がコアの組立及びフ
ィンのろう付け等の工程において亜鉛被覆層表面から離
脱しやすく、この離脱した表面付着粉により管表面に疵
が付きやすい。このため、前記亜鉛被覆層の表面粗さR
maxは30μm以下とすることが必要である。
That is, in the present invention, the surface roughness Rmax of the zinc coating layer is set to 30 μm or less. When the surface roughness Rmax of the zinc coating layer exceeds 30 μm, relatively large surface-adhered powder adhering to the zinc coating layer tends to separate from the zinc coating layer surface in steps such as core assembly and fin brazing. The surface of the tube is liable to be scratched by the detached surface adhering powder. Therefore, the surface roughness R of the zinc coating layer
max needs to be 30 μm or less.

【0012】本願発明者等は、次に、亜鉛被覆層の表面
粗さRmaxを30μm以下とする方法について、実験研
究を行った。その結果、アルミニウム押出管の表面上に
Zn又はZn基合金を溶射して亜鉛被覆層を形成した
後、この亜鉛被覆層を急冷すると、亜鉛被覆層の熱収縮
率と表面付着粉の熱収縮率との差により、亜鉛被覆層の
表面に付着した比較的大きい表面付着粉が脱落するとの
知見を得た。
Next, the present inventors conducted an experimental study on a method for reducing the surface roughness Rmax of the zinc coating layer to 30 μm or less. As a result, after spraying Zn or a Zn-based alloy on the surface of the aluminum extruded tube to form a zinc coating layer, when the zinc coating layer is quenched, the heat shrinkage of the zinc coating layer and the heat shrinkage of the powder adhered to the surface are reduced. It was found that a relatively large surface-adhered powder attached to the surface of the zinc coating layer was dropped due to the difference from the above.

【0013】即ち、本発明方法においては、アルミニウ
ム押出形材の表面上にZn又はZn合金を溶射して亜鉛
被覆層を形成した後、10℃/秒以上の冷却速度で例え
ば200℃以下の温度まで強制冷却する。これにより、
亜鉛被覆層の表面に付着した比較的大きい表面付着粉を
除去することができる。この場合に、前記冷却速度が1
0℃/秒未満の場合は、表面付着粉を除去する効果を十
分に得ることができない。このため、冷却速度は10℃
/秒以上とすることが必要である。
That is, in the method of the present invention, a zinc coating layer is formed by spraying Zn or a Zn alloy on the surface of an extruded aluminum material, and then, at a cooling rate of 10 ° C./sec or more, for example, at a temperature of 200 ° C. or less. Force cooling to This allows
It is possible to remove relatively large surface adhering powder adhering to the surface of the zinc coating layer. In this case, the cooling rate is 1
When the temperature is lower than 0 ° C./second, the effect of removing the powder adhering to the surface cannot be sufficiently obtained. Therefore, the cooling rate is 10 ° C
/ Sec or more.

【0014】前記冷却は、例えば、亜鉛被覆層を形成し
たアルミニウム押出形材を流水に接触させるか、又はア
ルミニウム押出形材に向けて水をスプレーすることによ
り行えばよい。亜鉛被覆層を形成したアルミニウム押出
形材に水を当てることにより、水の衝撃力による作用と
上述の冷却による熱収縮率の差による作用とにより、不
安定な状態で付着している表面付着粉(Zn粉)が脱落
する。なお、流水により冷却を行う場合は、冷却効率を
高めるために、流水の流速を1m/分以上とすることが
好ましい。
The cooling may be carried out, for example, by bringing the extruded aluminum material having the zinc coating layer into contact with flowing water or by spraying water onto the extruded aluminum material. Water is applied to the extruded aluminum material on which the zinc coating layer is formed, so that the powder adheres in an unstable state due to the effect of the impact force of water and the above-mentioned effect of the difference in thermal shrinkage due to cooling. (Zn powder) falls off. When cooling with running water, the flow rate of the running water is preferably 1 m / min or more in order to increase the cooling efficiency.

【0015】[0015]

【実施例】次に、本発明の実施例について添付の図面を
参照して説明する。
Next, an embodiment of the present invention will be described with reference to the accompanying drawings.

【0016】図1は本発明の実施例に係る熱交換器用亜
鉛被覆押出形材の製造方法を示す模式図である。押出プ
レス1には押出ダイス2が設けられており、この押出プ
レス1によりアルミニウム押出形材3aが連続的に押出
形成される。押出プレス1のの近傍の押出形材搬送路の
上方及び下方には溶射機4が配置されており、これらの
溶射機4によりアルミニウム押出形材3aの周囲にZn
又はZn基合金を溶射して、亜鉛被覆層を形成する。
FIG. 1 is a schematic view showing a method for producing a zinc-coated extruded shape for a heat exchanger according to an embodiment of the present invention. The extrusion press 1 is provided with an extrusion die 2, and the extrusion press 1 continuously extrudes and forms an aluminum extrusion 3a. A spraying machine 4 is disposed above and below the extruded profile conveying path near the extrusion press 1, and Zn sprays around the aluminum extruded profile 3 a by the spraying machine 4.
Alternatively, a Zn coating layer is formed by spraying a Zn-based alloy.

【0017】これらの溶射機4により亜鉛被覆層が形成
されたアルミニウム押出形材(亜鉛被覆アルミニウム押
出形材3b)は、次に冷却用水タンク5内に入る。この
タンク5にはポンプ6及び噴射ノズル7が設けられてお
り、これらのポンプ6及び噴射ノズル7により、冷却用
水タンク5内を通る亜鉛被覆アルミニウム押出形材3b
に向けて水がスプレーされる。この水のスプレーによ
り、溶射直後で高温になっている亜鉛被覆アルミニウム
押出形材3bが急冷される。このとき、亜鉛被覆層の表
面に付着している表面付着粉は急激に熱収縮し、亜鉛被
覆層から離脱する。また、水の圧力により、表面付着粉
の離脱がより一層促進される。
The extruded aluminum material (zinc-coated aluminum extruded material 3b) on which the zinc coating layer is formed by these spraying machines 4 then enters the cooling water tank 5. The tank 5 is provided with a pump 6 and an injection nozzle 7, and the pump 6 and the injection nozzle 7 allow the extruded zinc-coated aluminum material 3 b to pass through the cooling water tank 5.
Water is sprayed towards. By this water spray, the zinc-coated aluminum extruded profile 3b, which has become hot immediately after thermal spraying, is rapidly cooled. At this time, the surface-adhered powder adhering to the surface of the zinc coating layer rapidly undergoes heat shrinkage and separates from the zinc coating layer. Further, the pressure of the water further promotes detachment of the powder adhering to the surface.

【0018】このようにして表面付着粉が除去された亜
鉛被覆アルミニウム押出形材3bは、その後ピンチロー
ル8により搬送され、例えばドラム等に巻取られる。
The extruded zinc-coated aluminum material 3b from which the powder adhering to the surface has been removed in this way is then conveyed by a pinch roll 8 and wound up, for example, on a drum.

【0019】本実施例においては、溶射機4によりアル
ミニウム押出形材3aの周囲に亜鉛被覆層を形成し亜鉛
被覆アルミニウム押出形材3bとした後、水をスプレー
してこの亜鉛被覆アルミニウム押出形材3bを急激に冷
却するため、亜鉛被覆層の表面の比較的大きい表面付着
粉を除去することができ、亜鉛被覆層表面の表面粗さR
maxを30μm以下にすることができる。これにより、
熱交換器コア組立工程等における管表面の疵の発生を防
止することができる。
In this embodiment, after a zinc coating layer is formed around the aluminum extruded profile 3a by the thermal spraying machine 4 to form a zinc-coated aluminum extruded profile 3b, water is sprayed to the zinc-extruded aluminum extruded profile 3b. 3b is rapidly cooled, so that relatively large powder adhering to the surface of the zinc coating layer can be removed, and the surface roughness R of the zinc coating layer surface can be reduced.
max can be 30 μm or less. This allows
It is possible to prevent the occurrence of flaws on the tube surface in the heat exchanger core assembling step or the like.

【0020】次に、上述の実施例方法により亜鉛被覆ア
ルミニウム押出形材を実際に製造し、その表面状態を調
べた結果について、比較例と比較して説明する。
Next, an extruded zinc-coated aluminum material was actually manufactured by the method of the above-described embodiment, and the result of examining the surface condition thereof will be described in comparison with a comparative example.

【0021】先ず、図1に示すように、押出機1のダイ
ス2出口近傍に溶射機4を設置し、その直後に冷却用水
タンク5を設置し、下記表1に示す組成のアルミニウム
材A1050のビレット(直径が200mm、長さが5
00mm)を用いて、図4にその断面形状を示す楕円状
の多穴チューブ(幅が22mm、高さが5mm、肉厚が
0.8mm)を熱間押出成形した。この場合に、押出速
度は50m/分である。
First, as shown in FIG. 1, a spraying machine 4 is installed near the exit of the die 2 of the extruder 1, and immediately after that, a cooling water tank 5 is installed, and an aluminum material A1050 having a composition shown in Table 1 below is prepared. Billet (diameter 200mm, length 5
4), an oval multi-hole tube (width: 22 mm, height: 5 mm, wall thickness: 0.8 mm) whose cross-sectional shape is shown in FIG. 4 was hot-extrusion molded. In this case, the extrusion speed is 50 m / min.

【0022】[0022]

【表1】 [Table 1]

【0023】次に、この多穴チューブの周面上に、溶射
材料としてZn線を用いた溶射機4により、Zn付着量
の目標値を約25g/mm2としてZnを連続的に溶射
し、亜鉛被覆層を形成した。そして、この亜鉛被覆層形
成直後の亜鉛被覆チューブを、冷却用水タンク内5にお
いて、200℃以下の温度にまで強制冷却した。このと
きの冷却速度は、約200℃/秒である。一方、比較例
として、溶射により亜鉛被覆層を形成した後に自然冷却
した以外は上述の実施例と同様にして製造した亜鉛被覆
チューブを用意した。
Next, on the peripheral surface of the multi-hole tube, Zn is continuously sprayed by a spraying machine 4 using Zn wire as a spraying material, with a target value of Zn deposition amount of about 25 g / mm 2 . A zinc coating layer was formed. Then, the zinc-coated tube immediately after the formation of the zinc-coated layer was forcibly cooled to a temperature of 200 ° C. or lower in the cooling water tank 5. The cooling rate at this time is about 200 ° C./sec. On the other hand, as a comparative example, a zinc-coated tube manufactured in the same manner as in the above-described example except that the zinc-coated layer was formed by thermal spraying and then naturally cooled was prepared.

【0024】この実施例及び比較例の亜鉛被覆チューブ
の断面を顕微鏡により観察した。図2,3は、夫々実施
例及び比較例の亜鉛被覆チューブの表面近傍の金属組織
を示す顕微鏡写真(倍率×300倍)である。この図
2,3から明らかなように、実施例の亜鉛被覆チューブ
の表面には表面付着粉が殆どなく、表面が比較的平滑で
あった。一方、比較例の亜鉛被覆チューブの表面には比
較的大きな表面付着粉が付着していた。
The sections of the zinc-coated tubes of this example and the comparative example were observed with a microscope. FIGS. 2 and 3 are micrographs (magnification × 300 times) showing the metal structures near the surfaces of the zinc-coated tubes of Examples and Comparative Examples, respectively. As apparent from FIGS. 2 and 3, the surface of the zinc-coated tube of the example had almost no powder adhering to the surface, and the surface was relatively smooth. On the other hand, relatively large surface-adhered powder adhered to the surface of the zinc-coated tube of the comparative example.

【0025】この実施例及び比較例の亜鉛被覆チューブ
について、濃度が30重量%の硝酸を使用した硝酸溶解
法によりZn付着量を調べた。また、この実施例及び比
較例の亜鉛被覆チューブの表面粗さRmaxについても調
べた。その結果を下記表2に示す。
For the zinc-coated tubes of this example and the comparative example, the amount of Zn deposited was examined by a nitric acid dissolution method using nitric acid having a concentration of 30% by weight. Further, the surface roughness Rmax of the zinc-coated tubes of this example and the comparative example was also examined. The results are shown in Table 2 below.

【0026】[0026]

【表2】 [Table 2]

【0027】この表2から明らかなように、実施例の亜
鉛被覆チューブにおいては、亜鉛被覆層が薄く、且つ、
その表面粗さRmaxが約26μmと小さいものであっ
た。一方、比較例の亜鉛被覆チューブは、Zn付着量が
多く、表面粗さRmaxも41μmと大きいものであっ
た。
As apparent from Table 2, in the zinc-coated tube of the embodiment, the zinc-coated layer is thin and
The surface roughness Rmax was as small as about 26 μm. On the other hand, the zinc-coated tube of the comparative example had a large amount of deposited Zn and a large surface roughness Rmax of 41 μm.

【0028】次に、実施例及び比較例の亜鉛被覆チュー
ブのZn拡散状態を調べた結果について説明する。
Next, the results of examining the Zn diffusion state of the zinc coated tubes of the examples and comparative examples will be described.

【0029】芯材及びこの芯材の表面を被覆するろう材
により構成されたブレージングシートフィンを上述の実
施例及び比較例の亜鉛被覆チューブと組み合わせ、下記
表3に示す条件でろう付けを行って、積層型のろう付け
材を製造した。
A brazing sheet fin composed of a core material and a brazing material covering the surface of the core material was combined with the zinc-coated tubes of the above-described Examples and Comparative Examples, and brazed under the conditions shown in Table 3 below. A laminated brazing material was manufactured.

【0030】[0030]

【表3】 [Table 3]

【0031】そして、X線アナライザーを使用して、こ
の実施例及び比較例の各亜鉛被覆チューブの表面のZn
拡散状態を調べた。図5,6は、夫々実施例及び比較例
の亜鉛被覆チューブ表面におけるZn濃度分布を示すグ
ラフ図である。この図5,6に示すように、実施例及び
比較例の亜鉛被覆チューブにおいては、いずれもZn拡
散層が約160μmの厚さで形成されていた。
Then, using an X-ray analyzer, Zn on the surface of each zinc-coated tube of this example and the comparative example was measured.
The diffusion state was examined. FIGS. 5 and 6 are graphs showing the Zn concentration distribution on the surface of the zinc-coated tube of the example and the comparative example, respectively. As shown in FIGS. 5 and 6, in each of the zinc-coated tubes of the example and the comparative example, the Zn diffusion layer was formed with a thickness of about 160 μm.

【0032】次に、この実施例及び比較例の亜鉛被覆チ
ューブに対し、JISH8661に規定されているCA
SS試験を700時間に亘って実施し、その後腐食状況
を調べた。その結果、実施例及び比較例の亜鉛被覆押出
形材は、いずれも面腐食形態で孔食の発生は認められ
ず、CASS試験後もZn拡散層が均一に密着している
ことが確認できた。
Next, the zinc-coated tubes of this example and the comparative example were subjected to the CA specified in JIS8661.
The SS test was performed for 700 hours, and then the state of corrosion was examined. As a result, none of the zinc-coated extruded profiles of the example and the comparative example was observed to have pitting corrosion in the form of surface corrosion, and it was confirmed that the Zn diffusion layer was uniformly adhered even after the CASS test. .

【0033】なお、上述の実施例においては、水をスプ
レーすることにより溶射直後の亜鉛被覆アルミニウム押
出形材を冷却する場合について説明したが、亜鉛被覆ア
ルミニウム押出形材を流水中に通して冷却しても、上述
の実施例と同様の効果を得ることができる。
In the above embodiment, the case where the zinc-coated aluminum extruded material immediately after thermal spraying is cooled by spraying water has been described. However, the zinc-coated aluminum extruded material is cooled by passing it through running water. Even in this case, the same effect as in the above embodiment can be obtained.

【0034】[0034]

【発明の効果】以上説明したように本発明によれば、ア
ルミニウム押出形材の表面上に亜鉛又は亜鉛基合金を溶
射して形成した亜鉛被覆層の表面粗さRmaxが30μm
以下であるから、本発明に係る熱交換器用亜鉛被覆押出
形材は、熱交換器コアの組立工程及びフィンろう付け工
程において表面付着粉の離脱による疵の発生を防止する
ことができる。
As described above, according to the present invention, the surface roughness Rmax of the zinc coating layer formed by spraying zinc or a zinc-based alloy on the surface of an extruded aluminum material is 30 μm.
As described below, the extruded zinc-coated member for a heat exchanger according to the present invention can prevent generation of flaws due to detachment of powder adhering to a surface in a heat exchanger core assembling step and a fin brazing step.

【0035】また、本発明方法によれば、アルミニウム
形材の表面上に亜鉛又は亜鉛基合金を溶射して亜鉛被覆
層を形成した後、所定の冷却速度で急冷するから、前記
亜鉛被覆層に付着している比較的大きな表面付着粉を容
易に除去することができる。これにより、亜鉛被覆層の
表面状態が良好であり、耐食性が優れた熱交換器用亜鉛
被覆押出形材を得ることができる。
According to the method of the present invention, zinc or a zinc-based alloy is sprayed on the surface of the aluminum profile to form a zinc coating layer, and then quenched at a predetermined cooling rate. The relatively large powder adhering to the surface can be easily removed. This makes it possible to obtain a zinc-coated extruded shape for a heat exchanger in which the surface state of the zinc-coated layer is good and the corrosion resistance is excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る熱交換器用亜鉛被覆押出
形材の製造方法を示す模式図である。
FIG. 1 is a schematic view showing a method for producing a zinc-coated extruded shape for a heat exchanger according to an embodiment of the present invention.

【図2】実施例の亜鉛被覆チューブの表面近傍の金属組
織を示す顕微鏡写真(倍率×300倍)である。
FIG. 2 is a micrograph (magnification: 300 times) showing a metal structure near the surface of a zinc-coated tube of an example.

【図3】比較例の亜鉛被覆チューブの表面近傍の金属組
織を示す顕微鏡写真(倍率×300倍)である。
FIG. 3 is a micrograph (magnification × 300) showing a metal structure near the surface of a zinc-coated tube of a comparative example.

【図4】アルミニウム押出形材(多穴チューブ)を示す
断面図である。
FIG. 4 is a sectional view showing an extruded aluminum material (multi-hole tube).

【図5】実施例の亜鉛被覆チューブの表面におけるZn
分布を示すグラフ図である。
FIG. 5 shows Zn on the surface of the zinc-coated tube of the embodiment.
It is a graph which shows distribution.

【図6】比較例の亜鉛被覆チューブの表面におけるZn
分布を示すグラフ図である。
FIG. 6 shows Zn on the surface of a zinc-coated tube of a comparative example.
It is a graph which shows distribution.

【符号の説明】[Explanation of symbols]

1;押出プレス 2;押出ダイス 3a;アルミニウム押出形材 3b;亜鉛被覆アルミニウム押出形材 4;溶射機 5;冷却用水タンク 6;ポンプ 7;噴射ノズル DESCRIPTION OF SYMBOLS 1; Extrusion press 2; Extrusion die 3a; Aluminum extruded profile 3b; Zinc-coated aluminum extruded profile 4; Thermal sprayer 5; Cooling water tank 6; Pump 7;

───────────────────────────────────────────────────── フロントページの続き (72)発明者 榎本 洗治 山口県下関市長府港町14番1号 株式会 社神戸製鋼所長府製造所内 (56)参考文献 特公 平4−45577(JP,B2) (58)調査した分野(Int.Cl.6,DB名) B21C 23/30 C23C 4/00 - 6/00 F28F 19/06 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Seiji Enomoto 14-1, Chofu Minatomachi, Shimonoseki City, Yamaguchi Prefecture Inside of Kobe Steel's Chofu Works (56) References JP 4-45577 (JP, B2) (58) Field surveyed (Int.Cl. 6 , DB name) B21C 23/30 C23C 4/00-6/00 F28F 19/06

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルミニウム押出形材の表面上に亜鉛又
は亜鉛基合金を溶射して亜鉛被覆層を形成した熱交換器
用亜鉛被覆押出形材において、前記亜鉛被覆層の表面粗
さRmaxが30μm以下であることを特徴とする熱交換
器用亜鉛被覆押出形材。
1. A zinc-coated extruded shape for a heat exchanger in which zinc or a zinc-based alloy is sprayed on a surface of an extruded aluminum material to form a zinc-coated layer, wherein the surface roughness Rmax of the zinc-coated layer is 30 μm or less. A zinc-coated extruded shape for a heat exchanger, characterized in that:
【請求項2】 熱間押出法により所定の形状のアルミニ
ウム押出形材を形成する工程と、このアルミニウム押出
形材の表面上に亜鉛又は亜鉛基合金を溶射して亜鉛被覆
層を形成する工程と、この亜鉛被覆層を備えたアルミニ
ウム押出形材を10℃/秒以上の冷却速度で冷却する冷
却工程と、を有することを特徴とする熱交換器用亜鉛被
覆押出形材の製造方法。
2. A step of forming an aluminum extruded shape having a predetermined shape by a hot extrusion method, and a step of spraying zinc or a zinc-based alloy on a surface of the aluminum extruded shape to form a zinc coating layer. And a cooling step of cooling the extruded aluminum member provided with the zinc coating layer at a cooling rate of 10 ° C./sec or more.
【請求項3】 前記冷却工程は、前記亜鉛被覆層を備え
たアルミニウム押出形材を流水に接触させることにより
行うことを特徴とする請求項2に記載の熱交換器用亜鉛
被覆押出形材の製造方法。
3. The production of a zinc-coated extruded member for a heat exchanger according to claim 2, wherein the cooling step is performed by bringing the aluminum extruded member provided with the zinc-coated layer into contact with flowing water. Method.
【請求項4】 前記流水の流速は1m/分以上であるこ
とを特徴とする請求項3に記載の熱交換器用亜鉛被覆押
出形材の製造方法。
4. The method according to claim 3, wherein the flow rate of the running water is 1 m / min or more.
【請求項5】 前記冷却工程は、前記亜鉛被覆層を備え
たアルミニウム押出形材に向けて水をスプレーすること
により行うことを特徴とする請求項2に記載の熱交換器
用亜鉛被覆押出形材の製造方法。
5. The extruded zinc-coated member for a heat exchanger according to claim 2, wherein the cooling step is performed by spraying water onto the extruded aluminum member provided with the zinc-coated layer. Manufacturing method.
JP25014093A 1993-09-10 1993-09-10 Extruded zinc-coated material for heat exchanger and method for producing the same Expired - Fee Related JP2942116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25014093A JP2942116B2 (en) 1993-09-10 1993-09-10 Extruded zinc-coated material for heat exchanger and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25014093A JP2942116B2 (en) 1993-09-10 1993-09-10 Extruded zinc-coated material for heat exchanger and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0783596A JPH0783596A (en) 1995-03-28
JP2942116B2 true JP2942116B2 (en) 1999-08-30

Family

ID=17203419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25014093A Expired - Fee Related JP2942116B2 (en) 1993-09-10 1993-09-10 Extruded zinc-coated material for heat exchanger and method for producing the same

Country Status (1)

Country Link
JP (1) JP2942116B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2278252B1 (en) * 2008-04-24 2013-08-14 Mitsubishi Electric Corporation Heat exchanger and air conditioner using the same
JP7506042B2 (en) * 2021-10-05 2024-06-25 株式会社Uacj Aluminum alloy product, method for manufacturing same, welded structure, and method for protecting welded structure

Also Published As

Publication number Publication date
JPH0783596A (en) 1995-03-28

Similar Documents

Publication Publication Date Title
US20050076506A1 (en) Method for manufacturing aluminum heat exchanger
JPH10265881A (en) Composite pipe for inner pipe of oil cooler and its production method and double pipe type oil cooler/ integrated heat exchanger
JPH05164496A (en) Fin tube for open rack type carburetor
JP2006257549A (en) Heat exchanger member and production method thereof
EP0892080B1 (en) Aluminum alloy tube and heat exchanger, and method of metal spraying a filler alloy
JPS58204169A (en) Manufacturing method of cladding material
JP2942116B2 (en) Extruded zinc-coated material for heat exchanger and method for producing the same
US5529816A (en) Process for continuous hot dip zinc coating of alminum profiles
US3164896A (en) Process for continuous manufacture of tubing
JPH01225761A (en) Member for metal hot dipping bath tank
JP3165265B2 (en) Manufacturing method of aluminum flat tube for heat exchanger
JPH1133709A (en) Tube made of aluminium alloy and heat exchanger
JP3297838B2 (en) Heat transfer tube and method of manufacturing the same
CN101120117A (en) Heat exchanger member and production method thereof
US4852233A (en) Method of manufacturing extruded flat multihole aluminum tube for heat-exchanger
JP2010229426A (en) Process for producing member for heat exchanger and member for heat exchanger
JPH0246969A (en) Production of brazed flat aluminum tube for heat exchanger
US20090200002A1 (en) Heat exchanger member and production method thereof
JPH0688129B2 (en) Aluminum shaped article coated with brazing substance and coating method
JP3215526B2 (en) Manufacturing method of aluminum flat tube for heat exchanger
JP2776256B2 (en) Surface treatment tool for hot working
JPS5910467A (en) Manufacturing method of brazing material
JP3652719B2 (en) Method for producing anti-corrosion aluminum material for brazing
JPH02138455A (en) Production of extruded flat perforated aluminum tube for heat exchanger
JP2680763B2 (en) Aluminum shaped article coated with brazing material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees