[go: up one dir, main page]

JPH0439493B2 - - Google Patents

Info

Publication number
JPH0439493B2
JPH0439493B2 JP23155084A JP23155084A JPH0439493B2 JP H0439493 B2 JPH0439493 B2 JP H0439493B2 JP 23155084 A JP23155084 A JP 23155084A JP 23155084 A JP23155084 A JP 23155084A JP H0439493 B2 JPH0439493 B2 JP H0439493B2
Authority
JP
Japan
Prior art keywords
resin particles
resol resin
carbon atoms
group
expandable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23155084A
Other languages
Japanese (ja)
Other versions
JPS61108641A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP23155084A priority Critical patent/JPS61108641A/en
Publication of JPS61108641A publication Critical patent/JPS61108641A/en
Publication of JPH0439493B2 publication Critical patent/JPH0439493B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は保存安定性に優れ、熱作用のみで発泡
硬化して高品位の発泡体となる発泡性レゾール樹
脂粒子及びその製造法に関するものである。 <従来の技術> 従来、フエノール樹脂発泡体は例えば特公昭59
−27772号公報に見られるように70%〜80%の固
形物濃度を有するレゾール樹脂水溶液と重炭酸ソ
ーダのごとき発泡剤とトルエンスルホン酸のごと
き硬化剤及び金属石ケンのごとき界面活性剤とを
混合してペースト状とし、これを加熱発泡せしめ
ることにより製造される。しかしながら、かかる
方法では、硬化剤としてトルエンスルフオン酸、
硫酸、塩酸のごとき強酸を多量使用するため、得
られる発泡体に酸が残存し、発泡体をアルミ板の
ような金属板と密着させると金属板が腐触すると
いう欠点があるのみならず、発泡体中の水が完全
に抜けないという問題がある。 上述のごとき問題を解決するため、例えば特公
昭59−15936公報にはエマルジヨン重合により製
造されたレゾール樹脂の粉末と発泡剤とを混練し
た後、粉砕して発泡性レゾール樹脂を製造する方
法が開示されている。しかし、このようなレゾー
ル樹脂粉末と発泡剤との単なるブレンド物では、
(a)均一な気泡を有する発泡体を得にくいこと、(b)
低密度発泡体の製造が困難であること、(c)粉末状
のレゾール樹脂を混練後再び粉砕するため製造工
程が煩雑となること、等問題点が多く、高品位の
発泡体を低コトスで製造することは極めて困難で
ある。 <発明が解決しようとする問題点> 本発明者等は、上述のごとき従来の諸問題を解
決すべく鋭意研究の結果、フエノール類とアルデ
ヒド類とをエマルジヨン重合せしめてレゾール樹
脂を製造する際に特定の化合物を共存させること
により、発泡性レゾール樹脂粒子を容易に製造す
ることができ、得られる発泡性レゾール樹脂粒子
は加熱により発泡し、高品位の発泡体となること
を知見し本発明に到達したものである。 従つて、本発明においては、特定の基で置換さ
れた微小球状の発泡性のレゾール樹脂粒子によ
り、酸触媒を用いずに加熱のみで発泡し、かつ高
品位の発泡体を生成するとともに保存性安定性に
優れ、取り扱いを容易にすること及び特定化合物
を共存して反応せしめることにより前記発泡性レ
ゾール樹脂粒子を容易に製造することを技術的課
題とするものである。 <問題点を解決するための手段> 上記の技術的課題を解決する本発明の特徴は、
ベンゼン核のプロトンの一部が一般式 (式中R1は水素又は炭素数1〜10のアルキル
基又は炭素数6〜20のアリール基、R2は炭素数
6〜20のアリール基又はその機能誘導体を表す。)
で示される基で置換されており、かつ粒径が
1000μm以下である発泡性レゾール樹脂粒子並び
に水性媒体中でフエニール類とアルデヒド類とを
塩基性触媒とエマルジヨン安定剤との存在下で反
応させるに際し、該反応系にアリールスルフオニ
ルヒドラジド系化合物を共存せしめることにあ
る。 以下、さらに本発明を詳細に説明する。 まず、本発明の第1の発明に係る発泡性レゾー
ル樹脂粒子について説明すると、本発明の発泡性
レゾール樹脂粒子はベンゼン核のプロトンの一部
が一般式 (式中R1は水素又は炭素数1〜10のアルキル
基又は炭素数6〜20のアリール基、R2は炭素数
6〜20のアリール基又はその機能誘導体を表す。)
で示される基で置換されているものである。 ここで、一般式 (式中R1は水素又は炭素数1〜10のアルキル
基又は炭素数6〜20のアリール基、R2は炭素数
6〜20のアリール基又はその機能誘導体を表す。)
で示される基としては、例えば、
<Industrial Field of Application> The present invention relates to expandable resol resin particles that have excellent storage stability and can be foamed and hardened by heat alone to form a high-quality foam, and a method for producing the same. <Conventional technology> Conventionally, phenolic resin foams were manufactured using
As seen in Publication No. 27772, an aqueous resol resin solution having a solids concentration of 70% to 80%, a blowing agent such as sodium bicarbonate, a hardening agent such as toluenesulfonic acid, and a surfactant such as metal soap are mixed. It is produced by making it into a paste form and heating and foaming it. However, in this method, toluenesulfonic acid is used as a curing agent.
Since large amounts of strong acids such as sulfuric acid and hydrochloric acid are used, the acid remains in the resulting foam, and if the foam is brought into close contact with a metal plate such as an aluminum plate, the metal plate will corrode. There is a problem that the water in the foam cannot be completely removed. In order to solve the above problems, for example, Japanese Patent Publication No. 59-15936 discloses a method of producing a foamable resol resin by kneading resol resin powder produced by emulsion polymerization with a foaming agent and then pulverizing the powder. has been done. However, such a simple blend of resol resin powder and foaming agent,
(a) It is difficult to obtain a foam with uniform cells; (b)
There are many problems such as the difficulty in manufacturing low-density foam, and (c) the complicated manufacturing process as powdered resol resin is re-pulverized after being kneaded. It is extremely difficult to manufacture. <Problems to be Solved by the Invention> As a result of intensive research in order to solve the conventional problems as described above, the present inventors have found that when producing a resol resin by emulsion polymerization of phenols and aldehydes, We discovered that foamable resol resin particles can be easily produced by coexisting a specific compound, and that the resulting foamable resol resin particles foam when heated to form a high-quality foam, which led to the present invention. It has been reached. Therefore, in the present invention, microspherical expandable resol resin particles substituted with a specific group can be foamed by heating alone without using an acid catalyst, and produce a high-quality foam with excellent storage stability. The technical objective is to easily produce the expandable resol resin particles by having excellent stability and easy handling, and by coexisting and reacting with a specific compound. <Means for solving the problems> The features of the present invention that solve the above technical problems are as follows:
Some of the protons of the benzene nucleus have the general formula (In the formula, R 1 represents hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and R 2 represents an aryl group having 6 to 20 carbon atoms or a functional derivative thereof.)
Substituted with a group represented by and with a particle size of
When reacting phenyls and aldehydes in expandable resol resin particles of 1000 μm or less and an aqueous medium in the presence of a basic catalyst and an emulsion stabilizer, an arylsulfonyl hydrazide compound is coexisted in the reaction system. It's about forcing. Hereinafter, the present invention will be explained in further detail. First, to explain the expandable resol resin particles according to the first invention of the present invention, in the expandable resol resin particles of the present invention, a part of the protons of the benzene nucleus is of the general formula (In the formula, R 1 represents hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and R 2 represents an aryl group having 6 to 20 carbon atoms or a functional derivative thereof.)
It is substituted with a group represented by. Here, the general formula (In the formula, R 1 represents hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and R 2 represents an aryl group having 6 to 20 carbon atoms or a functional derivative thereof.)
As the group represented by, for example,

【式】【formula】

等があげられる。この一般式 で示される基のベンゼン核のプロトンへの置換は
後述するごとく水性溶媒中でフエノール類とアル
デヒド類とを塩基性触媒とエマルジヨン安定剤と
の存在下で反応させるに際し、該反応系にアリー
ルスルフオニルヒドラジド系化合物を共存せしめ
て行われるが、アリールスルフオニルヒドラジド
系化合物の添加量等を適宜変更することにより所
望の置換度とすることができる。 そして前記ベンゼン核のプロトンの一部が一般
で置換された発泡性レゾール樹脂粒子はその粒径
が1000μm以下の微小球状を呈する。特に反応時
にエマルジヨン安定剤としてフツ化カルシウム、
フツ化マグネシウム及びフツ化ストロンチウム等
を用い、粒子表面をこれらの塩類で被覆せしめた
ものは、粒子の融着がなく保存安定性に優れ長期
保存することができる。 かくして上記構成よりなる本発明発泡性レゾー
ル樹脂粒子はベンゼン核のプロトンの一部が上記
の特定の基で置換されているものであるから、単
独で熱により発泡硬化せしめることができ、高品
位の発泡体とすることができるとともに粒径
1000μm以下の微小球状の粒子であるから成型な
どの使用時の取り扱いが容易である。 次に、本発明の第2の発明に係る上記発泡性レ
ゾール樹脂粒子を製造する方法について説明す
る。 本発明方法は水性媒体中でフエノール類とアル
デヒド類とを塩基性触媒とエマルジヨン安定剤と
の存在下で反応させるに際し、該反応系にアリー
ルスルフオニルヒドラジド系化合物を共存せしめ
て反応させる。ここで使用されるフエノール類は
フエノール及びフエノール誘導体であり、このフ
エノール誘導体としては、例えば炭素数1〜9の
アルキル基で置換されたm−アルキルフエノー
ル、O−アルキルフエノール、P−アルキルフエ
ノール、具体的にはm−クレゾール、p−ter−
プチルフエノール、O−プロピルフエノール、レ
ゾルシノール、ビスフエノールA及びこれらのベ
ンゼン核又はアルキル基の水素原子の一部又は全
部が塩素又は臭素で置換されたハロゲン化フエノ
ール誘導体等があげられ、これらの1種又は2種
以上が用いられる。なお、フエノール類として
は、これらに限定されるものでなくその他フエノ
ール性水酸基を含有する化合物であれば、いかな
る化合物でも使用することができる。また、本発
明で用いられるアルデヒド類としては、例えばホ
ルマリン又はパラホルムアルデヒドのいずれかの
形態のホルムアルデヒド及びフルフラール等があ
げられ、アルデヒド類のフエノール類に対するモ
ル比は1〜2,好ましくは1.1〜1.4である。 また、本発明方法で使用される塩基性触媒とし
ては、通常のレゾール樹脂製造に用いられる塩基
性触媒が使用でき、例えばアンモニア水、ヘキサ
メチレンテトラミン及びジメチルアミン、ジエチ
ルトリアミン、ポリエチレンイミン等のアルキル
アミン等があげられる。この塩基性触媒のフエノ
ール類に対するモル比は0.02〜0.2が好ましい。 また、本発明方法で使用されるエマルジヨン安
定剤としては、いかなる化合物を使用してもよ
く、例えばアラビアゴム、グアーゴム、PVA,
CMC等の有機系のエマルジヨン安定剤も使用で
き、この場合の使用量はフエノール類に対して1
〜5重量%が好ましい。特に本出願人が先に出願
(特願昭59−150399号)したフツ化カルシウム、
フツ化マグネシウム、フツ化ストロンチウム等の
実質的に水に不溶性の無機塩類は得られる発泡性
レゾール樹脂粒子の保存安定性の面から好適に用
いられる。これらの無機塩類の使用量はフエノー
ル類に対して0.2〜10重量%、好ましくは、0.5〜
3.5重量%である。 前記フエノール類とアルデヒド類とを塩基性触
媒とエマルジヨン安定剤との存在下で反応させる
際に共存させるアリールスルフオニルヒドラジド
系化合物としては、ベンゼンスルフオニルヒドラ
ジド、p,p′−オキシビス(ベンゼンスルフオニ
ル)ヒドラジド、トルエンスルフオニルヒドラジ
ド等があげられ、これらの1種又は2種以上が使
用される。なお、アリールスルフオニルヒドラジ
ド系化合物としては、これらの化合物に限定され
るものではなく、芳香核に直結したスルフオニル
ヒドラジド基を有する化合物であればいかなるも
のでも使用することができる。このアリールスル
フオニルヒドラジド系化合物の添加量はフエノー
ル類に対して0.1〜8重量、好ましくは0.2〜2重
量%である。 本発明方法の反応は、水性媒体中で行われる
が、この場合の水の仕込量は、例えば樹脂の固形
分濃度が30〜70重量%、好ましくは50〜60重量%
となるようにすることが好ましい。 反応は攪拌下で所定量のフエノール類、アルデ
ヒド類、塩基性触媒、エマルジヨン安定剤、水及
びアリールスルフオニルヒドラジド系化合物を反
応容器に仕込み、昇温速度0.5〜1.5℃/min,好
ましくは0.8〜1.2℃m/minで温度を徐々に上昇
せしめ、反応温度70〜90℃、好ましくは83から87
℃で60〜150分、好ましくは80〜110分間反応させ
る。この場合フエノール類の一部とアルデヒド類
の一部とアリールスルフオニルヒドラジド系化合
物といわゆるマンニツヒ反応を起こし、一般式 で示される置換基が一部のフエノール類のベンゼ
ン核に導入されると同時にフエノール・アルデヒ
ドの重縮合反応が進行し、一般式 で示される置換基がベンゼン核に一部導入された
レゾール樹脂となる。このようにして反応せしめ
た後、反応物を40℃以下に冷却すると安定な固形
レゾールの水性エマルジヨンが得られる。 次にこの水性エマルジヨンを濾過又は遠心分離
等の常法に従つて固液を分離した後、水又は界面
活性剤を添加した水で洗浄して乾燥すればベンゼ
ン核のプロトンの一部が一般式 で置換された粒径が1000μm以下の本発明発泡性
レゾール樹脂粒子が得られる。 なお、本発明方法は連続法又はバツチ法のいず
れでも行うなうことができるが通常はバツチ法で
行われる。 上記のごとくして得られた発泡性レゾール樹脂
粒子はそのまま単独で加熱することにより発泡体
となるが、発泡時に木粉、ガラス粉などの充填剤
を添加してもよく、また整泡剤として界面活性剤
を添加してもよい。 <実施例> 以下、本発明を実施例により具体的に説明す
る。 実施例 1 1の三つ口フラスコにフエノール200g、37
%ホルマリン200g、水70g、ヘキサメチレンテト
ラミン18g、塩化カルシウム、8.4gを攪拌しなが
ら投入し、均一な溶液とし、この溶液に攪拌下で
フツ化ナトリウム5.8g、さらにp−トルエンスル
フオニルヒドラジド8.0gを添加し、60分間で85℃
に上昇し、同温度で90分間反応させて微小球状レ
ゾール樹脂のエマルジヨンを得た。 次にフラスコ内容物を30℃に低下せしめ、0.5
の水を添加した後、上澄み液を除去し、下層の
微小球状化した樹脂粒子を0.5%のシリコン系界
面活性剤(日本ユニカー社製 L−5340)水溶液
を用いて水洗して風乾した。次いでこれを減圧下
(5mmHg以下)で50〜60℃乾燥して平均粒径約
100μmの発泡性レゾール樹脂粒子を得た。(樹脂
A) 実施例 2 1の三つ口フラスコにフエノール200g、37
%ホルマリン200g、水70g、ヘキサメチレンテト
ラミン18g、塩化カルシウム、8.4gを攪拌しなが
ら投入し、均一な溶液とし、この溶液に攪拌下で
フツ化ナトリウム5.8g、さらにベンゼンスルフオ
ニルヒドラジド5.0gを添加し、60分間で85℃に昇
温し、同温度で90分間反応させて微小球状レゾー
ル樹脂のエマルジヨンを得た。 次にフラスコ内容物を30℃に低下せしめ、0.5
の水を添加した後、上澄み液を除去し、下層の
微小球状化した樹脂粒子を0.5%のシリコン系界
面活性剤(日本ユニカー社製 L−5340)で処理
し、続いて水洗いして風乾した。次いでこれを減
圧下(5mmHg以下)で50〜60℃乾燥して平均粒
径約100μmの発泡性レゾール樹脂粒子を得た。
(樹脂B) 実施例 3 p−トルエンスルフオニルヒドラジドの添加量
を2.0gにする以外は実施例1と同様にして平均粒
径が100μmの発泡性レゾール樹脂粒子を得た。
(樹脂C) 実施例 4 ベンゼンスルフオニルヒドラジドの添加量を
1.0gにする以外は実施例2と同様にして平均粒径
が約100μmの発泡性レゾール樹脂粒子を得た。
(樹脂D) 参考例 1 上記実施例1〜4で得た樹脂A〜Dをそれぞれ
10×10×10cmの立方体の容器に入れ、これらを電
気炉の中で160℃、25分加熱し、相当する発泡体
A,B,C及びDを得た。これらの発泡性はいず
れも直径0.5〜1mmの極めて均一な気泡を有する
発泡体であつた。 次に発泡体A,B,C及びDについて密度及び
圧縮強度を測定したところ第1表に示す結果を得
た。なお、圧縮強度はJIS K−7220に準じて測定
した。
etc. can be mentioned. This general formula As will be described later, the substitution of the benzene nucleus of the group represented by the above with a proton is carried out when phenols and aldehydes are reacted in an aqueous solvent in the presence of a basic catalyst and an emulsion stabilizer. Although this is carried out in the presence of a nyl hydrazide compound, a desired degree of substitution can be obtained by appropriately changing the amount of the arylsulfonyl hydrazide compound added. And some of the protons of the benzene nucleus have the general formula The expandable resol resin particles substituted with 1000 μm or less have a microspherical shape. Calcium fluoride, especially as an emulsion stabilizer during the reaction,
Particles made of magnesium fluoride, strontium fluoride, or the like and whose particle surfaces are coated with these salts have excellent storage stability and can be stored for long periods of time without particle fusion. In this way, the foamable resol resin particles of the present invention having the above-mentioned structure have a part of the protons of the benzene nucleus substituted with the above-mentioned specific group, and therefore can be foamed and hardened by heat alone, resulting in high-quality particles. The foam can be made with particle size
Since they are microspherical particles of 1000 μm or less, they are easy to handle during molding and other uses. Next, a method for manufacturing the expandable resol resin particles according to the second aspect of the present invention will be explained. In the method of the present invention, when phenols and aldehydes are reacted in an aqueous medium in the presence of a basic catalyst and an emulsion stabilizer, an arylsulfonyl hydrazide compound is allowed to coexist in the reaction system. The phenols used here are phenol and phenol derivatives, and examples of the phenol derivatives include m-alkylphenol substituted with an alkyl group having 1 to 9 carbon atoms, O-alkylphenol, P-alkylphenol, and Specifically, m-cresol, p-ter-
Butylphenol, O-propylphenol, resorcinol, bisphenol A, and halogenated phenol derivatives in which part or all of the hydrogen atoms of their benzene nucleus or alkyl group are substituted with chlorine or bromine, etc., and one type of these Or two or more types are used. Note that the phenols are not limited to these, and any other compound containing a phenolic hydroxyl group can be used. Further, examples of the aldehydes used in the present invention include formaldehyde in the form of formalin or paraformaldehyde, and furfural, and the molar ratio of the aldehydes to the phenols is 1 to 2, preferably 1.1 to 1.4. be. Furthermore, as the basic catalyst used in the method of the present invention, basic catalysts commonly used in the production of resol resins can be used, such as aqueous ammonia, hexamethylenetetramine, and alkyl amines such as dimethylamine, diethyltriamine, and polyethyleneimine. etc. can be mentioned. The molar ratio of the basic catalyst to the phenols is preferably 0.02 to 0.2. Further, as the emulsion stabilizer used in the method of the present invention, any compound may be used, such as gum arabic, guar gum, PVA,
Organic emulsion stabilizers such as CMC can also be used; in this case, the amount used is 1 to 1 phenols.
~5% by weight is preferred. In particular, calcium fluoride, which the present applicant previously applied for (Japanese Patent Application No. 150399/1982),
Substantially water-insoluble inorganic salts such as magnesium fluoride and strontium fluoride are preferably used from the viewpoint of storage stability of the resulting expandable resol resin particles. The amount of these inorganic salts used is 0.2 to 10% by weight, preferably 0.5 to 10% by weight based on the phenols.
It is 3.5% by weight. Examples of the arylsulfonyl hydrazide compounds that are allowed to coexist when the phenols and aldehydes are reacted in the presence of a basic catalyst and an emulsion stabilizer include benzenesulfonyl hydrazide, p,p'-oxybis(benzene sulfonyl hydrazide, toluenesulfonyl hydrazide, etc., and one or more of these may be used. The arylsulfonylhydrazide compound is not limited to these compounds, and any compound having a sulfonylhydrazide group directly connected to an aromatic nucleus can be used. The amount of the arylsulfonyl hydrazide compound added is 0.1 to 8% by weight, preferably 0.2 to 2% by weight based on the phenols. The reaction of the method of the present invention is carried out in an aqueous medium.
It is preferable to do so. For the reaction, predetermined amounts of phenols, aldehydes, basic catalysts, emulsion stabilizers, water, and arylsulfonyl hydrazide compounds are charged into a reaction vessel under stirring, and the temperature is increased at a rate of 0.5 to 1.5°C/min, preferably 0.8°C. Gradually increase the temperature at ~1.2℃ m/min until the reaction temperature is 70-90℃, preferably 83-87℃.
℃ for 60-150 minutes, preferably 80-110 minutes. In this case, a so-called Mannitz reaction occurs with a part of the phenol, a part of the aldehyde, and the arylsulfonyl hydrazide compound, and the general formula At the same time as the substituent represented by is introduced into the benzene nucleus of some phenols, the polycondensation reaction of phenol/aldehyde proceeds, and the general formula The resol resin has a substituent represented by partially introduced into the benzene nucleus. After reacting in this manner, the reactants are cooled to below 40°C to obtain a stable aqueous emulsion of solid resol. Next, this aqueous emulsion is separated into solid and liquid by a conventional method such as filtration or centrifugation, and then washed with water or water to which a surfactant has been added and dried. The expandable resol resin particles of the present invention having a particle size of 1000 μm or less are obtained. The method of the present invention can be carried out by either a continuous method or a batch method, but is usually carried out by a batch method. The foamable resol resin particles obtained as described above become a foam by heating them alone, but fillers such as wood flour or glass powder may be added at the time of foaming, or they may be used as a foam stabilizer. Surfactants may also be added. <Examples> Hereinafter, the present invention will be specifically explained using examples. Example 1 200g of phenol in 1 three-necked flask, 37
% formalin, 70 g of water, 18 g of hexamethylenetetramine, and 8.4 g of calcium chloride were added with stirring to make a homogeneous solution, and to this solution was added 5.8 g of sodium fluoride, and further 8.0 g of p-toluenesulfonyl hydrazide. g and 85°C for 60 min.
The temperature was raised to 100.degree. C., and the reaction was carried out for 90 minutes at the same temperature to obtain an emulsion of microspherical resol resin. The flask contents were then cooled to 30°C and 0.5
After adding water, the supernatant liquid was removed, and the microspheroidized resin particles in the lower layer were washed with water using a 0.5% aqueous solution of silicone surfactant (L-5340, manufactured by Nippon Unicar Co., Ltd.), and air-dried. This is then dried at 50-60°C under reduced pressure (5 mmHg or less) to reduce the average particle size to approx.
Expandable resol resin particles of 100 μm were obtained. (Resin A) Example 2 200g of phenol in a three-necked flask, 37
Add 200 g of formalin, 70 g of water, 18 g of hexamethylenetetramine, and 8.4 g of calcium chloride while stirring to make a homogeneous solution. To this solution, add 5.8 g of sodium fluoride and 5.0 g of benzenesulfonyl hydrazide while stirring. The temperature was raised to 85° C. over 60 minutes, and the reaction was carried out at the same temperature for 90 minutes to obtain an emulsion of microspherical resol resin. The flask contents were then cooled to 30°C and 0.5
After adding water of . Next, this was dried at 50 to 60° C. under reduced pressure (5 mmHg or less) to obtain expandable resol resin particles with an average particle size of about 100 μm.
(Resin B) Example 3 Expandable resol resin particles with an average particle size of 100 μm were obtained in the same manner as in Example 1, except that the amount of p-toluenesulfonyl hydrazide added was 2.0 g.
(Resin C) Example 4 The amount of benzenesulfonyl hydrazide added
Expandable resol resin particles having an average particle size of about 100 μm were obtained in the same manner as in Example 2 except that the amount was changed to 1.0 g.
(Resin D) Reference Example 1 Resins A to D obtained in Examples 1 to 4 above were each
The foams were placed in cubic containers measuring 10 x 10 x 10 cm and heated in an electric furnace at 160°C for 25 minutes to obtain corresponding foams A, B, C and D. All of these foams had extremely uniform cells with a diameter of 0.5 to 1 mm. Next, the density and compressive strength of the foams A, B, C, and D were measured, and the results shown in Table 1 were obtained. In addition, the compressive strength was measured according to JIS K-7220.

【表】 第1表から明らかなように本発明の発泡性樹脂
粒子は密度のコントロールが容易に行えるととも
に良好な圧縮強度を有することが判る。 <発明の効果> 以上述べたごとく、本発明の発泡性レゾール樹
脂粒子は、ベンゼン核のプロトンの一部が特定の
置換基で置換されているものであるから、単独で
加熱により発泡硬化せしめることができる。しか
も得られる発泡体の品位も従来法によつて製造さ
れるレゾール樹脂からの発泡体に比してはるかに
良好である。また、粒径が1000μm以下の微小球
状の固体粒子であるから、従来の溶液状態のもの
や粒末状のものに比して使用時の取り扱いが容易
である。特に反応時のエマルジヨン安定剤として
フツ化カルシウム、フツ化マグネシウム等を用い
て粒子表面をこれらの塩類で被覆せしめたものは
粒子の融着がなく保存安定性に優れる。 また、本発明方法によれば、得られる発泡体の
密度のコントロールも容易に行え、さらに従来法
のごとくレゾール樹脂と発泡剤とを混練する工
程、これを粉砕する工程が必要なく、極めて経済
的に発泡体を製造することができる。
[Table] As is clear from Table 1, the expandable resin particles of the present invention can easily control the density and have good compressive strength. <Effects of the Invention> As described above, in the foamable resol resin particles of the present invention, a portion of the protons of the benzene nucleus is substituted with a specific substituent, so that it can be foamed and cured by heating alone. I can do it. Moreover, the quality of the resulting foam is much better than that of foams made from resol resins produced by conventional methods. Furthermore, since they are microspherical solid particles with a particle size of 1000 μm or less, they are easier to handle during use than conventional solutions or powders. Particularly, those in which calcium fluoride, magnesium fluoride, etc. are used as an emulsion stabilizer during the reaction and the particle surfaces are coated with these salts have excellent storage stability without particle fusion. Furthermore, according to the method of the present invention, the density of the resulting foam can be easily controlled, and there is no need for the process of kneading the resol resin and the blowing agent and the process of crushing the same as in the conventional method, making it extremely economical. Foams can be produced.

Claims (1)

【特許請求の範囲】 1 ベンゼン核のプロトンの一部が一般式 (式中R1は水素又は炭素数1〜10のアルキル
基又は炭素数6〜20のアリール基、R2は炭素数
6〜20のアリール基又はその機能誘導体を表す。)
で示される基で置換されており、かつ粒径が
1000μm以下であることを特徴とする発泡性レゾ
ール樹脂粒子。 2 水性媒体中でフエノール類とアルデヒド類と
を塩基性触媒とエマルジヨン安定剤との存在下で
反応させるに際し、該反応系にアリールスルフオ
ニルヒドラジド系化合物を共存せしめることを特
徴とする発泡性レゾール樹脂粒子の製造法。 3 エマルジヨン安定剤がフツ化カルシウム、フ
ツ化マグネシウム、フツ化ストロンチウムからな
る群から選ばれた少なくとも1種である特許請求
の範囲第2項記載の発泡性レゾール樹脂粒子の製
造法。
[Claims] 1. Some of the protons of the benzene nucleus have the general formula (In the formula, R 1 represents hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and R 2 represents an aryl group having 6 to 20 carbon atoms or a functional derivative thereof.)
Substituted with a group represented by and with a particle size of
Expandable resol resin particles characterized by a particle size of 1000 μm or less. 2. A foaming resol characterized in that when phenols and aldehydes are reacted in an aqueous medium in the presence of a basic catalyst and an emulsion stabilizer, an arylsulfonyl hydrazide compound is allowed to coexist in the reaction system. Method for producing resin particles. 3. The method for producing expandable resol resin particles according to claim 2, wherein the emulsion stabilizer is at least one selected from the group consisting of calcium fluoride, magnesium fluoride, and strontium fluoride.
JP23155084A 1984-11-02 1984-11-02 Expandable resol resin particle and production thereof Granted JPS61108641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23155084A JPS61108641A (en) 1984-11-02 1984-11-02 Expandable resol resin particle and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23155084A JPS61108641A (en) 1984-11-02 1984-11-02 Expandable resol resin particle and production thereof

Publications (2)

Publication Number Publication Date
JPS61108641A JPS61108641A (en) 1986-05-27
JPH0439493B2 true JPH0439493B2 (en) 1992-06-29

Family

ID=16925248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23155084A Granted JPS61108641A (en) 1984-11-02 1984-11-02 Expandable resol resin particle and production thereof

Country Status (1)

Country Link
JP (1) JPS61108641A (en)

Also Published As

Publication number Publication date
JPS61108641A (en) 1986-05-27

Similar Documents

Publication Publication Date Title
CN1249134C (en) Polymeric composite foam
JP2002521543A (en) Method for producing expandable styrene polymer containing graphite particles
JPH0459806A (en) Production of macroporous-type spherical phenol-formaldehyde resin
US4698370A (en) Production of phenolic resin composite foam
CA1334779C (en) Substantially closed cell shaped hard phenol foam and method for preparing that phenol foam
KR900006994B1 (en) Spherical thermosetting phenolic resin particles and process for producing the same
JPS61258819A (en) Production of spherulitic cured phenolic resin particle
US2892811A (en) Resin
JPH0439493B2 (en)
JPH07278339A (en) Mainly closed cell phenol resin foam manufacturing method
JPS5870939A (en) Resin coated sand for shell mold and its production
JPS6353154B2 (en)
CA1197048A (en) Low-density, furfuryl benzylic phenolic thermosetting foam product and method of preparing same
JPS6348831B2 (en)
JPH066615B2 (en) Micro-spherical resin particles and method for producing the same
CN105283478B (en) It is used to prepare the method for sol-gel resins
CA1051149A (en) Formo-phenolic foams and their process of preparation
JPH0559256A (en) Acid curing agent composition and synthetic resin composition
JPS6028297B2 (en) Method for producing phenolic resin foam
JPH06336534A (en) Composite foam
JPS61272260A (en) Minute spherical resin composition and production thereof
JPS6016966A (en) Arylsulfonylhydrazones as foaming agent
JPS6227455A (en) Granular resol resin composition and its manufacturing method
JPS6059168B2 (en) Manufacturing method of carbon porous material
JPS6363727A (en) Production of porous molding of phenolic resin