JPH0445227A - Manufacturing method of low yield ratio steel - Google Patents
Manufacturing method of low yield ratio steelInfo
- Publication number
- JPH0445227A JPH0445227A JP15215290A JP15215290A JPH0445227A JP H0445227 A JPH0445227 A JP H0445227A JP 15215290 A JP15215290 A JP 15215290A JP 15215290 A JP15215290 A JP 15215290A JP H0445227 A JPH0445227 A JP H0445227A
- Authority
- JP
- Japan
- Prior art keywords
- less
- yield ratio
- steel
- temperature
- low yield
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 44
- 239000010959 steel Substances 0.000 title claims description 44
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000005096 rolling process Methods 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 9
- 230000001186 cumulative effect Effects 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 238000005496 tempering Methods 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 238000005098 hot rolling Methods 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 238000001816 cooling Methods 0.000 description 32
- 229910000859 α-Fe Inorganic materials 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229910001566 austenite Inorganic materials 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 229910001563 bainite Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 229910052601 baryte Inorganic materials 0.000 description 1
- 239000010428 baryte Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 (産業上の利用分軒) 本発明は低降伏比鋼材の製造法に関するものである。[Detailed description of the invention] (Industrial use branch) The present invention relates to a method of manufacturing low yield ratio steel.
(従来の技術)
近年造船、産業機械等の各分野にわたって、競争力向上
のため溶接施工の減少、曲げ加工性を代表として鋼材特
性の極限追求、溶接性の向上および鋼材コストの低減な
ど各種の要求が強まっている。このうち厚鋼板の曲げ加
工性改善のためには、80%以下の低降伏比を有する厚
鋼板の開発が必要である。(Conventional technology) In recent years, in order to improve competitiveness in various fields such as shipbuilding and industrial machinery, various efforts have been made to reduce welding work, pursue the ultimate properties of steel materials such as bending workability, improve weldability, and reduce steel material costs. Demand is increasing. Among these, in order to improve the bending workability of thick steel plates, it is necessary to develop thick steel plates with a low yield ratio of 80% or less.
また、建築、橋梁分野では構造物の安全性向上のために
降伏比の低下が望まれている。さらに、単に降伏比を低
下させるだけでなく、降伏棚を導入することにより、地
震時の構造部材のエネルギー吸収量が大幅に増加する。Furthermore, in the fields of architecture and bridges, a reduction in yield ratio is desired to improve the safety of structures. In addition to simply lowering the yield ratio, introducing a yield shelf significantly increases the amount of energy absorbed by the structural member during an earthquake.
このことから、降伏棚の導入も求められている。For this reason, the introduction of a yield shelf is also required.
最近造船用、ラインパイプ用等を中心として母材低温靭
性、溶接性改善をねらいとした鋼板圧延後の加速冷却技
術を用いた強度50kg f /−以上の鋼板の開発が
盛んであるが、曲げ加工性の良好な低降伏比鋼材の製造
については検討されていない。Recently, there has been active development of steel plates with a strength of 50 kg f/- or more using accelerated cooling technology after steel plate rolling, with the aim of improving base material low-temperature toughness and weldability, mainly for shipbuilding, line pipes, etc. The production of low yield ratio steel materials with good workability has not been studied.
従来の制御圧延−制御冷却プロセスにおいては、低温靭
性向上のため熱間圧延で、できる限り細粒にするととも
に、オーステナイト−相域から加速冷却することが採用
されている。In the conventional controlled rolling-controlled cooling process, in order to improve low-temperature toughness, hot rolling is performed to make the grains as fine as possible, and accelerated cooling is performed from the austenite phase region.
しかしながらこの方法によると、フェライトの細粒化と
硬化および一部バーライトのベーナイト化によって降伏
点が上昇し、降伏比の上昇となって曲げ加工性が低下す
る問題がある。However, according to this method, there is a problem that the yield point increases due to grain refinement and hardening of the ferrite and the conversion of some barite to bainite, resulting in an increase in the yield ratio and a decrease in bending workability.
本発明者等の一部は特開昭59−211528号公報に
おいて、制御圧延−制御冷却プロセスを用いて降伏点を
低下させる方法について検討した結果、同じく細粒フェ
ライトで良好な低温靭性を得ながら、かつ低降伏点で低
降伏比を有する強度50kg f / m4以上の鋼板
の製造方法を開発した。In JP-A No. 59-211528, some of the present inventors studied a method of lowering the yield point using a controlled rolling-controlled cooling process, and found that while obtaining good low-temperature toughness with fine-grained ferrite, We have developed a method for manufacturing a steel plate with a strength of 50 kg f/m4 or more, which also has a low yield point and low yield ratio.
すなわち、900〜1200℃に加熱した後、A r
a以上で30%以上の累積圧下を行ない細粒化を図った
後、A r s以下まで空冷して軟らかい初析フェライ
トを適切に析出せしめ、その後強制冷却を行なうと、軟
らかい初析フェライトと残部オーステナイトから得られ
るフェライト−パーライト−ベーナイトの適切な混合に
より、引張強さおよび低温靭性の低下なく、降伏点のみ
低下することを知見したものである。That is, after heating to 900 to 1200°C, Ar
After performing a cumulative reduction of 30% or more at a temperature above a to make the grains finer, air cooling to a temperature below A r s to appropriately precipitate soft pro-eutectoid ferrite, followed by forced cooling, produces soft pro-eutectoid ferrite and the remainder. It has been discovered that by appropriately mixing ferrite-pearlite-bainite obtained from austenite, only the yield point can be lowered without lowering tensile strength and low-temperature toughness.
(発明が解決しようとする課題)
しかし、その後のさらに低降伏比に対する要求に対し、
種々検討した結果、900℃からA r 3の温度範囲
での30%以上の累積圧下により、フェライトおよび第
2相の炭化物が必要以上に細粒化、微細化する。低降伏
比にするためには低降伏点で高引張強さである必要があ
る。そして降伏点はフェライト部分で、引張強さは第2
相の炭化物(特に高炭素の島状マルテンサイト)で決ま
る。(Problem to be solved by the invention) However, in response to the subsequent demand for an even lower yield ratio,
As a result of various studies, the cumulative pressure of 30% or more in the temperature range from 900° C. to Ar3 causes ferrite and second phase carbide to become finer and finer than necessary. In order to have a low yield ratio, it is necessary to have a low yield point and high tensile strength. The yield point is the ferrite part, and the tensile strength is the second
Determined by phase carbides (especially high carbon island martensite).
そのため必要以上にフェライトが細粒化すると高降伏点
となると同時に、第2相の炭化物の微細化で、焼戻しに
よる炭化物の分解が促進されるため低引張強さとなる。Therefore, if the ferrite becomes finer than necessary, the yield point will be high, and at the same time, the second phase carbide will become finer, and the decomposition of the carbide during tempering will be promoted, resulting in a low tensile strength.
その結果として高降伏比となる。さらに、単に降伏比を
低下させるだけでなく、降伏棚を導入することにより、
地震時の構造部材のエネルギー吸収量が大幅に増加する
。このことから、降伏棚の導入も求められているが、こ
れを実現するための方法に関する知見がない。The result is a high yield ratio. Furthermore, by introducing a yield shelf, rather than simply lowering the yield ratio,
The amount of energy absorbed by structural members during earthquakes increases significantly. For this reason, there is a need to introduce a yield shelf, but there is no knowledge of how to achieve this.
(課題を解決するための手段)
このため引き続き降伏比を低下させるために、多数の実
験と詳細な検討を加えた結果、降伏比を低下させるため
には、鋼のミクロ組織をフエライトと第2相の炭化物の
2相混合組織にする。さらに降伏比を下げるためには、
降伏点を下げ、引張強さを高めることが重要である。(Means for solving the problem) For this reason, in order to continue to lower the yield ratio, we conducted numerous experiments and detailed studies, and found that in order to lower the yield ratio, the microstructure of steel should be changed to ferrite and secondary. Create a two-phase mixed structure of carbide phases. In order to further reduce the yield ratio,
It is important to lower the yield point and increase the tensile strength.
降伏点を下げるためにはフェライトの面積率を増加させ
、かつあまり細粒化しないこと、引張強さを高めるため
には、急冷で硬くなった第2相の炭化物(ベーナイト又
はマルテンサイト)を焼戻しにより、必要以上に軟化さ
せないことが重要であることを見出したのである。さら
に降伏棚については、2相域温度と水冷の間に軽圧下を
加えることにより、稼働転位が鋼中に導入され、これが
引張試験時に降伏棚の存在をもたらすことを知見したも
のである。In order to lower the yield point, the area ratio of ferrite should be increased and the grains should not be made too fine, and in order to increase the tensile strength, the second phase carbide (bainite or martensite) that has become hard due to rapid cooling should be tempered. They discovered that it is important not to soften the material more than necessary. Furthermore, regarding the yield shelf, it was found that by applying a light reduction between the two-phase region temperature and water cooling, active dislocations are introduced into the steel, which results in the presence of a yield shelf during the tensile test.
本発明はこのような要望を満たすべく、低降伏比を有す
る強度50kg f /−以上の鋼板の製造を可能とし
たものであり、その要旨とするところは、重量%にて、
C: 0.03〜0.30%、S i:0.05〜0.
60%、M n: O’、 50〜2.5%、An :
0.005〜0.1%を含有した鋼を基本とし、これに
更に、Cu:2.0%以下、N j:4.0%以下、C
r:1.0%以下、Mo:0.50%以下、Nb:0.
1.0%以下、V : 0.10%以下、T1:0.1
5%以下からなる強度改善元素群から選ばれる1種又は
2種以上、あるいはCa:0.01%以下を含有し、又
は前記Cu−Tlの強度改善元素群とCaから選ばれる
1種又は2種以上を含有し、残部Feおよび不可避的不
純物からなる鋼を、900〜1200℃に加熱し、熱間
圧延において900℃を超える温度で圧延終了するか、
もしくは900℃〜Ar3間で圧延終了する場合900
℃〜A r s間では仕上板厚に対し30%未満の累積
圧下率とし、引き続き空冷して鋼板表面温度がA r
s 20℃〜Ar380”C:の温度範囲で1%以上
30%以下の軽圧下を加え、すぐに水量密度0.3rl
/d・分以上で冷却開始し、鋼板温度が250℃以下に
なるまで冷却し、その後焼戻し熱処理を行うことを特徴
とする低降伏比鋼材の製造法に関するものである。In order to meet such demands, the present invention has made it possible to manufacture a steel plate with a strength of 50 kg f /- or more and a low yield ratio, and the gist thereof is:
C: 0.03-0.30%, Si: 0.05-0.
60%, Mn: O', 50-2.5%, An:
Based on steel containing 0.005 to 0.1%, in addition to this, Cu: 2.0% or less, Nj: 4.0% or less, C
r: 1.0% or less, Mo: 0.50% or less, Nb: 0.
1.0% or less, V: 0.10% or less, T1: 0.1
Contains one or more selected from the strength improving element group consisting of 5% or less, or Ca: 0.01% or less, or one or two selected from the Cu-Tl strength improving element group and Ca. A steel containing Fe and unavoidable impurities is heated to 900 to 1200°C, and hot rolling is completed at a temperature exceeding 900°C, or
Or 900 if rolling is completed between 900°C and Ar3
The cumulative reduction rate is less than 30% relative to the finished plate thickness between °C and A r s, and the steel plate surface temperature is increased by air cooling.
s Apply light pressure of 1% to 30% in the temperature range of 20℃ to Ar380''C, and immediately reduce the water density to 0.3rl.
The present invention relates to a method for manufacturing a low yield ratio steel material, which is characterized in that cooling is started at a temperature of /d·min or more, the steel sheet is cooled until the steel plate temperature becomes 250° C. or less, and then a tempering heat treatment is performed.
(作 用)
本発明は主として900℃を超える温度で圧延を行ない
、900℃以下の温度で圧延をする場合には、圧下量を
低く規制することによって、必要以上のフェライトの細
粒化および第2相の炭化物の微細化を抑さえると同時に
、水冷前に軽圧下を加えることにより降伏棚を有する低
降伏比鋼材の製造をねらったものである。(Function) The present invention mainly performs rolling at a temperature exceeding 900°C, and when rolling is performed at a temperature of 900°C or lower, by regulating the reduction amount to a low value, it is possible to reduce the grain size of ferrite more than necessary and The aim is to suppress the refinement of two-phase carbides and, at the same time, to produce a low yield ratio steel material with a yield shelf by applying light reduction before water cooling.
次に本発明における成分限定理由を述べる。Next, the reason for limiting the ingredients in the present invention will be described.
Cは強度確保のための0.03%以上は必要であるが、
多くなると鋼の靭性および溶接性を害するので含有量は
0,30%を上限とする。C is required at 0.03% or more to ensure strength, but
If the content is too large, it will impair the toughness and weldability of the steel, so the content should be limited to 0.30%.
Stは脱酸のため0.05%以上は必要で添加されるが
、多くなると溶接性を損なうので含有量は0.6%以下
とする。St is added as necessary in an amount of 0.05% or more for deoxidation, but if it increases, weldability will be impaired, so the content should be 0.6% or less.
Mnは安価に強度をあげる元素として有用であり、強度
確保のため0.5%以上は必要であるが多くなると溶接
性を損なうので含有量は2.5%以下とする。Mn is useful as an element that increases strength at a low cost, and 0.5% or more is necessary to ensure strength, but if it increases, weldability will be impaired, so the content should be 2.5% or less.
Allは脱酸のため0.005%以上必要であるが、多
くなると鋼中介在物が多くなりすぎ、鋼の性質を悪化さ
せるため0.1%を上限とする。0.005% or more of All is necessary for deoxidation, but if it is too large, inclusions in the steel will increase too much and the properties of the steel will deteriorate, so the upper limit is set at 0.1%.
本発明は以上の元素を基本成分として含有した鋼を、本
発明で限定する加熱−圧延−熱処理し、低降伏比を確保
するものであるが、鋼の要求特性によって以下の強度改
善元素群、介在物球状化元素を1種又は2種以上添加す
ることができる。In the present invention, steel containing the above-mentioned elements as basic components is heated, rolled, and heat treated as specified in the present invention to ensure a low yield ratio. However, depending on the required characteristics of the steel, the following strength-improving element groups, One or more types of inclusion spheroidizing elements can be added.
V、Tj 、Nbは析出強化により強度を上昇せしめる
元素であるが、量が多くなると靭性を害するため、V:
O,1%、T j:0.15%、Nb:0.10%を上
限とした。V, Tj, and Nb are elements that increase strength through precipitation strengthening, but in large amounts they impair toughness, so V:
The upper limits were O: 1%, Tj: 0.15%, and Nb: 0.10%.
Ni、Cu、C・r、Moは固溶体強化により強度を上
昇せしめる元素であるが、量が多くなると靭性を害する
ため、N i二4.0%、Cu:2.0%、Cr:1.
0%、Mo:0.50%を上限とした。Ni, Cu, Cr, and Mo are elements that increase strength through solid solution strengthening, but when their amounts increase, they impair toughness.
The upper limit was 0% and Mo: 0.50%.
Caは介在物球状化に有用で添加されるが、多くなると
鋼中介在物を形成し、鋼の性質を悪化させるため含有量
は0.01%を上限とする。Ca is added because it is useful for spheroidizing inclusions, but if too much Ca forms inclusions in the steel and deteriorates the properties of the steel, the upper limit of the content is 0.01%.
次に本発明の重要な要件である加熱、圧延、冷却条件に
ついて述べる。Next, heating, rolling, and cooling conditions, which are important requirements of the present invention, will be described.
加熱温度はオーステナイト域で′十分加熱できる温度と
して下限を900℃とした。一方温度が高すぎるとオー
ステナイト粒が大きくなりすぎ、鋼の性質を劣化させる
ので1200℃を加熱温度の上限とする。The lower limit of the heating temperature was set at 900° C., which is the temperature at which sufficient heating can be achieved in the austenite region. On the other hand, if the temperature is too high, the austenite grains will become too large and the properties of the steel will deteriorate, so the upper limit of the heating temperature is set at 1200°C.
圧延については900℃を超える圧延と900℃以下で
の圧延に分けられるが、低降伏比鋼材が使用されるよう
な用途では、900℃を超える温度での制御圧延による
靭性向上で十分であり、900℃超での圧延完了が望ま
しい。Rolling can be divided into rolling at temperatures above 900°C and rolling at temperatures below 900°C, but in applications where low yield ratio steel materials are used, improved toughness through controlled rolling at temperatures above 900°C is sufficient. It is desirable to complete rolling at a temperature exceeding 900°C.
むしろ900℃以下の制御圧延で累積圧下を30%以上
にすると、必要以上のフェライトの細粒化と第2相の炭
化物の微細化により高降伏比となる。Rather, if the cumulative reduction is increased to 30% or more by controlled rolling at 900° C. or lower, a high yield ratio will be obtained due to the finer grains of ferrite and the finer grains of the second phase carbide.
そこで900℃〜A r 3間の累積圧下率は仕上板厚
に対して30%以下とする。Therefore, the cumulative rolling reduction rate between 900° C. and A r 3 is set to 30% or less with respect to the finished plate thickness.
次に水冷に先立って空冷を施すが、該空冷は圧延直後か
らAr −20℃〜Ar3−80℃の間のいずれかの
温度まで空冷することが好ましく、これによって軟らか
い初析フェライトの適量の析出を行なうものである。Next, air cooling is performed prior to water cooling, and the air cooling is preferably performed immediately after rolling to a temperature between Ar -20°C and Ar3-80°C, so that an appropriate amount of soft pro-eutectoid ferrite can be precipitated. This is what we do.
加速冷却開始温度の上限をA r a −20℃とした
のは降伏点を低くするためであり、下限をA r 3
80℃としたのは、これ以下の低い温度から冷却すると
加速冷却の効果がうすく引張強さが下がり、強度確保が
困難なためである。水量密度をり、3nl/d・分以上
としたのは、これ以下では強度上昇が少ないためである
。The reason why the upper limit of the accelerated cooling start temperature is set to A r a −20°C is to lower the yield point, and the lower limit is set to A r 3
The reason for setting the temperature to 80° C. is that when cooling from a temperature lower than this temperature, the effect of accelerated cooling becomes weak and the tensile strength decreases, making it difficult to maintain strength. The reason why the water density is set to 3 nl/d·min or more is because the increase in strength is small below this value.
この冷却に先立って1%以上30%以下の軽圧下を加え
る。加速冷却開始温度であるA r 320℃とAra
80℃の2相域で軽圧下を加えることにより、稼働
転位が鋼中に導入され、これが引張試験時に降伏棚の存
在をもたらせる。2相域での圧下率として1%未満では
降伏棚が存在しないため下限を1%とし、また、30%
超では降伏比が上昇し、本発明の目的と反するため上限
を30%とした。Prior to this cooling, a light pressure reduction of 1% to 30% is applied. Accelerated cooling start temperature A r 320°C and Ara
By applying a light reduction in the two-phase region at 80° C., active dislocations are introduced into the steel, which can lead to the presence of a yield shelf during tensile testing. If the rolling reduction in the two-phase region is less than 1%, a yield shelf does not exist, so the lower limit is set to 1%, and 30%
If it exceeds the range, the yield ratio increases, which is contrary to the purpose of the present invention, so the upper limit was set at 30%.
また加速冷却の冷却停止温度を250℃以下としたのは
、250℃を超える高温域で冷却停止し、その後焼戻し
熱処理を行なうと強度が若干低下すると同時に、低温靭
性が劣化するからである。ここで水冷停止温度を350
〜600℃とする方法を採らずに、250℃以下まで水
冷し、その後焼戻し熱処理を行なう方法を採用したのは
、後者の方が前者に比べてより低温靭性が向上するから
である。The reason why the cooling stop temperature of accelerated cooling is set to 250° C. or lower is that if cooling is stopped in a high temperature range exceeding 250° C. and then tempering heat treatment is performed, the strength will decrease slightly and the low-temperature toughness will deteriorate at the same time. Here, set the water cooling stop temperature to 350
The reason why we adopted a method of water cooling to 250°C or lower and then performing a tempering heat treatment instead of using a method of heating the steel to 600°C is because the latter improves the low-temperature toughness more than the former.
尚、焼戻し温度はA c +以下とする。Incidentally, the tempering temperature is set to be below A c +.
(実 施 例)
第1表に供試材の化学成分を示し、第2表に加熱、圧延
、冷却条件と得られた鋼板の機械的性質を示す。(Example) Table 1 shows the chemical composition of the test materials, and Table 2 shows the heating, rolling, and cooling conditions and the mechanical properties of the obtained steel sheets.
鋼A、 G、 H,I、 J、 K、 L、 M、 N
、 0゜Pは50)cg f /−級、鋼B、 C,
D、 E、 F、 Q。Steel A, G, H, I, J, K, L, M, N
, 0゜P is 50) cg f /- grade, steel B, C,
D, E, F, Q.
R,S、T、Uは60)cg f /−級の強度をねら
った成分系で、第2表に示す如く鋼板&A1.A2゜B
l、CI、DI、El、Fl、Gl、Hl。R, S, T, and U are component systems aiming at strength of 60) cg f /- class, and as shown in Table 2, steel plate &A1. A2゜B
l, CI, DI, El, Fl, Gl, Hl.
11、Jl、Kl、Ll、Ml、Nl、01゜PI、Q
l、R1,Sl、TI、Ulは本発明実施例であり、そ
れぞれ50.60kgf/−扱銅として十分な強度と良
好な低温靭性を備え、本発明のねらいとする、70%以
下の低降伏比を達成し、降伏棚を有する。11, Jl, Kl, Ll, Ml, Nl, 01°PI, Q
1, R1, Sl, TI, and Ul are examples of the present invention, and each has sufficient strength and good low-temperature toughness as 50.60 kgf/- handling copper, and has a low yield of 70% or less, which is the aim of the present invention. achieve the ratio and have a yielding shelf.
これに対し鋼板NO,A3は加熱温度が高すぎるため低
温靭性が低下している。A4は900〜A r a間の
累積圧下か高すぎるためフェライトが細粒化しすぎて、
高降伏点のため高降伏比となっている。On the other hand, steel plates NO and A3 have low-temperature toughness because the heating temperature is too high. For A4, the cumulative pressure between 900 and A r a is too high, so the ferrite grains become too fine.
It has a high yield ratio due to its high yield point.
A5は冷却開始前の軽圧下がないため、降伏棚がない。A5 does not have a yield shelf because there is no light reduction before the start of cooling.
A6は冷却開始前の軽圧下率が40%と高いため、高降
伏比となっている。B2は強制冷却開始温度が高すぎた
例であり降伏比が高い。B3は強制冷却終了温度が低く
なりすぎた例であり強度が出すぎ低温靭性が低い。C2
は強制冷却開始温度が低すぎた例で強度が低く降伏比が
高い。C3は水量密度が低い例でありこのため強度が低
く降伏比が高くなっている。Since A6 has a high light reduction ratio of 40% before the start of cooling, it has a high yield ratio. B2 is an example in which the forced cooling start temperature was too high, and the yield ratio was high. B3 is an example in which the forced cooling end temperature was too low, and the strength was too high and the low-temperature toughness was low. C2
is an example where the forced cooling start temperature was too low, resulting in low strength and high yield ratio. C3 is an example of a low water density, and therefore has a low strength and a high yield ratio.
(発明の効果)
本発明は特別に高価な合金元素を使用することなく、か
つ圧延後再加熱処理を施すことなく、5゜kg f /
m4以上の高強度を有し、曲げ加工性のよい降伏棚を
有する低降伏比厚鋼板を制御圧延−制御冷却法で安価に
製造可能としたもので、産業上その効果の大きい発明で
ある。(Effects of the Invention) The present invention achieves 5゜kg f /
This invention has great industrial effects, as it enables low-yield-ratio thick steel plates with high strength of m4 or more and a yield shelf with good bending workability to be manufactured at low cost by a controlled rolling-controlled cooling method.
Claims (1)
1200℃に加熱し、熱間圧延において900℃を超え
る温度で圧延終了するか、もしくは900℃〜Ar_3
間で圧延終了する場合900℃〜Ar_3間では仕上板
厚に対し30%未満の累積圧下率とし、引き続き空冷し
て鋼板表面温度がAr_3−20℃〜Ar_3−80℃
の温度範囲で1%以上30%以下の軽圧下を加え、すぐ
に水量密度0.3m^3/m^2・分以上で冷却開始し
、鋼板温度が250℃以下になるまで冷却し、その後焼
戻し熱処理を行うことを特徴とする低降伏比鋼材の製造
法。 2、重量%にて、 Cu:2.0%以下、 Ni:4.0%以下、 Cr:1.0%以下、 Mo:0.50%以下、 Nb:0.10%以下、 V:0.10%以下、 Ti:0.15%以下 からなる強度改善元素群の1種又は2種以上を含有する
請求項1記載の低降伏比鋼材の製造法。 3、重量%にて、 C:0.03〜0.30%、 Si:0.05〜0.60%、 Mn:0.50〜2.5%、 Al:0.005〜0.1% を含み、更に Ca:0.01%以下 を含有する請求項1記載の低降伏比鋼材の製造法。 4、重量%にて、 Cu:2.0%以下、 Ni:4.0%以下、 Cr:1.0%以下、 Mo:0.50%以下、 Nb:0.10%以下、 V:0.10%以下、 Ti:0.15%以下 からなる強度改善元素群 および Ca:0.01%以下 の1種又は2種以上を含有する請求項1記載の低降伏比
鋼材の製造法。[Claims] 1. In weight%, C: 0.03 to 0.30%, Si: 0.05 to 0.60%, Mn: 0.50 to 2.5%, Al: 0. 005~0.1% Steel consisting of the balance Fe and unavoidable impurities is heated to 900~0.1%.
Heating to 1200℃ and finishing rolling at a temperature exceeding 900℃ in hot rolling, or 900℃~Ar_3
When rolling is completed between 900℃ and Ar_3, the cumulative reduction rate is less than 30% of the finished plate thickness, and the steel plate surface temperature is continuously cooled in air until the steel plate surface temperature is between Ar_3-20℃ and Ar_3-80℃.
Apply a light pressure of 1% to 30% in the temperature range of A method for manufacturing low yield ratio steel materials, which is characterized by performing tempering heat treatment. 2. In weight%, Cu: 2.0% or less, Ni: 4.0% or less, Cr: 1.0% or less, Mo: 0.50% or less, Nb: 0.10% or less, V: 0 2. The method for producing a low yield ratio steel material according to claim 1, which contains one or more of the strength improving element group consisting of Ti: 0.15% or less and Ti: 0.15% or less. 3. In weight%: C: 0.03-0.30%, Si: 0.05-0.60%, Mn: 0.50-2.5%, Al: 0.005-0.1% The method for producing a low yield ratio steel material according to claim 1, further comprising Ca: 0.01% or less. 4. In weight%, Cu: 2.0% or less, Ni: 4.0% or less, Cr: 1.0% or less, Mo: 0.50% or less, Nb: 0.10% or less, V: 0 2. The method for producing a low yield ratio steel material according to claim 1, which contains one or more of the following: .10% or less, Ti: 0.15% or less, and Ca: 0.01% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15215290A JPH0445227A (en) | 1990-06-11 | 1990-06-11 | Manufacturing method of low yield ratio steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15215290A JPH0445227A (en) | 1990-06-11 | 1990-06-11 | Manufacturing method of low yield ratio steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0445227A true JPH0445227A (en) | 1992-02-14 |
Family
ID=15534165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15215290A Pending JPH0445227A (en) | 1990-06-11 | 1990-06-11 | Manufacturing method of low yield ratio steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0445227A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5535901A (en) * | 1993-05-17 | 1996-07-16 | Yoshino Kogyosho Co., Ltd. | Synthetic resin bottle with handle and its production method |
JP2008273571A (en) * | 2007-04-27 | 2008-11-13 | Yoshino Kogyosho Co Ltd | Bottle container with handle |
JP2008296937A (en) * | 2007-05-30 | 2008-12-11 | Yoshino Kogyosho Co Ltd | Bottle container with handle |
JP2013044027A (en) * | 2011-08-25 | 2013-03-04 | Jfe Steel Corp | Fire-resistant steel material and its production method |
-
1990
- 1990-06-11 JP JP15215290A patent/JPH0445227A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5535901A (en) * | 1993-05-17 | 1996-07-16 | Yoshino Kogyosho Co., Ltd. | Synthetic resin bottle with handle and its production method |
JP2008273571A (en) * | 2007-04-27 | 2008-11-13 | Yoshino Kogyosho Co Ltd | Bottle container with handle |
JP2008296937A (en) * | 2007-05-30 | 2008-12-11 | Yoshino Kogyosho Co Ltd | Bottle container with handle |
JP2013044027A (en) * | 2011-08-25 | 2013-03-04 | Jfe Steel Corp | Fire-resistant steel material and its production method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1989266B (en) | High tensile strength steel sheet having reduced acoustic anisotropy, excellent weldability and its production method | |
JPH0563525B2 (en) | ||
JPH04285119A (en) | Production of thick-walled high tensile strength steel plate excellent in toughness at low temperature | |
JPS63286517A (en) | Manufacture of high-tensile steel with low yielding ratio | |
JPH0445227A (en) | Manufacturing method of low yield ratio steel | |
JPH0277521A (en) | Production of ultra-high-tension steel sheet for welding having excellent homogeneity in thickness direction | |
JPS6320414A (en) | Manufacturing method of high toughness high tensile strength steel plate | |
JPS5828327B2 (en) | Method for producing ultra-low carbon high tensile strength steel with extremely excellent ductility | |
JPH0445226A (en) | Production of steel product with low yield ratio | |
JPH0579728B2 (en) | ||
JPH03207814A (en) | Manufacture of low yield ratio high tensile strength steel plate | |
JPH04110423A (en) | Production of 80kgf/mm2 class steel plate having superior weldability and low yield ratio | |
JPS6046318A (en) | Method for producing steel with excellent sulfide cracking resistance | |
JPS63179019A (en) | Manufacturing method of low yield ratio high tensile strength steel plate | |
JPS63219523A (en) | Manufacturing method of low yield ratio non-tempered steel | |
JPH02301517A (en) | Production of high tensile steel plate with low yield ratio | |
JPH01176030A (en) | Manufacture of high-tensile steel plate with low yield ratio by accelerated cooling method | |
JPH02133521A (en) | Manufacturing method of tempered high-tensile steel plate with excellent toughness | |
JPH022929B2 (en) | ||
JPS63293110A (en) | Production of thick steel plate having high strength, high toughness and low yield ratio | |
JPS63223123A (en) | Manufacturing method of low yield ratio non-tempered steel | |
JPH03260011A (en) | Method for manufacturing high-strength steel with excellent weldability and low-temperature toughness | |
JP2708540B2 (en) | Method for producing high-strength steel sheet mainly composed of ferrite structure | |
JPH02141528A (en) | Method for producing heat-treated high-tensile steel sheets with excellent toughness | |
JPS62139816A (en) | Manufacture of high tension and toughness steel plate |