JPH0445561B2 - - Google Patents
Info
- Publication number
- JPH0445561B2 JPH0445561B2 JP63123306A JP12330688A JPH0445561B2 JP H0445561 B2 JPH0445561 B2 JP H0445561B2 JP 63123306 A JP63123306 A JP 63123306A JP 12330688 A JP12330688 A JP 12330688A JP H0445561 B2 JPH0445561 B2 JP H0445561B2
- Authority
- JP
- Japan
- Prior art keywords
- iron oxide
- metal magnetic
- magnetic powder
- powder
- mixed gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 65
- 229910052751 metal Inorganic materials 0.000 claims description 54
- 239000002184 metal Substances 0.000 claims description 54
- 239000006247 magnetic powder Substances 0.000 claims description 47
- 239000002245 particle Substances 0.000 claims description 34
- 239000007789 gas Substances 0.000 claims description 32
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 32
- 239000000843 powder Substances 0.000 claims description 24
- 230000009467 reduction Effects 0.000 claims description 22
- 229910052782 aluminium Inorganic materials 0.000 claims description 20
- 238000007254 oxidation reaction Methods 0.000 claims description 18
- 230000003647 oxidation Effects 0.000 claims description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 238000011282 treatment Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 230000000087 stabilizing effect Effects 0.000 claims description 5
- 238000010301 surface-oxidation reaction Methods 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 2
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 42
- 238000000034 method Methods 0.000 description 42
- 235000013980 iron oxide Nutrition 0.000 description 28
- -1 aluminum ions Chemical class 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 15
- 239000000084 colloidal system Substances 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 239000003960 organic solvent Substances 0.000 description 9
- 229910006540 α-FeOOH Inorganic materials 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- 239000011734 sodium Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 239000006249 magnetic particle Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- 238000000576 coating method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000635 electron micrograph Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910001388 sodium aluminate Inorganic materials 0.000 description 3
- 229910002588 FeOOH Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910000358 iron sulfate Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- CUPCBVUMRUSXIU-UHFFFAOYSA-N [Fe].OOO Chemical compound [Fe].OOO CUPCBVUMRUSXIU-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052598 goethite Inorganic materials 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical compound [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 229910021519 iron(III) oxide-hydroxide Inorganic materials 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910006299 γ-FeOOH Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Magnetic Record Carriers (AREA)
- Hard Magnetic Materials (AREA)
- Paints Or Removers (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Description
本発明は針状酸化鉄またはNi,Co,Zn,Mn
等の元素を含む変性針状酸化鉄を水素ガス等の還
元性ガスで加熱還元することからなる、Feを主
成分とする金属磁性粉末の製造方法に関する。さ
らに詳しくは、SiまたはAlの水酸化物のコロイ
ド溶液を厳密に制御した条件の下で生成させ、こ
のコロイド溶液を用いて原料である針状酸化鉄を
処理することにより針状酸化鉄表面にSiまたは
Alの均一な被着層を形成させ、ついでこれを還
元することにより針状酸化鉄の針状形骸に由来す
る形状異方性を保持しており、かつHcが1400〜
1600Oeである金属磁性粉末を製造する方法、あ
るいは、所望によりさらにその金属磁性粉末を
H2とCO2の混合ガスで処理することによつて粉
末の表面を酸化物として安定化させた、針状性と
分散性に優れ、空気中で安定な金属磁性粉末を製
造する方法を提供するものである。尚、上記の
H2とCO2の混合ガスで前処理して安定化させる
方法は、他の任意の方法で針状酸化鉄を還元して
つくられた金属磁性粉末の安定化にも有効であ
る。
[従来の技術]
オキシ水酸化鉄または酸化鉄を還元性ガス、例
えばH2で還元して得られる金属磁性粉末は、本
質的に、酸化物系磁性粉末例えばγ−Fe2O3等に
比べて高い保磁力(Hc)、大きな飽和磁気モーメ
ント(σs)を保有しているので高密度磁気記録用
材料として優れた特性を有しており、近年8mmビ
デオテープおよびDATテープに使用され始め、
実用化されつつある。
これらメタル粉と称されるFeを主成分とした
金属磁性粉末粒子の製造には一般に気相還元法が
用いられている。しかし、この気相還元法では粉
末粒子がα−FeOOH→α−Fe2O3→Fe3O4→α−
Feという反応過程を通るので、結晶構造の変化
とそれに伴なう体積収縮が起こる。この体積収縮
は最終的に約47%にも達するので、上記の変態の
過程において粒子相互の融着や粒子自体の焼結が
発生し、形状が崩れる。その結果、従来の気相還
元法で得られる金属磁性粉末は、一般に、形状磁
気異方性が低く、したがつてHcが低く又分散性
の悪いものとなりがちであつた。
そこで、この粒子相互の融着や粒子自体の焼結
を防止して所定の特性を有する金属磁性粉末を得
る方法がいろいろと研究され、その成果として、
原料酸化鉄をP,Si,Al,Zn,Zr,Ti,Bi等の
金属の塩またはそれらの金属の水酸化物で表面処
理した後に還元することによつて、得られるFe
を主成分とする磁性粉末の形骸を良好に保持する
方法が種々開示されている(例えば、特開昭48−
79153、特公昭51−5608等多数)。これらの開示さ
れた方法はP,Si,Al,Zn,Zr,Ti,Bi等種々
の金属の塩またはそれらの金属の水酸化物を酸化
鉄の表面に生成させることにより、粒子相互の融
着と粒子自体の焼結を防止して針状形骸を保持さ
せようとする方法であり、一応の成果をあげてい
るが、これらの方法によつて得られる金属磁性粉
の針状性は十分に良好とは言い難く、近年一層求
められている高密度磁気記録媒体用金属磁性粉末
としては十分満足できるものではなかつた。
又、これらの金属磁性粉末は極めて酸化され易
く、その取扱いは非常に注意を要した。その対策
としては、還元終了したメタル粉をトルエン等の
有機溶剤中に取出した後風乾する方法や、あるい
はトルエン中に浸漬したままトルエン中に空気を
吹きこむことにより金属磁性粒子の表面を酸化し
て安定化させた後、有機溶剤を乾燥除去して空気
中に取出す方法や、還元して得た金属磁性粉末を
室温に冷却後、N2と空気との混合気体に接触さ
せ、徐々に混合ガスの酸素分圧(Po2)を増加す
ることにより金属磁性粒子表面を徐々に酸化して
ゆき、燃焼させることなく空気中に取出す方法
(特公昭47−30477、同51−5608)等に頼ることが
一般に行なわれている。
しかしながら、トルエン等の有機溶剤を使用し
て金属磁性粒子表面を安定化する方法は金属磁性
粒子の触媒作用により有機溶剤の変性物が生成す
る現象を伴うことが認められており、塗布型磁気
記録媒体を作製するための塗料化に際して、分散
剤やバインダーの組成によつては凝集が著しく、
塗布によつて得られる製品が角形比、表面性の劣
るものとなるので好ましくないと指摘されてい
る。
一方、N2と空気の混合ガスを用い、そのPo2
(酸素分圧)を制御しながら固−気反応により粒
子表面に徐々に酸化物被膜を生成させていく方法
は、トルエン等の有機溶剤を使用する場合と異な
り、有機溶剤の変性物の生成という問題は起こら
ず、さらにまた、大量の有機溶剤の使用という必
要性もないためコスト的にも有利である。しか
し、反面著しく酸素に対して活性な金属磁性粉末
粒子に気相にて酸素を導入する方法であるため、
それに使用する装置仕様や被酸化物の性状(粉
末、グラニユー状、クラム等)、酸素分圧合増加
のスケジユール、N2−空気混合ガスの流量等
種々多数の因子により熱収支が大きく左右され、
酸化途中あるいは取出時に燃焼することもあり、
微妙な制御を必要とする。又この方法では、所定
の経時安定性を確保するためには金属磁性粉末の
表面活性点を、できるだけ少なくしなければなら
ないため、やや焼結気味の金属磁性粉が得られる
温度において還元することや、あるいは還元温度
より高い温度に保つたN2等の不活性ガス雰囲気
中で熱処理すること(特開昭61−56201)等が必
要となり、そのために得られる製品の分散性、針
状性を犠牲にする場合もあるのが現状である。
[発明が解決しようとする問題点]
本発明は上記従来技術の欠点を改良して、還元
時に、形状の崩れおよび粒子同士の融着を生ずる
ことが少なく、塗料にして使用したときの角形比
と分散性に優れ、又、経時安定性にも優れた金属
磁性粉末を製造する方法を提供するものである。
[問題点を解決するための手段]
本発明者らはこれらの問題点を解決するため、
主としてAl系処理剤を用いての表面処理につい
て鋭意研究を重ねた結果、針状酸化鉄を加熱還元
する際の焼結や形骸の崩れを防止し、出発原料た
る針状酸化鉄の粒子形状をよく継承した金属磁性
粉末を得る方法として、アルミニウム水酸化物コ
ロイドを処理剤として使用する方法を開発した。
本発明の方法に従い、アルミニウム水酸化物コロ
イドを、その生成条件を厳密に制御して調製する
ことにより、微細かつ均一な分布のアルミニウム
水酸化物コロイドを生成させ、これを針状酸化鉄
スラリーと混合して電気化学的方法により針状酸
化鉄表面に吸着または被着させるならば、従来行
なわれてきた針状酸化鉄のスラリー中で溶解した
アルミニウムイオンを中和して針状酸化鉄表面に
水酸化アルミニウムを吸着または被着させる方法
に比べ、一段とアルミニウム水酸化物の吸着層が
緻密かつ均一となり、従来得られていたものより
優れた角形比、分散性を有するメタル粉を製造で
きることが見出された。
本発明において、原料として用いる針状酸化鉄
としては、一般に針状のα−FeOOHが用いられ
るがα−Fe2O3およびγ−FeOOHも使用できる。
これら針状酸化鉄にはCo,Ni,Zn,Mn等が
含まれていてもさしつかえなく従来公知のいずれ
の方法(例えば、特公昭53−27719、同55−
23773)で製造されたものであつてもよい。一般
的には硫酸鉄水溶液と水酸化ナトリウム水溶液を
反応させ、ついで空気に代表される酸化性ガスを
吹きこむ方法で製造される長軸長0.1〜0.5μ、軸
比10〜20のα−FeOOHが好適であり、特に保磁
力(Hc)が1400〜1600Oeである8mmビデオテー
プおよびDATテープ用磁性粉末の原料となる針
状酸化鉄としては、硫酸鉄水溶液に硫酸塩、塩化
物等の水溶液としてNiまたはCoを添加した水溶
液を水酸化ナトリウム水溶液と反応させ、ついで
酸化反応を行なうことにより製造したα−
FeOOHが好適である。
又、本発明においては酸化反応後の針状水酸化
鉄は反応母液から分離した後、Na2SO4等に代表
される雑塩を十分に洗浄、除去することが特に重
要である。本発明者らはアルミニウム水酸化物を
針状酸化鉄に被着させるための処理を種々の方法
で行なつて不純物元素が金属磁性粉末の特性に与
える影響について詳細に検討を重ねた結果、酸化
鉄粒子の表面または内部に存在するNaおよび
SO3は加熱還元時における粒子同士の融着や粒子
形態の崩れや軸比の低下をひき起こす原因とな
り、金属磁性粉のHcに対し著しい影響を与える
ことを見出した。特に、アルミニウム化合物を針
状酸化鉄に被着処理する場合にはSiを被着処理す
る場合よりも、上記影響が大きく現われることを
知つた。Na及びSO3の含有量を、Naは0.07%以
下、好ましくは0.05%以下に、SO3は0.5%以下、
好ましくは0.3%以下に制御すれば1400〜1600Oe
という所望のHcを保持した分散性および角形比
が極めて良好な金属磁性粉末が得られる。したが
つて、上記の指針にしたがい、NaおよびSO3を
十分に洗浄、除去した針状酸化鉄にアルミニウム
化合物を被着処理した後整粒、乾燥、焼成及び還
元、酸化して金属磁性粉末をつくるべきである。
本発明はアルミニウム化合物を被着処理するに際
し、水酸化アルミニウムのコロイドを用いて、被
還元物である酸化鉄粒子表面を処理するのが重要
な特徴の一つである。水酸化アルミニウムのコロ
イド溶液は次のようにしてつくることができる。
すなわち、水溶性アルミニウム化合物の水溶液を
20℃以下の温度で完全中和することにより、水溶
性アルミニウム化合物を水酸化アルミニウムとし
て沈澱させ、この沈澱を洗浄した後HClで解膠し
てコロイド溶液とする。又、別の方法として、
Al2(SO4)3,NaAlO2,PAC等のアルミニウム化
合物の水溶液をつくり、これらを20℃以下の温度
に調整して、それぞれの中和当量の60%相当分の
アルカリまたは酸を加えて溶液を部分中和し、残
存の酸またはアルカリで解膠してコロイド溶液と
することもできる。上記いずれの場合において
も、溶液の温度が20℃以上では生成する水酸化ア
ルミニウムが完全にはコロイドとなりにくいので
好ましくない。
このようにして得たコロイド溶液による酸化鉄
の処理は、コロイド溶液の所定量を針状酸化鉄の
スラリーに添加混合して60℃に加温することによ
り行なう。これによりアルミニウム化合物を針状
酸化鉄表面に均一に被着させることができる。水
溶性アルミニウム化合物としてはアルミン酸ナト
リウム、硫酸アルミニウム、ポリ塩化アルミニウ
ム等が使用できる。
本発明の方法によれば、従来公知の方法すなわ
ち、例えば、針状酸化鉄のスラリーに水溶性アル
ミニウム化合物を加えた後中和を行なうことによ
り酸化鉄粒子表面にアルミニウム化合物を被着さ
せる方法に比べ、形骸粒子の針状性が優れ、かつ
融着合体粒子の存在が少ない金属磁性粉末が得ら
れる。
上記本発明の方法にしたがい、Niの共存下に、
アルミニウム化合物を主処理剤として金属磁性粉
を製造する場合には、用いるアルミニウム化合物
の量は、原料酸化鉄中のFeの量に対しAlとして
1〜10重量%、好ましくは3〜6重量%の範囲と
なるような条件の下でアルミニウム化合物の被着
処理を行なつた後、洗浄、乾燥し、ついで非還元
性雰囲気中で焼成して結晶性を高めた後、水素気
流中で320〜400℃、好ましくは350℃近傍で加熱
還元すれば、保磁力(Hc)が1400〜1600Oeを示
す金属磁性粉が得られる。
この場合、非還元性雰囲気での焼成温度が余り
にも高い場合はこの時点でα−Fe2O3の焼結が起
こるので、焼成温度は650〜800℃の範囲とするの
が好ましい。また、場合によつては上記の熱処理
を行なわずに、次工程の還元工程で温度を調節す
ることにより上記焼成と同等な効果をあげること
ができる場合もある。
還元温度が、例えば450℃というような高い温
度となつた場合には、本発明のコロイド溶液処理
方法によつても加熱還元時におけるFe結晶同士
の焼結が起こるのを回避することが困難となり、
その結果、得られる粉末には、軸比が減少し保磁
力(Hc)の低下したものとなる。
次に安定化の方法について説明する。
還元の完了により得られた金属磁性粉末は、そ
れを通常室温にまで冷却した後、N2と空気の混
合ガス中で酸素分圧を調節しながら金属磁性粒子
表面に徐々に酸化物層を形成していく方法や、金
属粉末をトルエン等の有機溶剤中に取出し、該溶
剤に空気等の酸化性ガスを導入して磁性粉の表面
を酸化していく等の方法によつて安定化すること
が一般に行なわれている。
これらの方法のうち、トルエン等の有機溶剤中
で酸化する方法は、酸化途中において鉄磁性粉の
触媒作用により有機物の重合、変性が発生し、塗
料化工程で悪影響を及ぼすことが認められ、又
N2と空気の混合ガスを用いて、その酸素分圧を
制御する方法は、好ましい方法ではあるが時とし
て酸化反応が急激に進み金属磁性粉の特性を劣化
することがある。
本発明者らは上記の問題点を解決するため、次
のような方法を開発した。すなわち、200〜450℃
という還元温度程度の温度でH2とCO2の混合ガ
スに金属粉末を接触させ、この場合のH2とCO2
の混合比を熱力学的計算に基づいて、H2に対す
るCO2の割合が0.001〜0.05の範囲内の適切な値と
なるように制御することによりFeを主成分とす
る金属磁性粒子の表面近傍を酸化物の状態とし、
しかる後に、この金属粉末をN2と空気の混合ガ
スに接触させ、その際のN2と空気の混合比を以
下に述べるように変えることによつて、すなわ
ち、比較的低い温度において酸素分圧(Po2)を
10-3atmから徐々に増加していくことにより、表
面酸化を徐々に進行させ、緻密なα−Fe2O3層を
形成させる方法である。
H2とCO2の混合ガスによる金属磁性粒子の表
面酸化反応は次式で示される。
H2+CO2=H2O+CO (1)
3Fe+4H2O=Fe3O4+4H2 (2)
(1),(2)式の平衡関係を、熱力学的計算によつて
Fe3O4の存在が安定である領域に相当するH2と
CO2の組成比を決定する。しかし、酸化の反応速
度は物質移動現象に支配されるので、制御可能な
酸化速度とするために入念な実験を行なつて、実
際のH2:CO2の組成比およびガス流量の絶対値
を決定した。例えば、前述の処理例の場合、350
℃では全圧1atmに対しPco2=0.1atmでは酸化が
急速すぎて、適正な表面酸化度に制御することが
困難であるが、Pco2=0.002atmでは制御可能な
酸化速度となる。350℃ではPco2は0.001〜
0.05atmが好ましく、酸化時間は5分〜300分が
適当である。350℃−H2流量4.5N/min−CO2
流量0.5N/minという条件(Pco2=0.1atmに
相当する)では酸化反応は急速に進行し、15分で
σs(Fe)は200emu/g−Feから120emu/g−Fe
にまで低下し、Hcも1480Oeから860Oeまで低下
した。
この様にしてあらかじめ表面に適正量の酸化物
層を生成させた金属磁性粉末は、N2ガス等の不
活性ガス雰囲気中で室温近傍にまで冷却した後、
N2と空気を混合してPo2=10-3atmから酸化を始
め、徐々にPo2を増加していく公知の技術(特公
昭47−30477、同51−5608)と同様の操作により
Fe3O4をα−Fe2O3へと酸化させて安定化し、空
気中へ取出すことができる。この方法によれば金
属磁性粉末の安定化に必要な処理時間も短く、σs
の経時変化は通常のPo2制御法に比べて少ないこ
とが認められた。
[実施例]
以下実施例により本発明を具体的に説明する。
実施例 1
硫酸第1鉄および硫酸ニツケルの混合水溶液
(Ni/Fe=3%)と水酸化ナトリウム水溶液とを
反応させ、中和生成物をさらに空気で酸化して生
成させたα−FeOOH(長軸長平均0.3μ、平均軸比
18)のスラリーをろ過、洗浄後リパルプしてNa
およびSO3を十分に除去した。
α−FeOOHのスラリー(20g/で100g,
25℃)にあらかじめ別個に調製した水酸化アルミ
ニウムコロイドを所定量(Al/Fe=6%となる
量)加え、30分間攪拌を続けた。その後1N−
NaOH水溶液によりPHを8〜9に調節し、60℃
に昇温して1時間熟成し、水酸化アルミニウムコ
ロイドで処理された針状ゲーサイトをつくつた。
〈水酸化アルミニウムコロイドの調整〉
アルミン酸ナトリウムの水溶液(Al2O3として
299g/)を100ml取り、純水を200ml加えた後、
15℃に保持しつつ1N−HCl水溶液920mlを加えて
PHを7.5に調整した。次いで、純水を500ml加えた
後、攪拌を止めて静置し、上澄を捨てデカンテー
シヨン洗浄を行ない、ヌツチエで吸引ろ過し洗浄
した。次いでケーキを純水300mlにてパルプし1N
−HCl水溶液176mlを加え、このコロイドを解膠
した。
水酸化アルミニウムコロイドの添加によつて、
水酸化アルミニウムを被着させたNi含有α−
FeOOHを純水で十分洗浄し、NaおよびSO3を除
去した。洗浄後のα−FeOOHのNa含有量は
0.045%,SO3含有量は0.02%であつた。
このα−FeOOHを長さ約7mm、直径3mmの円
柱状クラムに造粒整型後乾燥した。さらに、700
℃で30分間焼成した後、たて型固定層還元装置に
25g挿入し、H2ガス流量5N/minで350℃−
10hr還元を行なつた。一部をトルエン中へ取出
し、VSM(印加磁場10KOe)にて粉体磁気特性
を測定したところ、PHc=1480Oe,σs(Fe)=
195emu/g−Fe,σr/σs=0.512であり、良好に
還元されていた。この金属磁性粉末を350℃の温
度でH25N/min,CO20.01N/minの混合ガ
ス流により15分間酸化した。得られた酸化物の一
部をトルエン中へ取出し、VSMにて粉体磁気特
性を測定したところ、PHc=1450Oe,σs−Fe=
170emu/g−Fe,σr/σs=0.514であり、適正に
酸化されていた。N2気流中で20℃まで冷却後、
N22N/min、空気0.01N/minの混合ガス流
によりPo2=10-3atmとして、酸化を始め、徐々
にPo2を増加してゆき、最終的には空気のみ4N
/minの気流とした。生成物を炉外の空気中へ
取出し、磁気特性を測定したところ、PHc=
1450Oe,σs=128emu/g,σr/σs=0.515であつ
た。
本実施例で得られた金属磁性粉末粒子の30000
倍の電子顕微鏡写真を第1図に示す。針状性が良
好に保たれ融着粒子も少ないことがわかる。この
粉末の60℃−空気中における3日目のσsは
123emu/gであり、良好であつた。又、60℃−
90%RH−7日目のσsは105emu/gであり、良
好であつた。
シート特性を測定した結果、Sq=0.78,60°−
60°グロス=70%であつた。これら特性値の測定
結果は比較例についての測定結果とともに第1表
に示した。
塗料化条件は次のとおりであつた。
The present invention uses acicular iron oxide or Ni, Co, Zn, Mn
This invention relates to a method for producing metal magnetic powder containing Fe as a main component, which comprises heating and reducing modified acicular iron oxide containing elements such as hydrogen gas or the like using a reducing gas such as hydrogen gas. More specifically, a colloidal solution of Si or Al hydroxide is generated under strictly controlled conditions, and this colloidal solution is used to treat the raw material, acicular iron oxide, to form an acicular iron oxide surface. Si or
By forming a uniform adhesion layer of Al and then reducing it, the shape anisotropy derived from the acicular shape of acicular iron oxide is maintained, and Hc is 1400~
1600Oe, or if desired, further producing the metal magnetic powder.
Provides a method for producing metal magnetic powder that has excellent acicularity and dispersibility and is stable in the air by stabilizing the surface of the powder as an oxide by treating it with a mixed gas of H 2 and CO 2 . It is something to do. Furthermore, the above
The method of pretreatment and stabilization with a mixed gas of H 2 and CO 2 is also effective for stabilizing metal magnetic powders made by reducing acicular iron oxide by any other method. [Prior Art] Metal magnetic powder obtained by reducing iron oxyhydroxide or iron oxide with a reducing gas such as H 2 is essentially inferior to oxide-based magnetic powder such as γ-Fe 2 O 3 . It has a high coercive force (Hc) and a large saturation magnetic moment (σs), so it has excellent properties as a material for high-density magnetic recording.In recent years, it has begun to be used for 8mm video tapes and DAT tapes.
It is being put into practical use. A gas phase reduction method is generally used to produce metal magnetic powder particles containing Fe as a main component, which are called metal powders. However, in this gas phase reduction method, the powder particles are α−FeOOH→α−Fe 2 O 3 →Fe 3 O 4 →α
Since it goes through a reaction process called Fe, a change in crystal structure and an accompanying volume contraction occur. This volumetric shrinkage ultimately reaches about 47%, so that during the above transformation process, the particles fuse together and the particles themselves sinter, causing the shape to collapse. As a result, metal magnetic powders obtained by conventional gas phase reduction methods generally have low shape magnetic anisotropy, and therefore tend to have low Hc and poor dispersibility. Therefore, various methods have been researched to obtain metal magnetic powder with predetermined characteristics by preventing the particles from fusing together and sintering the particles themselves, and the results include:
Fe obtained by surface treating raw iron oxide with metal salts such as P, Si, Al, Zn, Zr, Ti, Bi or hydroxides of these metals, and then reducing it.
Various methods have been disclosed for favorably retaining the shape of magnetic powder containing magnetic powder as a main component (for example, Japanese Patent Laid-open No.
79153, Tokuko Sho 51-5608, and many others). These disclosed methods generate mutual fusion of particles by forming salts of various metals such as P, Si, Al, Zn, Zr, Ti, Bi, or hydroxides of these metals on the surface of iron oxide. These methods attempt to retain the acicular shape by preventing sintering of the particles themselves, and have achieved some success, but the acicularity of the metal magnetic powder obtained by these methods is not sufficient. It could hardly be said to be good, and was not fully satisfactory as a metal magnetic powder for high-density magnetic recording media, which has been increasingly sought after in recent years. Furthermore, these metal magnetic powders are extremely susceptible to oxidation, and their handling requires great care. As a countermeasure, the metal powder after reduction is taken out in an organic solvent such as toluene and air-dried, or the surface of the metal magnetic particles is oxidized by blowing air into the toluene while immersed in the toluene. After stabilization, the organic solvent is removed by drying and taken out into the air, or the metal magnetic powder obtained by reduction is cooled to room temperature and then brought into contact with a gas mixture of N 2 and air and mixed gradually. Relying on methods such as the method of gradually oxidizing the surface of metal magnetic particles by increasing the oxygen partial pressure (Po 2 ) of the gas, and then extracting it into the air without burning it (Japanese Patent Publications No. 47-30477, No. 51-5608). This is commonly done. However, it has been recognized that the method of stabilizing the surface of metal magnetic particles using an organic solvent such as toluene is accompanied by a phenomenon in which a modified product of the organic solvent is generated due to the catalytic action of the metal magnetic particles. Depending on the composition of the dispersant and binder, agglomeration may be significant when forming a coating to create a medium.
It has been pointed out that this method is undesirable because the product obtained by coating has poor squareness and surface properties. On the other hand, using a mixed gas of N 2 and air, the Po 2
Unlike the method of using organic solvents such as toluene, the method of gradually forming an oxide film on the particle surface by solid-gas reaction while controlling the oxygen partial pressure (oxygen partial pressure) is called the formation of modified organic solvents. No problems occur, and there is also no need to use large amounts of organic solvents, which is advantageous in terms of cost. However, on the other hand, since it is a method of introducing oxygen in the gas phase into metal magnetic powder particles that are extremely active against oxygen,
The heat balance is greatly influenced by a variety of factors, such as the specifications of the equipment used, the properties of the oxidized material (powder, granule, crumb, etc.), the schedule for increasing the oxygen partial pressure, and the flow rate of the N2 -air mixture gas.
It may burn during oxidation or when taken out.
Requires delicate control. In addition, in this method, the number of surface active sites in the metal magnetic powder must be reduced as much as possible in order to ensure the desired stability over time, so it is not possible to reduce the metal magnetic powder at a temperature that produces a slightly sintered metal magnetic powder. Alternatively, heat treatment in an inert gas atmosphere such as N 2 kept at a temperature higher than the reduction temperature (Japanese Patent Application Laid-Open No. 61-56201) is required, which may sacrifice the dispersibility and acicularity of the resulting product. The current situation is that there are cases where this is the case. [Problems to be Solved by the Invention] The present invention improves the above-mentioned drawbacks of the prior art, and reduces the occurrence of shape collapse and fusion of particles during reduction, and improves the squareness ratio when used as a paint. The present invention provides a method for producing metal magnetic powder that has excellent dispersibility and stability over time. [Means for solving the problems] In order to solve these problems, the present inventors
As a result of intensive research into surface treatment using mainly Al-based treatment agents, we have succeeded in preventing sintering and deformation of acicular iron oxide when heat-reducing it, and have improved the particle shape of acicular iron oxide, which is the starting material. We developed a method using aluminum hydroxide colloid as a processing agent as a method to obtain metal magnetic powder that has been well inherited.
According to the method of the present invention, aluminum hydroxide colloid is prepared by strictly controlling its production conditions, thereby producing fine and uniformly distributed aluminum hydroxide colloid, which is then combined with acicular iron oxide slurry. If the mixture is adsorbed or deposited on the surface of acicular iron oxide by an electrochemical method, the aluminum ions dissolved in the conventional slurry of acicular iron oxide will be neutralized and the aluminum ions will be adsorbed or deposited on the surface of acicular iron oxide. Compared to the method of adsorbing or depositing aluminum hydroxide, the adsorption layer of aluminum hydroxide becomes more dense and uniform, making it possible to produce metal powder with better squareness and dispersibility than those previously obtained. Served. In the present invention, as the acicular iron oxide used as a raw material, acicular α-FeOOH is generally used, but α-Fe 2 O 3 and γ-FeOOH can also be used. Even if these acicular iron oxides contain Co, Ni, Zn, Mn, etc., any conventionally known method (for example, Japanese Patent Publication No. 53-27719, Japanese Patent Publication No. 53-27719,
23773). Generally, α-FeOOH with a major axis length of 0.1 to 0.5μ and an axial ratio of 10 to 20 is produced by reacting an aqueous iron sulfate solution and an aqueous sodium hydroxide solution, and then blowing an oxidizing gas such as air into it. In particular, acicular iron oxide, which is a raw material for magnetic powder for 8 mm video tapes and DAT tapes with a coercive force (Hc) of 1400 to 1600 Oe, is preferably prepared by adding sulfates, chlorides, etc. to an aqueous solution of iron sulfate. α- produced by reacting an aqueous solution containing Ni or Co with an aqueous sodium hydroxide solution and then performing an oxidation reaction.
FeOOH is preferred. Furthermore, in the present invention, after the acicular iron hydroxide is separated from the reaction mother liquor after the oxidation reaction, it is particularly important to thoroughly wash and remove miscellaneous salts such as Na 2 SO 4 and the like. The present inventors conducted various treatments to deposit aluminum hydroxide on acicular iron oxide, and as a result of detailed studies on the effects of impurity elements on the properties of metal magnetic powder, we found that oxidation Na and on the surface or inside of iron particles
It was found that SO 3 causes the fusion of particles, collapse of particle morphology, and decrease in axial ratio during thermal reduction, and has a significant effect on Hc of metal magnetic powder. In particular, it has been found that when an aluminum compound is deposited on acicular iron oxide, the above-mentioned influence appears more greatly than when Si is deposited. The content of Na and SO 3 is set to 0.07% or less, preferably 0.05% or less, and 0.5% or less to SO 3 .
Preferably 1400~1600Oe if controlled to 0.3% or less
A metal magnetic powder with extremely good dispersibility and squareness ratio while maintaining the desired Hc can be obtained. Therefore, according to the above guidelines, after thoroughly cleaning and removing Na and SO 3 , an aluminum compound is applied to the acicular iron oxide, which is then sized, dried, fired, reduced, and oxidized to produce metal magnetic powder. It should be made.
One of the important features of the present invention is that when applying an aluminum compound, a colloid of aluminum hydroxide is used to treat the surface of iron oxide particles, which are to be reduced. A colloidal solution of aluminum hydroxide can be prepared as follows.
That is, an aqueous solution of a water-soluble aluminum compound is
By completely neutralizing at a temperature of 20° C. or lower, the water-soluble aluminum compound is precipitated as aluminum hydroxide, and this precipitate is washed and peptized with HCl to form a colloidal solution. Also, as another method,
Create an aqueous solution of aluminum compounds such as Al 2 (SO 4 ) 3 , NaAlO 2 , PAC, etc., adjust the temperature to below 20°C, and add an alkali or acid equivalent to 60% of the neutralization equivalent of each. The solution can also be partially neutralized and peptized with residual acid or alkali to form a colloidal solution. In any of the above cases, if the temperature of the solution is 20° C. or higher, it is not preferable because the aluminum hydroxide produced is difficult to completely turn into a colloid. Treatment of iron oxide with the colloidal solution thus obtained is carried out by adding and mixing a predetermined amount of the colloidal solution to a slurry of acicular iron oxide and heating the mixture to 60°C. This allows the aluminum compound to be uniformly deposited on the surface of the acicular iron oxide. As the water-soluble aluminum compound, sodium aluminate, aluminum sulfate, polyaluminum chloride, etc. can be used. According to the method of the present invention, an aluminum compound is deposited on the surface of iron oxide particles by adding a water-soluble aluminum compound to a slurry of acicular iron oxide and then neutralizing the slurry. In comparison, a metal magnetic powder with excellent acicularity of skeleton particles and less presence of fused aggregate particles can be obtained. According to the above method of the present invention, in the coexistence of Ni,
When producing metal magnetic powder using an aluminum compound as the main treatment agent, the amount of aluminum compound used is 1 to 10% by weight, preferably 3 to 6% by weight as Al based on the amount of Fe in the raw material iron oxide. After applying an aluminum compound under conditions within a range of C., preferably around 350.degree. C., a metal magnetic powder having a coercive force (Hc) of 1400 to 1600 Oe can be obtained. In this case, if the firing temperature in a non-reducing atmosphere is too high, sintering of α-Fe 2 O 3 will occur at this point, so the firing temperature is preferably in the range of 650 to 800°C. Further, in some cases, the same effect as the above-mentioned calcination can be achieved by adjusting the temperature in the next reduction step without performing the above-mentioned heat treatment. When the reduction temperature is as high as 450°C, it becomes difficult to avoid sintering of Fe crystals during thermal reduction even with the colloidal solution treatment method of the present invention. ,
As a result, the resulting powder has a reduced axial ratio and coercive force (Hc). Next, the stabilization method will be explained. The metal magnetic powder obtained by completing the reduction is usually cooled to room temperature, and then gradually forms an oxide layer on the surface of the metal magnetic particles while adjusting the oxygen partial pressure in a mixed gas of N 2 and air. The surface of the magnetic powder is stabilized by a method such as taking the metal powder into an organic solvent such as toluene and introducing an oxidizing gas such as air into the solvent to oxidize the surface of the magnetic powder. is commonly practiced. Among these methods, the method of oxidizing in an organic solvent such as toluene is known to cause polymerization and modification of organic substances due to the catalytic action of iron magnetic powder during oxidation, which has an adverse effect on the coating process.
Although the method of controlling the oxygen partial pressure using a mixed gas of N 2 and air is a preferable method, the oxidation reaction sometimes proceeds rapidly and deteriorates the characteristics of the metal magnetic powder. The present inventors developed the following method in order to solve the above problems. i.e. 200~450℃
Metal powder is brought into contact with a mixed gas of H 2 and CO 2 at a temperature similar to the reduction temperature of H 2 and CO 2 in this case.
By controlling the mixing ratio of CO 2 to H 2 to an appropriate value within the range of 0.001 to 0.05 based on thermodynamic calculations, is in the oxide state,
Thereafter, by contacting this metal powder with a gas mixture of N 2 and air and changing the mixing ratio of N 2 and air as described below, i.e., the oxygen partial pressure is reduced at a relatively low temperature. (Po 2 )
This is a method in which the surface oxidation progresses gradually by gradually increasing the concentration from 10 -3 atm to form a dense α-Fe 2 O 3 layer. The surface oxidation reaction of metal magnetic particles by a mixed gas of H 2 and CO 2 is expressed by the following equation. H 2 + CO 2 = H 2 O + CO (1) 3Fe + 4H 2 O = Fe 3 O 4 + 4H 2 (2) The equilibrium relationship of equations (1) and (2) is calculated by thermodynamic calculation.
H 2 and H 2 correspond to the region where the presence of Fe 3 O 4 is stable.
Determine the composition ratio of CO 2 . However, the oxidation reaction rate is controlled by mass transfer phenomena, so in order to obtain a controllable oxidation rate, careful experiments are performed to determine the actual H 2 :CO 2 composition ratio and the absolute value of the gas flow rate. Decided. For example, in the processing example above, 350
At °C, oxidation is too rapid at Pco 2 =0.1 atm for a total pressure of 1 atm, making it difficult to control the degree of surface oxidation to an appropriate level, but the oxidation rate becomes controllable at Pco 2 =0.002 atm. At 350℃, Pco2 is 0.001~
0.05 atm is preferable, and the oxidation time is suitably 5 minutes to 300 minutes. 350℃−H 2 Flow rate 4.5N/min−CO 2
At a flow rate of 0.5 N/min (corresponding to Pco 2 = 0.1 atm), the oxidation reaction progresses rapidly, and σs (Fe) increases from 200 emu/g-Fe to 120 emu/g-Fe in 15 minutes.
Hc also decreased from 1480 Oe to 860 Oe. The metal magnetic powder, on which an appropriate amount of oxide layer has been formed on the surface in this way, is cooled to near room temperature in an inert gas atmosphere such as N 2 gas, and then
By mixing N 2 and air, oxidation starts from Po 2 = 10 -3 atm, and Po 2 is gradually increased using the same operation as the known technique (Japanese Patent Publications No. 47-30477, No. 51-5608).
Fe 3 O 4 is oxidized to α-Fe 2 O 3 and stabilized, which can be taken out into the air. According to this method, the processing time required to stabilize the metal magnetic powder is short, and σs
It was observed that the change over time of Po 2 was smaller than that of the conventional Po 2 control method. [Example] The present invention will be specifically described below with reference to Examples. Example 1 A mixed aqueous solution of ferrous sulfate and nickel sulfate (Ni/Fe = 3%) was reacted with an aqueous sodium hydroxide solution, and the neutralized product was further oxidized with air to produce α-FeOOH (long). Average axial length 0.3μ, average axial ratio
18) The slurry is filtered, washed and repulped to remove Na.
and SO 3 were sufficiently removed. α-FeOOH slurry (20g/100g,
A predetermined amount (an amount of Al/Fe=6%) of aluminum hydroxide colloid prepared separately in advance was added to the solution at 25° C., and stirring was continued for 30 minutes. Then 1N−
Adjust the pH to 8-9 with NaOH aqueous solution and 60℃
The temperature was raised to 150°C and aged for 1 hour to produce acicular goethite treated with aluminum hydroxide colloid. <Preparation of aluminum hydroxide colloid> Aqueous solution of sodium aluminate (as Al 2 O 3
After taking 100ml of 299g/) and adding 200ml of pure water,
Add 920 ml of 1N-HCl aqueous solution while maintaining at 15℃.
The pH was adjusted to 7.5. Next, after adding 500 ml of pure water, stirring was stopped and the mixture was allowed to stand, the supernatant was discarded, the mixture was washed by decantation, and the mixture was suction-filtered and washed using a Nutssie filter. Next, pulp the cake with 300ml of pure water to 1N
-176 ml of aqueous HCl solution was added to peptize the colloid. By addition of aluminum hydroxide colloid,
Ni-containing α− coated with aluminum hydroxide
FeOOH was thoroughly washed with pure water to remove Na and SO 3 . The Na content of α-FeOOH after washing is
The SO 3 content was 0.02%. This α-FeOOH was granulated into cylindrical crumbs with a length of about 7 mm and a diameter of 3 mm, and then dried. In addition, 700
After baking at ℃ for 30 minutes, transfer to a vertical fixed bed reduction apparatus.
Insert 25g and heat to 350℃ with H2 gas flow rate of 5N/min.
Reduction was performed for 10 hours. When a part of the powder was taken out in toluene and the powder magnetic properties were measured using VSM (applied magnetic field 10KOe), PHc = 1480Oe, σs (Fe) =
195emu/g-Fe, σr/σs=0.512, indicating good reduction. This metal magnetic powder was oxidized at a temperature of 350° C. for 15 minutes with a mixed gas flow of H 2 5N/min and CO 2 0.01N/min. When a part of the obtained oxide was taken out into toluene and the powder magnetic properties were measured using VSM, PHc=1450Oe, σs−Fe=
170emu/g-Fe, σr/σs=0.514, indicating proper oxidation. After cooling to 20 °C in a stream of N2 ,
With a mixed gas flow of N 2 2N/min and air 0.01N/min, oxidation begins with Po 2 = 10 -3 atm, and Po 2 gradually increases until finally air alone becomes 4N.
The airflow was set to /min. When the product was taken out into the air outside the furnace and its magnetic properties were measured, PHc=
1450 Oe, σs=128emu/g, σr/σs=0.515. 30,000 of the metal magnetic powder particles obtained in this example
A magnified electron micrograph is shown in Figure 1. It can be seen that the acicularity is well maintained and there are few fused particles. The σs of this powder on the third day at 60℃ in air is
It was 123 emu/g, which was good. Also, 60℃−
σs on the 7th day of 90% RH was 105 emu/g, which was good. As a result of measuring the sheet properties, Sq=0.78, 60°−
60° gloss = 70%. The measurement results of these characteristic values are shown in Table 1 together with the measurement results of the comparative examples. The coating conditions were as follows.
【表】【table】
【表】
ガラスビーズ
63.3g使用)
比較例 1
コロイド添加後の洗浄を調節することにより
Na分を0.27%としたこと以外は実施例1と同様
の条件で実験を行なつた。還元後トルエン中へサ
ンプリングし、VSMにて粉体磁気特性を測定し
た。PHc=905Oe,σs(Fe)=200emu/g−Fe,
σr/σs=0.382であつた。得られた金属磁性粉末
粒子は粒子同士の融着が進み、形骸の軸比も低下
し丸味を帯びていた。第2図にその磁性粉末粒子
の30000倍の電子顕微鏡写真を示す。粉末の特性
は第1表に示す通りであつた。
比較例 2
コロイド添加後の洗浄したα−FeOOHに硫安
を添加することにより、SO3のみ不純物として
1.1%残留させたこと以外は実施例1と同様の条
件により還元し、還元後の金属磁性粉末をトルエ
ン中へサンプリングし、磁気特性を測定した。PH
c=1230Oe,σs(Fe)=196emu/g−Fe,σr/
σs=0.491であつた。これらの結果は第1表に示
した。
比較例 3
アルミニウム化合物の添加をコロイドによら
ず、α−FeOOHの水性スラリーにアルミン酸ナ
トリウムを加えるという形でAlを添加し、次い
で1N−HClを用いて室温において中和したこと
以外は実施例1と同様の条件で実験を行なつた。
還元後トルエン中へサンプリングし粉体磁気特性
を測定した。PHc=1350Oe,σs(Fe)=182emu/
g−Fe,σr/σs=0.490であつた。次に、実施例
1と同様の条件で酸化安定化して、空気中へ取出
して粉体磁気特性、シート特性、経時安定性を調
べた。PHc=1340Oe,σs=128emu/g,σr/σs
=0.492であつた。又、Sq=0.74、グロス=60%
であつた。60℃−空気中の3日目のσsは
113emu/gであり劣化率は12%,30℃−90%
RH−7日目のσsは98emu/gであつた。これら
の測定結果を実施例1の結果と対比して第1表お
よび第2表に示した。
比較例 4
還元後、トルエン中へ取出してトルエン中に空
気を吹きこみ酸化したこと以外は実施例1と同様
のことをくり返した。その結果は第2表に示す通
りであつた。
比較例 5
H2とCO2の混合ガスによる粒子表面のFe3O4化
を行なわずに、還元後室温まで冷却してその後
N2と空気により徐々にPo2を増加して酸化安定化
を行なつた以外は実施例1と同様のことをくり返
した。その結果は第2表に示す通りであつた。[Table] Glass beads
63.3g used)
Comparative Example 1 By adjusting the washing after colloid addition
An experiment was conducted under the same conditions as in Example 1 except that the Na content was 0.27%. After reduction, it was sampled into toluene and the powder magnetic properties were measured using VSM. PHc=905Oe, σs(Fe)=200emu/g-Fe,
σr/σs=0.382. In the obtained metal magnetic powder particles, the particles were fused to each other, and the axial ratio of the skeleton was reduced, giving it a rounded shape. Figure 2 shows an electron micrograph of the magnetic powder particles magnified 30,000 times. The properties of the powder were as shown in Table 1. Comparative Example 2 By adding ammonium sulfate to the washed α-FeOOH after adding colloid, only SO 3 was removed as an impurity.
The reduction was carried out under the same conditions as in Example 1 except that 1.1% remained. The reduced metal magnetic powder was sampled into toluene and its magnetic properties were measured. PH
c=1230Oe, σs(Fe)=196emu/g−Fe, σr/
σs=0.491. These results are shown in Table 1. Comparative Example 3 Example except that the aluminum compound was not added by colloid, but Al was added in the form of adding sodium aluminate to the aqueous slurry of α-FeOOH, and then neutralized with 1N-HCl at room temperature. The experiment was conducted under the same conditions as in 1.
After reduction, the powder was sampled into toluene and its magnetic properties were measured. PHc=1350Oe, σs(Fe)=182emu/
g-Fe, σr/σs = 0.490. Next, it was oxidized and stabilized under the same conditions as in Example 1, taken out into the air, and examined for powder magnetic properties, sheet properties, and stability over time. PHc=1340Oe, σs=128emu/g, σr/σs
= 0.492. Also, Sq = 0.74, gross = 60%
It was hot. σs on the third day at 60℃−air is
113emu/g, deterioration rate is 12%, 30℃ - 90%
σs on the 7th day of RH was 98 emu/g. These measurement results are shown in Tables 1 and 2 in comparison with the results of Example 1. Comparative Example 4 The same procedure as in Example 1 was repeated except that after reduction, the sample was taken out into toluene and oxidized by blowing air into the toluene. The results were as shown in Table 2. Comparative Example 5 Without converting the particle surface to Fe 3 O 4 using a mixed gas of H 2 and CO 2 , the particle surface was cooled to room temperature after reduction and then
The same procedure as in Example 1 was repeated except that oxidative stabilization was performed by gradually increasing Po 2 with N 2 and air. The results were as shown in Table 2.
【表】【table】
第1図は本発明の方法で製造した金属磁性粉末
の粒子構造を示す30000倍の電子顕微鏡写真であ
る。第2図は従来の方法で製造した金属磁性粉末
の粒子構造を示す30000倍の電子顕微鏡写真であ
る。
FIG. 1 is an electron micrograph at 30,000 times magnification showing the particle structure of the metal magnetic powder produced by the method of the present invention. FIG. 2 is an electron micrograph at 30,000 times magnification showing the particle structure of metal magnetic powder produced by a conventional method.
Claims (1)
する金属磁性粉末を200〜450℃の温度で、H2に
対するCO2の割合が0.001〜0.05であるH2とCO2と
の混合ガスに接触させて粉末粒子の表面を予備的
に酸化処理した後、処理後の粉末粒子を室温近傍
で、不活性ガスと空気との混合ガスに接触させ、
該混合ガスの酸素分圧(Po2)を徐々に増加させ
ることによつて粉末粒子を表面酸化により安定化
させることからなる、磁気記録用金属磁性粉末の
製造方法。 2 針状酸化鉄またはNi,Co,ZnおよびMnの
うちから選ばれた1種類もしくは2種類以上の元
素を含む変性針状酸化鉄を原料とし、該原料を、
あらかじめ調製したSiまたはAlの水酸化物のコ
ロイド溶液と接触させることによりSiまたはAl
の水酸化物を表面に被着させた針状酸化鉄をつく
り、該被着針状酸化鉄を還元してFeを主成分と
する金属磁性粉末とし、該金属磁性粉末を200〜
450℃の温度で、H2に対するCO2の割合が0.001〜
0.05であるH2とCO2との混合ガスに接触させて粉
末粒子の表面を予備的に酸化処理した後、処理後
の粉末粒子を室温近傍で、不活性ガスと空気との
混合ガスに接触させ、該混合ガスの酸素分圧
(Po2)を徐々に増加させることによつて粉末粒
子を表面酸化により安定化させることからなる、
磁気記録用金属磁性粉末の製造方法。[Claims] 1. Metal magnetic powder mainly composed of Fe produced by reduction of iron oxide is mixed with H 2 and CO 2 at a temperature of 200 to 450°C, with a ratio of CO 2 to H 2 of 0.001 to 0.05 . After preliminary oxidation treatment of the surface of the powder particles by contacting with a mixed gas of an inert gas and air, the treated powder particles are brought into contact with a mixed gas of an inert gas and air at around room temperature,
A method for producing metal magnetic powder for magnetic recording, comprising stabilizing powder particles by surface oxidation by gradually increasing the oxygen partial pressure (Po 2 ) of the mixed gas. 2. Use acicular iron oxide or modified acicular iron oxide containing one or more elements selected from Ni, Co, Zn, and Mn as a raw material, and use the raw material as
Si or Al by contacting with a colloidal solution of Si or Al hydroxide prepared in advance.
The acicular iron oxide is prepared by depositing hydroxide on its surface, and the deposited acicular iron oxide is reduced to a metal magnetic powder containing Fe as the main component.
At a temperature of 450 ° C, the ratio of CO 2 to H 2 is from 0.001 to
After preliminary oxidation treatment of the surface of the powder particles by contacting them with a mixed gas of 0.05 H 2 and CO 2 , the treated powder particles are brought into contact with a mixed gas of an inert gas and air at around room temperature. and stabilizing the powder particles by surface oxidation by gradually increasing the oxygen partial pressure (Po 2 ) of the mixed gas.
A method for producing metal magnetic powder for magnetic recording.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63123306A JPH01294810A (en) | 1988-05-20 | 1988-05-20 | Production of magnetic metal powder for magnetic recording |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63123306A JPH01294810A (en) | 1988-05-20 | 1988-05-20 | Production of magnetic metal powder for magnetic recording |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01294810A JPH01294810A (en) | 1989-11-28 |
JPH0445561B2 true JPH0445561B2 (en) | 1992-07-27 |
Family
ID=14857277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63123306A Granted JPH01294810A (en) | 1988-05-20 | 1988-05-20 | Production of magnetic metal powder for magnetic recording |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01294810A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7416697B2 (en) | 2002-06-14 | 2008-08-26 | General Electric Company | Method for preparing a metallic article having an other additive constituent, without any melting |
US6968990B2 (en) | 2003-01-23 | 2005-11-29 | General Electric Company | Fabrication and utilization of metallic powder prepared without melting |
US7531021B2 (en) | 2004-11-12 | 2009-05-12 | General Electric Company | Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58161705A (en) * | 1982-03-16 | 1983-09-26 | Hitachi Maxell Ltd | Production of magnetic metallic powder |
JPS59107503A (en) * | 1982-12-13 | 1984-06-21 | Kanto Denka Kogyo Kk | Method of manufacturing magnetic powders with iron as main constituent for magnetic recording |
-
1988
- 1988-05-20 JP JP63123306A patent/JPH01294810A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58161705A (en) * | 1982-03-16 | 1983-09-26 | Hitachi Maxell Ltd | Production of magnetic metallic powder |
JPS59107503A (en) * | 1982-12-13 | 1984-06-21 | Kanto Denka Kogyo Kk | Method of manufacturing magnetic powders with iron as main constituent for magnetic recording |
Also Published As
Publication number | Publication date |
---|---|
JPH01294810A (en) | 1989-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0217603B2 (en) | ||
JPH0445561B2 (en) | ||
JPS60135506A (en) | Production of ferromagnetic metallic powder | |
KR890003881B1 (en) | Method for producing ferromagnetic iron oxide containing cobalt and ferrous | |
JPS6021307A (en) | Production of ferromagnetic metallic powder | |
JP3337046B2 (en) | Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same | |
JPH0146561B2 (en) | ||
JPS6411577B2 (en) | ||
JP2744641B2 (en) | Method for producing ferromagnetic metal powder | |
JPS6132259B2 (en) | ||
JP2805162B2 (en) | Method for producing metal magnetic powder for magnetic recording | |
JPH0461302A (en) | Spindle-shaped metal magnetic particle powder mainly composed of iron | |
JPS6349722B2 (en) | ||
JP3141907B2 (en) | Method for producing spindle-shaped iron-based metal magnetic particle powder | |
JP3092649B2 (en) | Method for producing spindle-shaped metal magnetic particles containing iron as a main component | |
JPS5921364B2 (en) | Method for producing acicular Fe-Zn alloy magnetic particle powder | |
JPH05140620A (en) | Production of powdery ferromagnetic metal powder | |
JPS5921922B2 (en) | Method for producing acicular Fe-Co-Zn alloy magnetic particle powder | |
JPS63140005A (en) | Production of fine ferromagnetic metal particle powder | |
JPH02119104A (en) | Method for manufacturing magnetic recording magnetic powder treated with aluminum compound to prevent sintering | |
JPS59159904A (en) | Metallic magnetic powder and its production | |
KR100241694B1 (en) | Ferromagnetic iron oxide powder and its manufacturing method | |
JPH0340083B2 (en) | ||
JPH05152114A (en) | Method of stabilizing acicular ferromagnetic metallic powder intrinsically composed of iron | |
JPS5946281B2 (en) | Method for producing acicular Fe-Co alloy magnetic particle powder |