[go: up one dir, main page]

JPH0443988Y2 - - Google Patents

Info

Publication number
JPH0443988Y2
JPH0443988Y2 JP6668487U JP6668487U JPH0443988Y2 JP H0443988 Y2 JPH0443988 Y2 JP H0443988Y2 JP 6668487 U JP6668487 U JP 6668487U JP 6668487 U JP6668487 U JP 6668487U JP H0443988 Y2 JPH0443988 Y2 JP H0443988Y2
Authority
JP
Japan
Prior art keywords
temperature coefficient
positive temperature
coefficient thermistor
heat
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6668487U
Other languages
Japanese (ja)
Other versions
JPS63176291U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6668487U priority Critical patent/JPH0443988Y2/ja
Publication of JPS63176291U publication Critical patent/JPS63176291U/ja
Application granted granted Critical
Publication of JPH0443988Y2 publication Critical patent/JPH0443988Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Catching Or Destruction (AREA)
  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)
  • Thermistors And Varistors (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

産業上の利用分野 本考案は、例えば電子蚊取器等に使用される正
特性サーミスタ装置に関し、耐熱性絶縁部材に設
けた凹部内に正特性サーミスタ及び一対の電極端
子を内蔵させ、凹部の開口面側に放熱面を設ける
場合に、幅方向の両側端面に電極を有する正特性
のサーミスタを使用し、この正特性サーミスタの
厚み方向の一面を凹部の開口面側に向け、一対の
電極端子により、正特性サーミスタに対し開口面
の方向に押圧するバネ圧を加えることにより、正
特性サーミスタから放熱面に至る熱伝導効率を上
げ、放熱面が所定温度に到達するまでの時間を短
縮して速応性を向上させると共に、正特性サーミ
スタの発熱温度と放熱面の表面温度との差を小さ
くして、熱効率を向上させたものである。 従来の技術 従来のこの種の正特性サーミスタ装置として
は、例えば第3図に示す構造のものが知られてい
る。図において、1は絶縁部材、2は正特性サー
ミスタ、3及び4は一対の電極端子、5は絶縁
板、6は放熱部材である。 絶縁部材1はアルミナ磁器等の耐熱性に優れた
電気絶縁物によつて形成され、一面側に凹部10
1を開口させてある。正特性サーミスタ2は素体
21の厚み方向の両面に電極22,23を形成
し、一方の電極23が凹部101の開口面と向き
合うようにして、凹部101内に収納してある。 電極端子3,4は例えばステンレス等の金属薄
板で形成されており、正特性サーミスタ2を厚み
方向の両面側から挟むようにして、凹部101の
底面側及び開口面側にそれぞれ配置されている。
底面側に配置された電極端子3バネ性を持たせて
あつて、このバネ性により、電極22,23に電
極端子3,4を圧接させると共に、正特性サーミ
スタ2を、絶縁板5を介して、保持金具として兼
用されている放熱部材6の放熱面61に熱結合さ
せてある。絶縁板5はマイカ等の耐熱性の高い絶
縁物でなり、また放熱部材6はアルミニユウムま
たはステンレス等の金属材料を用いてケース状に
形成されている。 考案が解決しようとする問題点 しかしながら、従来の正特性サーミスタ装置に
おいては、発熱源となる正特性サーミスタ2と放
熱部材6に設けられた放熱面61との間の略全面
に、外部引出端子となる電極端子4が介在するた
め、電極端子4での熱損失が大きくなる。このた
め、放熱面61の表面温度を、例えば電子蚊取器
の薬液気化に必要な温度に上昇させるまでの時間
が長くかかり、速応性に欠けること、正特性サー
ミスタ2の発熱温度と放熱面61の表面温度との
間の温度差が大きくなり、効率が低下すること等
の問題点があつた。 問題点を解決するための手段 上述する従来の問題点を解決するため、本考案
に係る正特性サーミスタ装置は、一面に凹部を開
口させた耐熱性絶縁部材と、幅方向の両側端面に
電極を設け厚み方向の一面を前記凹部の開口面に
向けて前記凹部内に収納した正特性サーミスタ
と、前記正特性サーミスタに対し、両側端側から
前記電極に圧接し、かつ、前記開口面の方向に押
圧するバネ圧を加える一対の電極端子と、前記凹
部の開口面側において前記正特性サーミスタに電
気絶縁して熱結合させた放熱部材とを備えること
を特徴とする。 作 用 幅方向の両側端面に電極を設けた正特性サーミ
スタを、その厚み方向の一面が絶縁部材に設けら
れた凹部の開口面に向くようにして、凹部内に収
納し、正特性サーミスタの両側端側から電極に圧
接し、かつ、開口面の方向に押圧するバネ圧を加
える一対の電極端子を備えた構成とすることによ
り、正特性サーミスタに発生した熱が熱損失の大
きな電極端子を経ることなく、放熱部材に伝わ
る。このため、正特性サーミスタから放熱部材へ
の熱伝導効率が高くなり、速応性に富み、熱効率
の高い正特性サーミスタ装置が得られる。 実施例 第1図は本考案に係る正特性サーミスタ装置の
分解斜視図、第2図は同じく断面図である。図に
おいて、第3図と同一の参照符号は同一性ある構
成部分を示している。正特性サーミスタ2は、素
体21の幅方向の両側端面に、電極22,23を
設け、電極22,23のない厚み方向の両面2
4,25のうちの一面24を、凹部101の開口
面に向けて、凹部101の内部に収納してある。 また、一対の電極端子3,4は、一端部に、正
特性サーミスタ2の側端面及び厚み方向の他面2
5にバネによつて圧接するバネ部31,41を形
成し、このバネ部31,41から連続して外部に
引出される端子部32,42を形成してある。そ
して、この電極端子3,4のバネ部31,41
を、凹部101の側壁面101a,101bと正
特性サーミスタ2の側端面に設けられた電極2
2,23との間、及び凹部101の底面101c
と正特性サーミスタ2の厚み方向の他面25との
間に介在させ、バネ部31,41の収縮反発力を
利用して、電極22,23に圧接させると共に、
開口面の方向に押圧するバネ圧を加える。これに
より、正特性サーミスタ2の発熱面となる一面2
4が、絶縁板5を介して、放熱部材6の放熱面6
1に押付けられる。 正特性サーミスタ2に発生した熱は、絶縁板5
を介して放熱部材6の放熱面61に伝達される。
伝熱経路に、熱損失の大きな電極端子3,4が介
在しないから、電極端子3,4による伝熱損失が
小さくなる。この結果、放熱面61の表面温度が
所定の温度に達するまでの所要時間が短くなり、
速応性が向上すると共に、正特性サーミスタ2の
発熱温度と放熱面61の表面温度との温度差が小
さくなり、熱効率が向上する。 次にデータにより本考案の効果を説明する。 〈実施例サンプル〉 第1図及び第2図に示した構造において、正特
性サーミスタとして、次のものを使用した。 キユリー温度 220℃ 常温抵抗値R25 1.8KΩ 形状寸法 8×4×3m/mの六面体状 〈比較例サンプル〉 第3図に示した構造において、正特性サーミス
タとして、次のものを使用した。 キユリー温度 220℃ 常温抵抗値R25 1.3KΩ 形状寸法 8×4×3m/mの六面体状 表1に上記実施例サンプル及び比較例サンプル
の温度特性及び消費電力を示してある。
Industrial Application Field The present invention relates to a positive temperature coefficient thermistor device used in, for example, an electronic mosquito repellent. When providing a heat dissipation surface on the surface side, use a positive temperature coefficient thermistor that has electrodes on both end faces in the width direction, and one side of the positive temperature coefficient thermistor in the thickness direction faces the opening side of the recess, and a pair of electrode terminals is used. By applying spring pressure to the positive temperature coefficient thermistor in the direction of the opening surface, the efficiency of heat conduction from the positive temperature coefficient thermistor to the heat radiation surface is increased, and the time required for the heat radiation surface to reach the specified temperature is shortened and accelerated. This improves thermal efficiency by reducing the difference between the heat generation temperature of the PTC thermistor and the surface temperature of the heat radiation surface. BACKGROUND ART As a conventional positive temperature coefficient thermistor device of this type, one having a structure shown in FIG. 3, for example, is known. In the figure, 1 is an insulating member, 2 is a positive temperature coefficient thermistor, 3 and 4 are a pair of electrode terminals, 5 is an insulating plate, and 6 is a heat dissipating member. The insulating member 1 is made of an electrical insulator with excellent heat resistance such as alumina porcelain, and has a recess 10 on one side.
1 is left open. The positive temperature coefficient thermistor 2 has electrodes 22 and 23 formed on both sides of the element body 21 in the thickness direction, and is housed in the recess 101 with one electrode 23 facing the opening surface of the recess 101. The electrode terminals 3 and 4 are formed of thin metal plates such as stainless steel, and are arranged on the bottom side and the opening side of the recess 101, respectively, so as to sandwich the PTC thermistor 2 from both sides in the thickness direction.
The electrode terminals 3 disposed on the bottom side have a spring property, and this spring property allows the electrode terminals 3 and 4 to be brought into pressure contact with the electrodes 22 and 23, and also connects the positive temperature coefficient thermistor 2 to the electrodes 22 and 23 through the insulating plate 5. , and is thermally coupled to the heat radiation surface 61 of the heat radiation member 6 which also serves as a holding fitting. The insulating plate 5 is made of a highly heat-resistant insulator such as mica, and the heat dissipating member 6 is formed into a case shape using a metal material such as aluminum or stainless steel. Problems to be Solved by the Invention However, in the conventional PTC thermistor device, the external lead terminal and Since the electrode terminal 4 is interposed, heat loss at the electrode terminal 4 increases. For this reason, it takes a long time to raise the surface temperature of the heat dissipation surface 61 to the temperature required for vaporizing the chemical liquid in an electronic mosquito repellent, for example, resulting in a lack of quick response. There were problems such as an increase in the temperature difference between the surface temperature of the material and the surface temperature of the material, resulting in a decrease in efficiency. Means for Solving the Problems In order to solve the above-mentioned conventional problems, the PTC thermistor device according to the present invention includes a heat-resistant insulating member with a concave opening on one side, and electrodes on both end faces in the width direction. a positive temperature coefficient thermistor housed in the recess with one surface in the thickness direction facing the opening surface of the recess; It is characterized by comprising a pair of electrode terminals that apply a pressing spring pressure, and a heat dissipation member that is electrically insulated and thermally coupled to the positive temperature coefficient thermistor on the opening surface side of the recess. Operation A PTC thermistor with electrodes provided on both end faces in the width direction is housed in the recess with one surface in the thickness direction facing the opening of the recess provided in the insulating member, and the PTC thermistor is placed on both sides of the PTC thermistor. By having a configuration with a pair of electrode terminals that press against the electrode from the end side and apply spring pressure in the direction of the opening surface, the heat generated in the PTC thermistor passes through the electrode terminal with large heat loss. The heat is transmitted to the heat dissipation member without any interference. Therefore, the heat conduction efficiency from the PTC thermistor to the heat dissipation member is increased, and a PTC thermistor device with excellent quick response and high thermal efficiency can be obtained. Embodiment FIG. 1 is an exploded perspective view of a PTC thermistor device according to the present invention, and FIG. 2 is a sectional view thereof. In the figure, the same reference numerals as in FIG. 3 indicate the same components. The positive temperature coefficient thermistor 2 has electrodes 22 and 23 provided on both end faces in the width direction of an element body 21, and both faces 2 in the thickness direction where no electrodes 22 and 23 are provided.
4 and 25 are housed inside the recess 101 with one surface 24 facing the opening surface of the recess 101. Further, the pair of electrode terminals 3 and 4 are connected to the side end surface of the positive temperature coefficient thermistor 2 and the other surface 2 in the thickness direction at one end.
5 are formed with spring parts 31, 41 which are pressed into contact with each other by a spring, and terminal parts 32, 42 which are continuously drawn out from the spring parts 31, 41 are formed. And the spring parts 31, 41 of these electrode terminals 3, 4
is the electrode 2 provided on the side wall surfaces 101a and 101b of the recess 101 and the side end surface of the positive temperature coefficient thermistor 2.
2 and 23, and the bottom surface 101c of the recess 101.
and the other surface 25 in the thickness direction of the positive temperature coefficient thermistor 2, and are brought into pressure contact with the electrodes 22, 23 using the contraction repulsive force of the spring parts 31, 41,
Apply spring pressure in the direction of the opening surface. As a result, one surface 2 that becomes the heat generating surface of the positive temperature coefficient thermistor 2
4 is connected to the heat dissipating surface 6 of the heat dissipating member 6 via the insulating plate 5.
1. The heat generated in the positive temperature coefficient thermistor 2 is transferred to the insulating plate 5.
The heat is transmitted to the heat radiating surface 61 of the heat radiating member 6 via.
Since the electrode terminals 3 and 4, which cause large heat loss, are not present in the heat transfer path, the heat transfer loss due to the electrode terminals 3 and 4 is reduced. As a result, the time required for the surface temperature of the heat radiation surface 61 to reach a predetermined temperature is shortened,
The rapid response is improved, and the temperature difference between the heat generation temperature of the PTC thermistor 2 and the surface temperature of the heat radiation surface 61 is reduced, and thermal efficiency is improved. Next, the effects of the present invention will be explained using data. <Example Sample> In the structure shown in FIGS. 1 and 2, the following was used as a positive temperature coefficient thermistor. Curie temperature 220°C Room temperature resistance R 25 1.8KΩ Dimensions Hexahedral shape of 8 x 4 x 3 m/m (Comparative example sample) In the structure shown in Figure 3, the following was used as a positive temperature coefficient thermistor. Curie temperature 220°C Room temperature resistance R 25 1.3KΩ Shape and dimensions Hexahedral shape of 8 x 4 x 3 m/m Table 1 shows the temperature characteristics and power consumption of the above example sample and comparative example sample.

【表】 第4図に上記実施例サンプル及び比較例サンプ
ルの時間−温度上昇特性を示してある。曲線L1
が実施例サンプルの特性、曲線L2が比較例サン
プルの特性である。表1及び第4図において、温
度は放熱面61の表面中央で測定したものであ
る。 表1のデータ及び第4図の特性図から明らかな
ように、略同一特性の正特性サーミスタを用いた
実施例サンプル及び比較例サンプルにおいて、放
熱面61の表面温度が150℃に達する所要時間が
比較例サンプルの150secに対し、実施例サンプル
では75secと、半減しており、温度上昇時間特性
が著しく改善されている。 また、安定温度の比較では、実施例サンプルは
比較例サンプルの157.7℃よりも約11℃高い169.3
℃となつており、高い発熱温度が得られている。
このことは、実施例サンプルと比較例サンプルの
正特性サーミスタ2の発熱温度は略同一であるか
ら、実施例サンプルは正特性サーミスタ2の発熱
温度と放熱面61の表面温度との差が比較例サン
プルよりも小さく、熱効率が高いことを意味す
る。 考案の効果 以上述べたように、本考案に係る正特性サーミ
スタ装置は、一面に凹部を開口させた耐熱性絶縁
部材と、幅方向の両側端面に電極を設け厚み方向
の一面を前記凹部の開口面に向けて前記凹部内に
収納した正特性サーミスタと、前記正特性サーミ
スタに対し、両側端側から前記電極に圧接し、か
つ、前記開口面の方向に押圧するバネ圧を加える
一対の電極端子と、前記凹部の開口面側において
前記正特性サーミスタに電気絶縁して熱結合させ
た放熱部材とを備えることを特徴とするから、正
特性サーミスタから放熱面に至る熱伝導効率を上
げ、放熱面が所定温度に到達するまでの時間を短
縮して速応性を向上させると共に、正特性サーミ
スタの発熱温度と放熱面の表面温度との差を小さ
くして、熱効率を向上させた正特性サーミスタ装
置を提供することができる。
[Table] FIG. 4 shows the time-temperature rise characteristics of the above example sample and comparative example sample. curve L 1
is the characteristic of the example sample, and curve L2 is the characteristic of the comparative example sample. In Table 1 and FIG. 4, the temperature is measured at the center of the surface of the heat dissipation surface 61. As is clear from the data in Table 1 and the characteristic diagram in Figure 4, the time required for the surface temperature of the heat dissipation surface 61 to reach 150°C in the example sample and the comparative example sample using positive temperature coefficient thermistors with approximately the same characteristics. Compared to 150 seconds for the comparative example sample, the example sample had 75 seconds, which was half that, and the temperature rise time characteristics were significantly improved. In addition, in the comparison of stable temperature, the example sample is 169.3 degrees Celsius, which is approximately 11 degrees Celsius higher than the comparative example sample's 157.7 degrees Celsius.
℃, indicating a high exothermic temperature.
This means that the heat generation temperature of the positive temperature coefficient thermistor 2 of the example sample and the comparative example sample is approximately the same, so the difference between the heat generation temperature of the positive temperature coefficient thermistor 2 and the surface temperature of the heat radiation surface 61 of the example sample is the comparative example. It is smaller than the sample, meaning it has higher thermal efficiency. Effects of the Invention As described above, the PTC thermistor device according to the present invention includes a heat-resistant insulating member having a concave opening on one side, electrodes on both end faces in the width direction, and one side in the thickness direction having an opening in the concave portion. a positive temperature coefficient thermistor housed in the recess facing toward the surface, and a pair of electrode terminals that press the positive temperature coefficient thermistor against the electrode from both end sides and apply spring pressure to press the positive temperature coefficient thermistor in the direction of the opening surface. and a heat dissipating member electrically insulated and thermally coupled to the PTC thermistor on the opening surface side of the recess, thereby increasing heat conduction efficiency from the PTC thermistor to the heat dissipating surface. A positive temperature coefficient thermistor device that improves quick response by shortening the time it takes for the temperature of the positive temperature coefficient thermistor to reach a predetermined temperature, and also improves thermal efficiency by reducing the difference between the heat generation temperature of the positive temperature coefficient thermistor and the surface temperature of the heat dissipation surface. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る正特性サーミスタ装置の
分解斜視図、第2図は同じく断面図、第3図は従
来の正特性サーミスタ装置の断面図、第4図は実
施例サンプル及び比較例サンプルの時間−温度上
昇特性図である。 1……絶縁部材、101……凹部、2……正特
性サーミスタ、22,23……電極、3,4……
電極端子、5……絶縁板、6……放電部材、61
……放熱面。
Fig. 1 is an exploded perspective view of a PTC thermistor device according to the present invention, Fig. 2 is a cross-sectional view of the same, Fig. 3 is a cross-sectional view of a conventional PTC thermistor device, and Fig. 4 is an example sample and a comparative example sample. FIG. 2 is a time-temperature rise characteristic diagram. DESCRIPTION OF SYMBOLS 1... Insulating member, 101... Recessed part, 2... Positive temperature coefficient thermistor, 22, 23... Electrode, 3, 4...
Electrode terminal, 5... Insulating plate, 6... Discharge member, 61
...heat dissipation surface.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model claims] 一面に凹部を開口させた耐熱性絶縁部材と、幅
方向の両側端面に電極を設け厚み方向の一面を前
記凹部の開口面に向けて前記凹部内に収納した正
特性サーミスタと、前記正特性サーミスタに対
し、両側端側から前記電極に圧接し、かつ、前記
開口面の方向に押圧するバネ圧を加える一対の電
極端子と、前記凹部の開口面側において前記正特
性サーミスタに電気絶縁して熱結合する放熱部材
とを備えることを特徴とする正特性サーミスタ装
置。
a heat-resistant insulating member having a recess opened on one surface; a positive temperature coefficient thermistor having electrodes on both end faces in the width direction and housed in the recess with one surface in the thickness direction facing the opening surface of the recess; and the positive temperature coefficient thermistor On the other hand, a pair of electrode terminals are pressed against the electrode from both ends and apply spring pressure to press in the direction of the opening surface, and a pair of electrode terminals are electrically insulated and heated to the positive temperature coefficient thermistor on the opening surface side of the recess. A positive temperature coefficient thermistor device comprising: a heat dissipating member to be coupled to the positive temperature coefficient thermistor device.
JP6668487U 1987-05-01 1987-05-01 Expired JPH0443988Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6668487U JPH0443988Y2 (en) 1987-05-01 1987-05-01

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6668487U JPH0443988Y2 (en) 1987-05-01 1987-05-01

Publications (2)

Publication Number Publication Date
JPS63176291U JPS63176291U (en) 1988-11-15
JPH0443988Y2 true JPH0443988Y2 (en) 1992-10-16

Family

ID=30904920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6668487U Expired JPH0443988Y2 (en) 1987-05-01 1987-05-01

Country Status (1)

Country Link
JP (1) JPH0443988Y2 (en)

Also Published As

Publication number Publication date
JPS63176291U (en) 1988-11-15

Similar Documents

Publication Publication Date Title
JPH0351913Y2 (en)
US5854471A (en) Apparatus using a thermistor with a positive temperature coefficient
US4242567A (en) Electrically heated hair straightener and PTC heater assembly therefor
US6180930B1 (en) Heater with enclosing envelope
JPH0443988Y2 (en)
JPH0514470Y2 (en)
JPS63114002U (en)
JPH07230874A (en) Thermally molten resin delivery device
JPS6236242Y2 (en)
JPH0727593Y2 (en) Heating element
JPH0623205U (en) PTC thermistor device
JPS6338292U (en)
JPH09293581A (en) Positive characteristic thermistor heating element
JPH0349361Y2 (en)
JPH0718155Y2 (en) PTC thermistor device
JP4090549B2 (en) Positive temperature coefficient thermistor device
JP2578593Y2 (en) Heating equipment
JPH0626202U (en) PTC thermistor device
JPS6157672B2 (en)
JPS586617Y2 (en) soldering iron
JPH0235197Y2 (en)
JPS6291388U (en)
JP2543887Y2 (en) Heating equipment
JPS6135345Y2 (en)
JPH0421513B2 (en)