JPH0445226A - Production of steel product with low yield ratio - Google Patents
Production of steel product with low yield ratioInfo
- Publication number
- JPH0445226A JPH0445226A JP15215190A JP15215190A JPH0445226A JP H0445226 A JPH0445226 A JP H0445226A JP 15215190 A JP15215190 A JP 15215190A JP 15215190 A JP15215190 A JP 15215190A JP H0445226 A JPH0445226 A JP H0445226A
- Authority
- JP
- Japan
- Prior art keywords
- less
- yield ratio
- temperature
- steel
- low yield
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 42
- 239000010959 steel Substances 0.000 title claims description 42
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000001816 cooling Methods 0.000 claims description 34
- 238000005096 rolling process Methods 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 230000001186 cumulative effect Effects 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 238000005098 hot rolling Methods 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 12
- 229910001566 austenite Inorganic materials 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910001563 bainite Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910017945 Cu—Ti Inorganic materials 0.000 description 1
- 101100154699 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) tsi4 gene Proteins 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 229910052601 baryte Inorganic materials 0.000 description 1
- 239000010428 baryte Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は低降伏比鋼材の製造方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method of manufacturing low yield ratio steel.
(従来の技術)
近年造船、産業機械等の各分野にわたって、競争力向上
のため溶接施工の減少、曲げ加工性を代表として鋼材特
性の極限追求、溶接性の向上および鋼材コストの低減な
ど各種の要求が強まっている。このうち厚鋼板の曲げ加
工性改善のためには、80%以下の低降伏比を有する厚
鋼板の開発が必要である。(Conventional technology) In recent years, in order to improve competitiveness in various fields such as shipbuilding and industrial machinery, various efforts have been made to reduce welding work, pursue the ultimate properties of steel materials such as bending workability, improve weldability, and reduce steel material costs. Demand is increasing. Among these, in order to improve the bending workability of thick steel plates, it is necessary to develop thick steel plates with a low yield ratio of 80% or less.
また、建築、橋梁分野では構造物の安全性向上のだめに
降伏比の低下が望まれている。さらに、単に降伏比を低
下させるだけでなく、降伏棚を導入することにより、地
震時の構造部材のエネルギー吸収量が大幅に増加する。Furthermore, in the fields of architecture and bridges, it is desired to lower the yield ratio in order to improve the safety of structures. In addition to simply lowering the yield ratio, introducing a yield shelf significantly increases the amount of energy absorbed by the structural member during an earthquake.
このことから、降伏棚の導入も求められている。For this reason, the introduction of a yield shelf is also required.
最近造船用、ラインパイプ用等を中心として母材低温靭
性、溶接性改善をねらいとした鋼板圧延後の加速冷却技
術を用いた強度50kg f /−以上の鋼板の開発が
盛んであるが、曲げ加工性の良好な低降伏比鋼材の製造
については検討されていない。Recently, there has been active development of steel plates with a strength of 50 kg f/- or more using accelerated cooling technology after steel plate rolling, with the aim of improving base material low-temperature toughness and weldability, mainly for shipbuilding, line pipes, etc. The production of low yield ratio steel materials with good workability has not been studied.
従来の制御圧延−制御冷却プロセスにおいては、低温靭
性向上のため熱間圧延で、できる限り細粒にするととも
に、オーステナイト−相域から加速冷却することが採用
されている。In the conventional controlled rolling-controlled cooling process, in order to improve low-temperature toughness, hot rolling is performed to make the grains as fine as possible, and accelerated cooling is performed from the austenite phase region.
しかしながらこの方法によると、フェライトの細粒化と
硬化および一部バーライトのベーナイト化によって降伏
点が上昇し、降伏比の上昇となって曲げ加工性が低下す
る問題がある。However, according to this method, there is a problem that the yield point increases due to grain refinement and hardening of the ferrite and the conversion of some barite to bainite, resulting in an increase in the yield ratio and a decrease in bending workability.
本発明者等の一部は特開昭59−211528号公報に
おいて、制御圧延−制御冷却プロセスを用いて降伏点を
低下させる方法について検討した結果、同じく細粒フェ
ライトで良好な低温靭性を得ながら、かつ低降伏点で低
降伏比を有する強度50kg f / m4以上の鋼板
の製造方法を開発した。In JP-A No. 59-211528, some of the present inventors studied a method of lowering the yield point using a controlled rolling-controlled cooling process, and found that while obtaining good low-temperature toughness with fine-grained ferrite, We have developed a method for manufacturing a steel plate with a strength of 50 kg f/m4 or more, which also has a low yield point and low yield ratio.
すなわち、900〜1200℃に加熱した後、A r
s以上で30%以上の累積圧下を行ない細粒化を図った
後、A r s以下まで空冷して軟らかい初析フェライ
トを適切に析出せしめ、その後強制冷却を行なうと、軟
らかい初析フェライトと残部オーステナイトから得られ
るフェライト−パーライト−ベーナイトの適切な混合に
より、引張強さおよび低温靭性の低下なく、降伏点のみ
低下することを知見したものである。That is, after heating to 900 to 1200°C, Ar
After reducing the grain size by applying a cumulative reduction of 30% or more at a temperature of 30% or more at a temperature of 30% or more, air-cooling to a temperature of 30% or more is performed to properly precipitate soft pro-eutectoid ferrite, followed by forced cooling. It has been discovered that by appropriately mixing ferrite-pearlite-bainite obtained from austenite, only the yield point can be lowered without lowering tensile strength and low-temperature toughness.
(発明が解決しようとする課題)
しかし、その後のさらに低降伏比に対する要求に対し、
種々検討した結果、900℃からA r 3の温度範囲
での30%以上の累積圧下により、フェライトおよび第
2相の炭化物が必要以上に細粒化、微細化する。低降伏
比にするためには低降伏点で高引張強さである必要があ
る。そして降伏点はフェライト部分で、引張強さは第2
相の炭化物(特に高炭素の島状マルテンサイト)で決ま
る。(Problem to be solved by the invention) However, in response to the subsequent demand for an even lower yield ratio,
As a result of various studies, the cumulative pressure of 30% or more in the temperature range from 900° C. to Ar3 causes ferrite and second phase carbide to become finer and finer than necessary. In order to have a low yield ratio, it is necessary to have a low yield point and high tensile strength. The yield point is the ferrite part, and the tensile strength is the second
Determined by phase carbides (especially high carbon island martensite).
そのため必要以上にフェライトが細粒化すると高降伏点
となると同時に、第2相の炭化物の微細化で、焼戻しに
よる炭化物の分解が促進されるため低引張強さとなる。Therefore, if the ferrite becomes finer than necessary, the yield point will be high, and at the same time, the second phase carbide will become finer, and the decomposition of the carbide during tempering will be promoted, resulting in a low tensile strength.
その結果として高降伏比となる。さらに、単に降伏比を
低下させるだけでなく、降伏棚を導入することにより、
地震時の構造部材のエネルギー吸収量が大幅に増加する
。このことから、降伏棚の導入も求められているが、こ
れを実現するための方法に関する知見がない。The result is a high yield ratio. Furthermore, by introducing a yield shelf, rather than simply lowering the yield ratio,
The amount of energy absorbed by structural members during earthquakes increases significantly. For this reason, there is a need to introduce a yield shelf, but there is no knowledge of how to achieve this.
(課題を解決するための手段)
このため引き続き降伏比を低下させるために、多数の実
験と詳細な検討を加えた結果、降伏比を低下させるため
には、鋼のミクロ組織をフェライトと第2相の炭化物の
2相混合組織にする。さらに降伏比を下げるためには、
降伏点を下げ、引張強さを高めることが重要である。(Means for solving the problem) For this reason, in order to continue to lower the yield ratio, we conducted numerous experiments and detailed studies, and found that in order to lower the yield ratio, the microstructure of steel should be changed to ferrite and secondary. Create a two-phase mixed structure of carbide phases. In order to further reduce the yield ratio,
It is important to lower the yield point and increase the tensile strength.
降伏点を一部げるためにはフェライトの面積率を増加さ
せ、かつあまり細粒化しないこと、引張強さを高めるた
めには、急冷で硬くなった第2相の炭化物(ベーナイト
又はマルテンサイト)を必要以上に軟化させないことが
重要であることを見出したのである。In order to partially raise the yield point, it is necessary to increase the area ratio of ferrite and not make the grains too fine, and to increase the tensile strength, it is necessary to increase the second phase carbide (bainite or martensite) that is hardened by rapid cooling. ) was found to be important not to soften more than necessary.
さらに降伏棚については、2相域温度と水冷の間に軽圧
下を加えることにより、稼働転位が鋼中に導入され、こ
れが引張試験時に降伏棚の存在をもたらすことを知見し
たものである。Furthermore, regarding the yield shelf, it was found that by applying a light reduction between the two-phase region temperature and water cooling, active dislocations are introduced into the steel, which results in the presence of a yield shelf during the tensile test.
本発明はこのような知見に基づき、低降伏比を有する強
度50kg f / tsi4以上の鋼板の製造を可能
としたものであり、その要旨とするところは、重量%に
て、C: 0.03〜0.30%、S i : 0.0
5〜0.60%、Mn : 0.50〜2.5%、AN
: 0.005〜0.1%を含有した鋼を基本とし、
これに更にCu:2.0%以下、Ni:4.0%以下、
Cr:1.0%以下、MO二〇、5096以下、Nb:
0.10%以下、V 二0.10%以下、Ti :0
.15%以下からなる強度改善元素群から選ばれる1種
又は2種以上、あるいはCa:0.01%以下を含有し
、又は前記Cu−Tiの強度改善元素群とCaから選ば
れる1種又は2種以上を含有し、残部Feおよび不可避
的不純物からなる鋼を900〜1200℃に加熱し、熱
間圧延において900℃を超える温度で圧延終了するか
、もしくは900℃〜Ar 間で圧延終了する場合9
00℃〜A r a間では仕上板厚に対し30%未満の
累積圧下率で圧延終了し、引き続き空冷して鋼板表面温
度がAr −20℃〜Ar3−80℃の温度範囲で1
%以上30%以下の軽圧下を加え、すぐに水量密度0.
3ホ/コ・分量上で冷却開始し、鋼板温度が350〜6
00℃間で冷却停止することを特徴とする低降伏比鋼材
の製造方法に関するものである・(作 用)
本発明は主として900℃を超える温度で圧延を行ない
、900℃以下の温度で圧延をする場合には、圧下量を
低く規制することによって、必要以上のフェライトの細
粒化および第2相の炭化物の微細化を抑さえると同時に
、水冷前に軽圧下を加えることにより降伏棚を有する低
降伏比鋼材の製造をねらったものである。Based on this knowledge, the present invention has made it possible to manufacture a steel plate with a strength of 50 kg f / tsi4 or more and a low yield ratio, and the gist thereof is that C: 0.03 in weight%. ~0.30%, Si: 0.0
5-0.60%, Mn: 0.50-2.5%, AN
: Based on steel containing 0.005 to 0.1%,
In addition, Cu: 2.0% or less, Ni: 4.0% or less,
Cr: 1.0% or less, MO20, 5096 or less, Nb:
0.10% or less, V2 0.10% or less, Ti: 0
.. One or more selected from the strength improving element group consisting of 15% or less, or Ca: 0.01% or less, or one or two selected from the Cu-Ti strength improving element group and Ca. When hot rolling is completed at a temperature exceeding 900°C, or at a temperature between 900°C and Ar, the steel is heated to 900 to 1200°C and the remainder is Fe and unavoidable impurities. 9
Rolling is completed at a cumulative reduction rate of less than 30% relative to the finished plate thickness between 00°C and A r a , and then air cooling is performed to bring the steel plate surface temperature to 1 in the temperature range of Ar -20°C to Ar3-80°C.
Apply light pressure of % to 30%, and immediately reduce the water density to 0.
Cooling starts at 3 units/units, and the steel plate temperature reaches 350~6
This invention relates to a method for producing a low yield ratio steel material characterized by stopping cooling at 00°C. In this case, by regulating the amount of reduction to a low value, it is possible to suppress the unnecessarily fine graining of ferrite and the refinement of carbides in the second phase, and at the same time, by applying a light reduction before water cooling, a yield shelf can be created. The aim is to manufacture low yield ratio steel materials.
次に本発明における成分限定理由を述べる。Next, the reason for limiting the ingredients in the present invention will be described.
Cは強度確保のための0.03%以上は必要であるが、
多くなると鋼の靭性および溶接性を害するので含有量は
0.30%を上限とする。C is required at 0.03% or more to ensure strength, but
If the content is too high, it will impair the toughness and weldability of the steel, so the upper limit of the content is 0.30%.
Slは脱酸のため0.05%以上は必要で添加されるが
、多くなると溶接性を損なうので含有量は0.6%以下
とする。Sl is added as necessary in an amount of 0.05% or more for deoxidation, but if it increases, weldability will be impaired, so the content should be 0.6% or less.
Mnは安価に強度をあげる元素として有用であり、強度
確保のため0.5%以上は必要であるが多くなると溶接
性を損なうので含有量は2.5%以下とする。Mn is useful as an element that increases strength at a low cost, and 0.5% or more is necessary to ensure strength, but if it increases, weldability will be impaired, so the content should be 2.5% or less.
A、&は脱酸のため0.005%以上必要であるが、多
くなると鋼中介在物が多くなりすぎ、鋼の性質を悪化さ
せるため0.1%を上限とする。A and & are required to be 0.005% or more for deoxidation, but if they are too large, inclusions in the steel will increase too much and the properties of the steel will deteriorate, so the upper limit is set at 0.1%.
本発明は以上の元素を基本成分として含有した鋼を、本
発明で限定する加熱−圧延−熱処理し、低降伏比を確保
するものであるが、鋼の要求特性によって以下の強度改
善元素群、介在物球状化元素を1種又は2種以上添加す
ることができる。In the present invention, steel containing the above-mentioned elements as basic components is heated, rolled, and heat treated as specified in the present invention to ensure a low yield ratio. However, depending on the required characteristics of the steel, the following strength-improving element groups, One or more types of inclusion spheroidizing elements can be added.
V、Ti 、Nbは析出強化により強度を上昇せしめる
元素であるが、量が多くなると靭性を害するため、V
:0.1%、T i:0.15%、Nb:0.10%を
上限とした。V, Ti, and Nb are elements that increase strength through precipitation strengthening, but in large amounts they impair toughness.
: 0.1%, Ti: 0.15%, and Nb: 0.10%.
Ni 、Cu、Cr、Moは固溶体強化により強度を上
昇せしめる元素であるが、量が多くなると靭性を害する
ため、Ni:4.0%、Cu:2.0%、Cr:1.0
%、Mo:0.50%を上限とした。Ni, Cu, Cr, and Mo are elements that increase strength through solid solution strengthening, but in large amounts they impair toughness, so Ni: 4.0%, Cu: 2.0%, Cr: 1.0
%, Mo: 0.50% was the upper limit.
Caは介在物球状化に有用で添加されるが、多くなると
鋼中介在物を形成し、鋼の性質を悪化させるため含有量
は0,01%を上限とする。Ca is added because it is useful for spheroidizing inclusions, but if too much Ca forms inclusions in the steel and deteriorates the properties of the steel, the upper limit of the content is 0.01%.
次に本発明の重要な要件である加熱、圧延、冷却条件に
ついて述べる。Next, heating, rolling, and cooling conditions, which are important requirements of the present invention, will be described.
加熱温度はオーステナイト域で十分加熱できる温度とし
て下限を900℃とした。一方温度が高すぎるとオース
テナイト粒か大きくなりすぎ、鋼の性質を劣化させるの
で1200℃を加熱温度の上限とする。The lower limit of the heating temperature was set at 900° C., which was sufficient to heat the austenite region. On the other hand, if the temperature is too high, the austenite grains will become too large and the properties of the steel will deteriorate, so the upper limit of the heating temperature is set at 1200°C.
圧延については900℃を超える圧延と900℃以下で
の圧延に分けられるが、低降伏比鋼材が使用されるよう
な用途では、900℃を超える温度での制御圧延による
靭性向上で十分であり、900℃超での圧延完了が望ま
しい。Rolling can be divided into rolling at temperatures above 900°C and rolling at temperatures below 900°C, but in applications where low yield ratio steel materials are used, improved toughness through controlled rolling at temperatures above 900°C is sufficient. It is desirable to complete rolling at a temperature exceeding 900°C.
むしろ900℃以下の制御圧延で累積圧下を30%以上
にすると、必要以上のフェライトの細粒化と、第2相の
炭化物の微細化により高降伏比となる。Rather, if the cumulative reduction is increased to 30% or more by controlled rolling at 900° C. or lower, a high yield ratio will be obtained due to finer grains of ferrite and finer grains of second phase carbides.
そこで900℃〜Ar3間の累積圧下率は仕上板厚に対
して30%以下とする。Therefore, the cumulative rolling reduction rate between 900° C. and Ar3 is set to 30% or less with respect to the finished plate thickness.
次に水冷に先立って空冷を施すが、該空冷は圧延直後か
らAr −20℃〜Ar3−80℃の間のいずれかの
温度まで空冷することが好ましく、これによって軟らか
い初析フェライトの適量の析出を行なうものである。Next, air cooling is performed prior to water cooling, and the air cooling is preferably performed immediately after rolling to a temperature between Ar -20°C and Ar3-80°C, so that an appropriate amount of soft pro-eutectoid ferrite can be precipitated. This is what we do.
加速冷却開始温度の上限をArs 20℃としたのは
降伏点を低くするためであり、下限をA r a 8
0℃としたのは、これ以下の低い温度から冷却すると加
速冷却の効果がうすく引張強さが下がり、強度確保が困
難なためである。水量密度を0.3rd/d・分量上と
したのは、これ以下では強度上昇が少ないためである。The reason why the upper limit of the accelerated cooling start temperature is set to Ars 20°C is to lower the yield point, and the lower limit is set to Ars 20°C.
The reason for setting the temperature to 0° C. is that when cooling from a low temperature below this temperature, the effect of accelerated cooling becomes weak and the tensile strength decreases, making it difficult to maintain strength. The reason why the water density is set at 0.3 rd/d·molar or higher is because the increase in strength is small below this value.
この冷却に先立って1%以上30%以下の軽圧下を加え
る。加速冷却開始温度であるA r a 20℃とA
r 3 80℃の2相域で軽圧下を加えることにより
、稼働転位が鋼中に導入され、これが引張試験時に降伏
棚の存在をもたらせる。2相域での圧下率として1%未
満では降伏棚が存在しないため下限を1%とし、また、
30%超では降伏比が上昇し、本発明の目的と反するた
め上限を30%とした。Prior to this cooling, a light pressure reduction of 1% to 30% is applied. Accelerated cooling start temperature A r a 20°C and A
By applying a light reduction in the two-phase region at r 3 80° C., active dislocations are introduced into the steel, which can lead to the presence of a yield shelf during tensile testing. If the reduction rate in the two-phase region is less than 1%, a yield shelf does not exist, so the lower limit is set to 1%, and
If it exceeds 30%, the yield ratio increases, which is contrary to the purpose of the present invention, so the upper limit was set at 30%.
加速冷却の冷却停止温度を350〜600℃としたのは
、350℃未満の低温域まで冷却すると低温靭性が劣化
するからであり、また600℃を超える高温域で冷却停
止すると、強度上昇が不十分となるからである。The reason why the cooling stop temperature for accelerated cooling is set at 350 to 600°C is because low-temperature toughness deteriorates when cooling to a low temperature range of less than 350°C, and if cooling is stopped at a high temperature range of over 600°C, the strength does not increase. Because it will be enough.
(実 施 例)
第1表に供試材の化学成分を示し、第2表に加熱、圧延
、冷却条件と得られた鋼板の機械的性質を示す。(Example) Table 1 shows the chemical composition of the test materials, and Table 2 shows the heating, rolling, and cooling conditions and the mechanical properties of the obtained steel sheets.
鋼A、 G、 H,I、 J、 K、 L、 M、 N
、 O。Steel A, G, H, I, J, K, L, M, N
, O.
Pは50kg f / d級、鋼B、 C,D、 E
、 F、 Q。P is 50kg f/d class, steel B, C, D, E
, F, Q.
R,S、T、Uは80kg f /−級の強度をねらっ
た成分系で、第2表に示す如く鋼板kA1.A2゜Bl
、CI、DI、El、Fl、Gl、Hl。R, S, T, and U are component systems aiming at a strength of 80 kg f/- class, and as shown in Table 2, the steel plate kA1. A2゜Bl
, CI, DI, El, Fl, Gl, Hl.
I 1.J 1.Kl、Ll、Ml、Nl、01゜Pi
、Ql、R1,Sl、TI、Ulは本発明実施例であり
、それぞれ50.60kgf/−扱銅として十分な強度
と良好な低温靭性を備え、本発明のねらいとする、70
%以下の低降伏比を達成し、降伏棚を有する。I 1. J1. Kl, Ll, Ml, Nl, 01°Pi
, Ql, R1, Sl, TI, and Ul are examples of the present invention, and each has sufficient strength and good low-temperature toughness as 50.60 kgf/- handling copper, and is the aim of the present invention.
Achieves a low yield ratio of less than % and has a yield shelf.
これに対し鋼板No、A3は加熱温度が高すぎるため低
温靭性が低下している。A4は900〜A r 3間の
累積圧下が高すぎるためフェライトが細粒化しすぎて、
高降伏点のため高降伏比となっている。On the other hand, steel plate No. A3 has low-temperature toughness because the heating temperature is too high. In A4, the cumulative reduction between 900 and A r 3 is too high, so the ferrite grains become too fine.
It has a high yield ratio due to its high yield point.
A5は冷却開始前の軽圧下がないため、降伏棚がない。A5 does not have a yield shelf because there is no light reduction before the start of cooling.
A6は冷却開始前の軽圧下率が40%と窩いため、高降
伏比となっている。B2は強制冷却開始温度が高すぎた
例であり降伏比が高い。B3は強制冷却終了温度か低く
なりすぎた例であり強度が出すぎ低温靭性が低い。C2
は強制冷却開始温度が低すぎた例で強度が低く降伏比が
高い。C3は水量密度が低い例でありこのため強度が低
く降伏比が高くなっている。A6 has a high yield ratio because the light reduction ratio before the start of cooling is 40%. B2 is an example in which the forced cooling start temperature was too high, and the yield ratio was high. B3 is an example in which the forced cooling end temperature was too low, and the strength was too high and the low-temperature toughness was low. C2
is an example where the forced cooling start temperature was too low, resulting in low strength and high yield ratio. C3 is an example of a low water density, and therefore has a low strength and a high yield ratio.
(発明の効果)
以上詳細に説明した通り、本発明は特別に高価な合金元
素を使用することなく、かつ圧延後再加熱処理を施すこ
となく、50kg f /−以上の高強度を有し、曲げ
加工性のよい降伏棚を有する低降伏比厚鋼板を制御圧延
−制御冷却法で安価に製造可能としたもので、産業上そ
の効果の大きい発明である。(Effects of the Invention) As explained in detail above, the present invention has a high strength of 50 kg f /- or more without using any particularly expensive alloying elements and without performing reheating treatment after rolling. This invention enables low yield ratio thick steel plates having a yield shelf with good bending workability to be produced at low cost using a controlled rolling-controlled cooling method, and is an invention that has great industrial effects.
Claims (1)
1200℃に加熱し、熱間圧延において900℃を超え
る温度で圧延終了するか、もしくは900℃〜Ar_3
間で圧延終了する場合900℃〜Ar_3間では仕上板
厚に対し30%未満の累積圧下率で圧延終了し、引き続
き空冷して鋼板表面温度がAr_3−20℃〜Ar_3
−80℃の温度範囲で1%以上30%以下の軽圧下を加
え、すぐに水量密度0.3m^3/m^2・分以上で冷
却開始し、鋼板温度が350〜600℃間で冷却停止す
ることを特徴とする低降伏比鋼材の製造方法。 2、重量%にて、 Cu:2.0%以下、 Ni:4.0%以下、 Cr:1.0%以下、 Mo:0.50%以下、 Nb:0.10%以下、 V:0.10%以下、 Ti:0.15%以下 からなる強度改善元素群の1種又は2種以上を含有する
請求項1記載の低降伏比鋼材の製造方法。 3、重量%にて、 Ca:0.01%以下を含有する請求項1記載の低降伏
比鋼材の製造方法。 4、重量%にて、 Cu:2.0%以下、 Ni:4.0%以下、 Cr:1.0%以下、 Mo:0.50%以下、 Nb:0.10%以下、 V:0.10%以下、 Ti:0.15%以下 からなる強度改善元素群 および Ca:0.01%以下 の1種又は2種以上を含有する請求項1記載の低降伏比
鋼材の製造方法。[Claims] 1. In weight%, C: 0.03 to 0.30%, Si: 0.05 to 0.60%, Mn: 0.50 to 2.5%, Al: 0. 005~0.1% Steel consisting of the balance Fe and unavoidable impurities is heated to 900~0.1%.
Heating to 1200℃ and finishing rolling at a temperature exceeding 900℃ in hot rolling, or 900℃~Ar_3
When rolling is completed between 900℃ and Ar_3, rolling is completed with a cumulative reduction ratio of less than 30% relative to the finished plate thickness, and then air cooling is performed until the steel plate surface temperature is between Ar_3-20℃ and Ar_3.
Apply a light pressure of 1% to 30% in the temperature range of -80℃, immediately start cooling at a water density of 0.3m^3/m^2・min or more, and cool when the steel plate temperature is between 350 and 600℃. A method for manufacturing a low yield ratio steel material characterized by stopping. 2. In weight%, Cu: 2.0% or less, Ni: 4.0% or less, Cr: 1.0% or less, Mo: 0.50% or less, Nb: 0.10% or less, V: 0 2. The method for producing a low yield ratio steel material according to claim 1, further comprising one or more of a group of strength improving elements consisting of Ti: 0.15% or less and Ti: 0.15% or less. 3. The method for producing a low yield ratio steel material according to claim 1, which contains Ca: 0.01% or less in weight%. 4. In weight%, Cu: 2.0% or less, Ni: 4.0% or less, Cr: 1.0% or less, Mo: 0.50% or less, Nb: 0.10% or less, V: 0 2. The method for producing a low yield ratio steel material according to claim 1, further comprising one or more of the following: .10% or less, Ti: 0.15% or less, and Ca: 0.01% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15215190A JPH0445226A (en) | 1990-06-11 | 1990-06-11 | Production of steel product with low yield ratio |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15215190A JPH0445226A (en) | 1990-06-11 | 1990-06-11 | Production of steel product with low yield ratio |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0445226A true JPH0445226A (en) | 1992-02-14 |
Family
ID=15534145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15215190A Pending JPH0445226A (en) | 1990-06-11 | 1990-06-11 | Production of steel product with low yield ratio |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0445226A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0645930U (en) * | 1992-11-25 | 1994-06-24 | 高砂工業株式会社 | Tile guide device for tile conveyor |
-
1990
- 1990-06-11 JP JP15215190A patent/JPH0445226A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0645930U (en) * | 1992-11-25 | 1994-06-24 | 高砂工業株式会社 | Tile guide device for tile conveyor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5876521A (en) | Ultra high strength, secondary hardening steels with superior toughness and weldability | |
US5900075A (en) | Ultra high strength, secondary hardening steels with superior toughness and weldability | |
CN1989266B (en) | High tensile strength steel sheet having reduced acoustic anisotropy, excellent weldability and its production method | |
JPS59211528A (en) | Production of non-tempered steel having low yield ratio | |
JPS63286517A (en) | Manufacture of high-tensile steel with low yielding ratio | |
JP3246993B2 (en) | Method of manufacturing thick steel plate with excellent low temperature toughness | |
JPH0445227A (en) | Manufacturing method of low yield ratio steel | |
JPS6320414A (en) | Manufacturing method of high toughness high tensile strength steel plate | |
JPH0277521A (en) | Production of ultra-high-tension steel sheet for welding having excellent homogeneity in thickness direction | |
JPH0445226A (en) | Production of steel product with low yield ratio | |
JPS5828327B2 (en) | Method for producing ultra-low carbon high tensile strength steel with extremely excellent ductility | |
JPH09256038A (en) | Heat treatment method before stress relief annealing of thick steel plate | |
JPS63179019A (en) | Manufacturing method of low yield ratio high tensile strength steel plate | |
JPH04110423A (en) | Production of 80kgf/mm2 class steel plate having superior weldability and low yield ratio | |
JPH01176030A (en) | Manufacture of high-tensile steel plate with low yield ratio by accelerated cooling method | |
JPH022929B2 (en) | ||
JPS63219523A (en) | Manufacturing method of low yield ratio non-tempered steel | |
JP2528395B2 (en) | Manufacturing method of ultra high strength cold rolled steel sheet for ERW pipe | |
JPH02301517A (en) | Production of high tensile steel plate with low yield ratio | |
JPS63293110A (en) | Production of thick steel plate having high strength, high toughness and low yield ratio | |
KR100514813B1 (en) | A METHOD FOR MANUFACTURING Cr-Mo STEEL FOR HIGH TEMPERATURE APPLICATIONS | |
JP2024500152A (en) | Wire rods and parts with improved delayed fracture resistance and their manufacturing method | |
JPH0445224A (en) | Manufacturing method for steel materials with low yield ratio | |
JPS63223123A (en) | Manufacturing method of low yield ratio non-tempered steel | |
JPS60165320A (en) | Method for manufacturing high-strength hot-rolled thin steel sheets with good workability |