[go: up one dir, main page]

JPH0441516B2 - - Google Patents

Info

Publication number
JPH0441516B2
JPH0441516B2 JP13345782A JP13345782A JPH0441516B2 JP H0441516 B2 JPH0441516 B2 JP H0441516B2 JP 13345782 A JP13345782 A JP 13345782A JP 13345782 A JP13345782 A JP 13345782A JP H0441516 B2 JPH0441516 B2 JP H0441516B2
Authority
JP
Japan
Prior art keywords
gap
type
substrate
green led
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13345782A
Other languages
Japanese (ja)
Other versions
JPS5923579A (en
Inventor
Toshiharu Kawabata
Susumu Furuike
Toshio Matsuda
Hitoo Iwasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57133457A priority Critical patent/JPS5923579A/en
Publication of JPS5923579A publication Critical patent/JPS5923579A/en
Publication of JPH0441516B2 publication Critical patent/JPH0441516B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/819Bodies characterised by their shape, e.g. curved or truncated substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/814Bodies having reflecting means, e.g. semiconductor Bragg reflectors

Landscapes

  • Led Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 可視発光ダイオード(LED)はパイロツトラ
ンプとして、あるいは数字表示素子やレベルイン
デイケータ等のデイスプレー素子として幅広く用
いられている。特にデイスプレーの分野では赤、
黄、緑の3色のLEDが使用されることが多く、
燐化ガリウム(以下、GaPと略記)基板上にn型
とp型のエピタキシヤル層を順次成長させて形成
したGaP緑色LEDはGaP赤色LEDとともに可視
LEDの中心的地位を占めている。本発明は上記
デイスプレー素子として好適なGaP緑色系LED
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Use Visible light-emitting diodes (LEDs) are widely used as pilot lamps and display elements such as numeric display elements and level indicators. Especially in the field of display, red,
Three-color LEDs, yellow and green, are often used.
GaP green LEDs, which are formed by sequentially growing n-type and p-type epitaxial layers on a gallium phosphide (hereinafter abbreviated as GaP) substrate, are visible along with GaP red LEDs.
It occupies a central position among LEDs. The present invention provides a GaP green LED suitable for the above display element.
Regarding.

従来例の構成とその問題点 GaP緑色LEDは発光中心として窒素(N)を
含み565nmにピーク発光波長を有する黄緑色
LEDと窒素を含まず555nmにピーク発光波長を
有する純緑色LEDの2種類がある。これらの構
造はともにn型GaP基板上にn型とp型のエピタ
キシヤル層を順次成長させることにより形成され
る。
Conventional configuration and its problems GaP green LEDs contain nitrogen (N) as the emission center and are yellow-green with a peak emission wavelength of 565 nm.
There are two types: LED and pure green LED, which does not contain nitrogen and has a peak emission wavelength of 555 nm. Both of these structures are formed by sequentially growing n-type and p-type epitaxial layers on an n-type GaP substrate.

GaP基板は一般に111面でスライシングされ
ており、その面にはA面(ガリウム面)とB面
(燐面)がある。A面は化学的に安定でエツチン
グされにくく、また、このA面上にエピタキシヤ
ル層を形成すると、エピタキシヤル層中に不純物
がドーピングされにくい等の性質があるため、エ
ピタキシヤル層は通常B面上に成長される。この
結果形成されるGaP LEDの基板裏面はA面とな
つている。
GaP substrates are generally sliced into 111 planes, and these planes include an A plane (gallium plane) and a B plane (phosphorus plane). The A-plane is chemically stable and difficult to be etched, and when an epitaxial layer is formed on the A-plane, it is difficult to dope impurities into the epitaxial layer. Therefore, the epitaxial layer is usually formed on the B-plane. will grow upwards. The back surface of the substrate of the GaP LED formed as a result is the A side.

第1図は、このような構造をもつ従来のGaP緑
色LEDの断面構造を示す図であり、n型GaP基
板1のB面上にn型GaPエピタキシヤル層2を成
長させ、さらに、この上にp型GaPエピタキシヤ
ル層3を成長させるとともに、電極4および5を
設けて形成したGaP緑色LED素子をステム等の
支持体6へ固着した構造となつている。ところ
で、上述したように、n型およびp型の各エピタ
キシヤル層はn型GaP基板1のB面上に形成され
ており、一方、GaP緑色LEDのn型GaP基板の
裏面となるA面は、GaP基板1の厚みの均一化を
はかるとともに、この面での光反射率を高めるた
めに鏡面となるように研磨されている。そして
GaP緑色LEDにおいて、pn接合近傍で発光して
外部に放出される光は、図示するように、図中X
で示すような直接外部へ放出される光成分と、図
中Yで示すような、一度A面で反射し、外部に放
出される光成分とに大別される。
FIG. 1 is a diagram showing the cross-sectional structure of a conventional GaP green LED having such a structure. An n-type GaP epitaxial layer 2 is grown on the B side of an n-type GaP substrate 1, and then a It has a structure in which a p-type GaP epitaxial layer 3 is grown, and a GaP green LED element formed by providing electrodes 4 and 5 is fixed to a support 6 such as a stem. By the way, as mentioned above, the n-type and p-type epitaxial layers are formed on the B side of the n-type GaP substrate 1, while the A side, which is the back side of the n-type GaP substrate of the GaP green LED, is formed on the B side of the n-type GaP substrate 1. In order to make the thickness of the GaP substrate 1 uniform and to increase the light reflectance on this surface, it is polished to a mirror surface. and
In a GaP green LED, the light emitted near the pn junction and emitted to the outside is
The light component is roughly divided into a light component that is directly emitted to the outside, as shown by , and a light component that is once reflected on the A surface and emitted to the outside, as shown by Y in the figure.

GaP純緑色LEDの発光は、GaPのバンドギヤ
ツプに近く、内部吸収が大きい。したがつて、
GaP純緑色LED内で多重反射する光は、その殆
んどが吸収され、また、上記のようにA面で一度
反射されて外部に放出される光成分Yの吸収も大
きい。このため、従来のGaP純緑色LEDでは、
高い発光出力を得ることができなかつた。
The light emission of GaP pure green LEDs is close to the GaP bandgap, and has large internal absorption. Therefore,
Most of the light that is multiple-reflected within the GaP pure green LED is absorbed, and the light component Y that is reflected once on the A plane and emitted to the outside as described above is also largely absorbed. For this reason, traditional GaP pure green LEDs
It was not possible to obtain high luminous output.

このような問題は、GaP黄緑色LEDでも同様
に生じていた。
Similar problems also occurred with GaP yellow-green LEDs.

発明の目的 本発明はGaP緑色系LEDの内部で発光した光
のうち、内部反射を経て外部へ放出される光成分
の内部吸収による光の量を減少させ、高発光出力
のGaP緑色系LEDおよびこれを製造する方法を
提供することを目的とするものである。
Purpose of the Invention The present invention reduces the amount of light emitted inside a GaP green LED by internal absorption of the light component that is emitted to the outside through internal reflection. The purpose of this invention is to provide a method for manufacturing this.

発明の構成 本発明は、GaP緑色系LEDの出発材料となる
GaP基板のエツチングが困難なA面を王水でエツ
チングすると、結晶欠陥によるエツチピツトなら
びに亀甲状の凹凸がエツチング面に生じること、
すなわち、従来はエツチングが困難とされていた
GaP基板のA面に凹凸加工を施すことができるこ
との確認に基づいてなされたものであり、GaP緑
色系LEDの構造を、GaP緑色系LEDの出発材料
となるn型GaP基板の111B面上の全面にn型
GaPエピタキシヤル層が形成され、さらに、この
上にp型GaPエピタキシヤル層が形成されるとと
もに、前記n型GaP基板の裏側A面に凹凸加工を
施した構造をうるための製造方法として、GaP緑
色系LEDの出発材料として準備したn型GaP基
板の111B面上にn型ならびにp型のGaPエピ
タキシヤル層を形成したのち、前記n型GaP基板
の裏側A面を王水でエツチング処理し、同n型
GaP基板の裏側を凹凸面となし、ついで、この基
板をpn接合の面と同基板の裏面とがほぼ同じ面
積になるように細分してチツプ化する方法を採る
ものである。この方法でn型GaP基板の裏面(A
面)が凹凸加工面とされたGaP緑色系LEDでは、
内部で発光した光の裏面での反射が乱反射とな
り、GaP緑色系LED素子の側面からも外部へ光
放出がなされ、全体にみて、基板内部での光吸収
量が減り、高発光出力が得られるところとなる。
Structure of the invention The present invention serves as a starting material for GaP green LEDs.
When the A-side of a GaP substrate, which is difficult to etch, is etched with aqua regia, etch pits and tortoiseshell-like irregularities occur on the etched surface due to crystal defects.
In other words, etching was previously considered difficult.
This was done based on the confirmation that surface A of a GaP substrate could be textured, and the structure of a GaP green LED was created on the 111B surface of an n-type GaP substrate, which is the starting material for a GaP green LED. n-type all over
A GaP epitaxial layer is formed, a p-type GaP epitaxial layer is further formed thereon, and the GaP After forming n-type and p-type GaP epitaxial layers on the 111B surface of an n-type GaP substrate prepared as a starting material for a green LED, etching the back side A of the n-type GaP substrate with aqua regia, Same n type
A method is adopted in which the back side of the GaP substrate is made to have an uneven surface, and then this substrate is subdivided into chips so that the pn junction surface and the back surface of the substrate have approximately the same area. In this method, the back side (A
For GaP green LEDs with a textured surface (surface),
The light emitted inside becomes diffusely reflected on the back surface, and light is also emitted to the outside from the side of the GaP green LED element. Overall, the amount of light absorbed inside the board is reduced, resulting in high light output. By the way.

実施例の説明 第2図は、本発明のGaP緑色系LEDの一実施
例を示す断面図であり、基本的な構造は、第1図
で示した従来のものと同じである。
DESCRIPTION OF THE EMBODIMENTS FIG. 2 is a sectional view showing an embodiment of the GaP green LED of the present invention, and the basic structure is the same as the conventional one shown in FIG.

しかしながら、図示するように、GaP緑色系
LED素子の支持体6に接着される側の面である
n型GaP基板の裏面(A面)が凹凸面となつてい
るため、内部で発光した光のうち、この面で反射
する光は、この凹凸によつて乱反射されるところ
となる。すなわち、n型GaP基板の裏面で反射さ
れる光は、p型エピタキシヤル層表面(一方の表
面)から外部に放出される光成分YとこのLED
素子自体の側面から外部へ放出される光成分Zと
に分かれ、しかも、その大半は光成分Zによつて
占められる。この側面から外部へ放出される光成
分Zの素子内部の通過距離は、光成分Yのそれに
くらべて短くなり、したがつて、内部吸収量は減
少する。すなわち、n型GaP基板の裏面(A面)
で反射された光成分のうち、素子外部へ放出され
る光量が増し、GaP緑色系LEDの発光出力特性
が従来の構造にくらべて改善される。
However, as shown, GaP green color
Since the back surface (Side A) of the n-type GaP substrate, which is the surface to be bonded to the support 6 of the LED element, is an uneven surface, the light emitted internally that is reflected from this surface is This unevenness causes diffuse reflection. In other words, the light reflected from the back surface of the n-type GaP substrate is composed of the light component Y emitted to the outside from the p-type epitaxial layer surface (one surface) and this LED.
It is divided into a light component Z which is emitted to the outside from the side surface of the element itself, and most of it is occupied by the light component Z. The passage distance inside the element of the light component Z emitted to the outside from this side surface is shorter than that of the light component Y, and therefore the amount of internal absorption is reduced. In other words, the back surface (A side) of the n-type GaP substrate
Of the light components reflected by the LED, the amount of light emitted to the outside of the device increases, improving the light emitting output characteristics of the GaP green LED compared to conventional structures.

ところで、このような構造を有する本発明の
GaP緑色系LEDは、以下に述べる方法によつて
形成される。先ず、n型GaP基板の111B面上
にn型ならびにp型のGaPエピタキシヤル層を順
次液相成長させる。次いで、このエピタキシヤル
成長ずみGaP基板の裏側A面を所定の厚さだけ機
械的研磨で除去したのち、この研磨面のみを露出
させ、王水で数分間エツチングする。このエツチ
ング処理により、同基板の裏側A面は第2図で示
したように凹凸面となる。こののち、電極の形
成、支持体への素子の接着を経て第2図で示した
ような構造のGaP緑色系LEDが形成される。
By the way, the present invention having such a structure
The GaP green LED is formed by the method described below. First, n-type and p-type GaP epitaxial layers are sequentially grown in liquid phase on the 111B surface of an n-type GaP substrate. Next, the back side A of this epitaxially grown GaP substrate is removed by mechanical polishing to a predetermined thickness, and only this polished surface is exposed and etched with aqua regia for several minutes. As a result of this etching process, the back side A of the substrate becomes an uneven surface as shown in FIG. After this, a GaP green LED having the structure shown in FIG. 2 is formed through the formation of electrodes and the adhesion of the element to the support.

第3図は、以上説明した本発明の効果確認のた
めに、n型GaP基板裏面を鏡面研磨して形成した
従来構造のGaP純緑色LEDと、n型GaP基板裏
面を王水によるエツチングで凹凸加工して形成し
た本発明のGaP純緑色LEDの発光出力の比較を
示す図である。
In order to confirm the effects of the present invention explained above, Figure 3 shows a GaP pure green LED with a conventional structure formed by mirror polishing the back surface of an n-type GaP substrate, and a GaP pure green LED with an uneven structure formed by etching the back surface of the n-type GaP substrate with aqua regia. FIG. 3 is a diagram showing a comparison of light emitting outputs of processed and formed GaP pure green LEDs of the present invention.

図示するように、本発明によれば、発光出力が
従来の構造にくらべておよそ20%大きくなり、高
発光出力化がはかられている。
As shown in the figure, according to the present invention, the light emission output is approximately 20% larger than that of the conventional structure, and a high light emission output is achieved.

なお、GaP黄緑色LEDに本発明を適用した場
合にも同様の結果が得られた。
Note that similar results were obtained when the present invention was applied to a GaP yellow-green LED.

発明の効果 本発明によれば、GaP緑色系LEDの基本構造
ならびに基本製造工程に大幅な変更をもたらすこ
となく、GaP緑色系LEDの高発光出力化をはか
ることができ、GaP LEDのデイスプレー分野へ
の適用範囲を拡大する効果が奏される。
Effects of the Invention According to the present invention, it is possible to increase the light emitting output of GaP green LEDs without making any major changes to the basic structure or basic manufacturing process of GaP green LEDs, and the display field of GaP LEDs can be improved. This has the effect of expanding the scope of application.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はn型GaP基板の裏面を鏡面に研磨した
従来のGaP緑色系LEDの構造を示す断面図、第
2図は王水エツチングによりn型GaP基板の裏面
を凹凸状にした本発明のGaP緑色LEDの構造を
示す断面図、第3図は従来のGaP純緑色LEDと
本発明のGaP純緑色LEDとの発光出力の比較を
示す図である。 1……n型GaP基板、2……n型GaPエピタキ
シヤル層、3……p型GaPエピタキシヤル層、4
……n型面側電極、5……p型両側電極、6……
支持体(ステム)。
Figure 1 is a cross-sectional view showing the structure of a conventional GaP green LED in which the back surface of an n-type GaP substrate is polished to a mirror surface, and Figure 2 is a cross-sectional view showing the structure of a conventional GaP green LED in which the back surface of an n-type GaP substrate is made uneven by aqua regia etching. FIG. 3 is a cross-sectional view showing the structure of a GaP green LED, and is a diagram showing a comparison of light emitting output between a conventional GaP pure green LED and a GaP pure green LED of the present invention. 1...n-type GaP substrate, 2...n-type GaP epitaxial layer, 3...p-type GaP epitaxial layer, 4
...N-type side electrode, 5...P-type both sides electrode, 6...
Support (stem).

Claims (1)

【特許請求の範囲】[Claims] 1 n型燐化ガリウム基板の111B面(燐面)
上に、n型燐化ガリウムエピタキシヤル層および
p型燐化ガリウムエピタキシヤル層よりなるpn
接合を形成する工程、前記n型燐化ガリウム基板
の裏側111A面(ガリウム面)を、所定の厚さ
だけ機械的研磨で除去したのち、王水でエツチン
グ処理して凹凸面となす工程、前記凹凸面に電極
を部分的に形成する工程、および前記pn接合を
含む燐化ガリウム基板を、前記pn接合の面と前
記凹凸面との各面積がほぼ同じになるように細分
して、チツプ化する工程を備えた緑色系発光ダイ
オードの製造方法。
1 111B surface (phosphorus surface) of n-type gallium phosphide substrate
Above, a pn layer consisting of an n-type gallium phosphide epitaxial layer and a p-type gallium phosphide epitaxial layer.
a step of forming a bond, a step of removing the back side 111A (gallium surface) of the n-type gallium phosphide substrate by mechanical polishing to a predetermined thickness, and then etching it with aqua regia to form an uneven surface; A step of partially forming an electrode on the uneven surface, and dividing the gallium phosphide substrate including the p-n junction into pieces so that the areas of the p-n junction surface and the uneven surface are approximately the same, and forming chips. A method for manufacturing a green light emitting diode, comprising a step of:
JP57133457A 1982-07-29 1982-07-29 Green color light emitting diode and manufacture thereof Granted JPS5923579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57133457A JPS5923579A (en) 1982-07-29 1982-07-29 Green color light emitting diode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57133457A JPS5923579A (en) 1982-07-29 1982-07-29 Green color light emitting diode and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS5923579A JPS5923579A (en) 1984-02-07
JPH0441516B2 true JPH0441516B2 (en) 1992-07-08

Family

ID=15105224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57133457A Granted JPS5923579A (en) 1982-07-29 1982-07-29 Green color light emitting diode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5923579A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220077A (en) * 1988-07-08 1990-01-23 Toshiba Corp Method of manufacturing green light emitting diode
EP1076388B1 (en) 1999-02-26 2009-03-11 The Furukawa Electric Co., Ltd. Semiconductor laser
JP4244542B2 (en) * 2001-08-28 2009-03-25 日亜化学工業株式会社 Gallium nitride compound semiconductor light emitting device and method for manufacturing the same
JP4155847B2 (en) * 2003-03-12 2008-09-24 三洋電機株式会社 Multilayer light emitting diode element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112194A (en) * 1976-03-08 1976-10-04 Toshiba Corp Gap light emmision element
JPS5221875A (en) * 1975-08-08 1977-02-18 Illinois Tool Works Wheel rpm sensor provided with exciter ring runnout compensator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221875A (en) * 1975-08-08 1977-02-18 Illinois Tool Works Wheel rpm sensor provided with exciter ring runnout compensator
JPS51112194A (en) * 1976-03-08 1976-10-04 Toshiba Corp Gap light emmision element

Also Published As

Publication number Publication date
JPS5923579A (en) 1984-02-07

Similar Documents

Publication Publication Date Title
JP3230638B2 (en) Light emitting diode manufacturing method
US6649437B1 (en) Method of manufacturing high-power light emitting diodes
US6458612B1 (en) Method of fabricating high efficiency light-emitting diode with a transparent substrate
US20020041148A1 (en) White LED and method for fabricating the same
US20060292804A1 (en) Nitride semiconductor light emitting diode and fabrication method thereof
US6759685B2 (en) High-brightness light emitting diode
KR20100108597A (en) Compound semiconductor light-emitting diode
JP5343018B2 (en) LIGHT EMITTING DIODE, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DIODE LAMP
KR20010074424A (en) Light emitting diode and fabrication proce ss therefor
JP2010098068A (en) Light emitting diode, manufacturing method thereof, and lamp
WO2017215423A1 (en) Light-emitting diode and method for manufacturing same
KR20080091391A (en) Light emitting diode
KR20120041173A (en) Light emitting diode, light emitting diode lamp, and lighting apparatus
JP3239061B2 (en) Light emitting diode and method of manufacturing the same
JPH0856018A (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JPH0441516B2 (en)
JP4348488B2 (en) LED substrate
CN106876547A (en) Thin-film type light-emitting diode and preparation method thereof
KR20020060617A (en) Nitride semiconductor chip and method for manufacturing nitride semiconductor chip
US8102892B2 (en) Semiconductor laser light emitting device and method for manufacturing same
US5349208A (en) GaP light emitting element substrate with oxygen doped buffer
KR100329054B1 (en) Semiconductor light emitting element and method for fabricating the same
JPH0625966Y2 (en) Matrix type light emitting diode
JP2010199344A (en) Method for manufacturing light emitting element
JP3662832B2 (en) Light emitting device and manufacturing method thereof