JPH0459806A - Production of macroporous-type spherical phenol-formaldehyde resin - Google Patents
Production of macroporous-type spherical phenol-formaldehyde resinInfo
- Publication number
- JPH0459806A JPH0459806A JP17381490A JP17381490A JPH0459806A JP H0459806 A JPH0459806 A JP H0459806A JP 17381490 A JP17381490 A JP 17381490A JP 17381490 A JP17381490 A JP 17381490A JP H0459806 A JPH0459806 A JP H0459806A
- Authority
- JP
- Japan
- Prior art keywords
- water
- resin
- mol
- aldehydes
- organic solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Phenolic Resins Or Amino Resins (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、有機物質の吸着、分離、精製、−及び酵素・
微生物等の生理活性物質のl電化用担体として用いられ
るマクロポーラス型球状フェノールアルデヒド樹脂の製
造方法に関するものである。[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to the adsorption, separation, and purification of organic substances, and the use of enzymes and
The present invention relates to a method for producing macroporous spherical phenol aldehyde resin used as a carrier for electrification of physiologically active substances such as microorganisms.
従来、大きな細孔径を有するマクロポーラス型フェノー
ル系樹脂としては、ブロック状のものを破砕し、分級す
る方法で製造されたものが知られている。BACKGROUND ART Conventionally, macroporous phenolic resins having large pore diameters have been manufactured by crushing and classifying blocks.
またポーラス型の球状フエ/−ル系樹脂の製造方法とし
て、特開昭53−113890号公報においては、樹脂
のオリゴマー パラトルエンスルホン酸あるいは無機塩
類を添加する方法が、特開昭53−113891号公報
においては、糖類や有機塩類を添加する方法が提案され
ている。Furthermore, as a method for producing porous spherical phenolic resin, JP-A-53-113890 discloses a method of adding resin oligomer para-toluenesulfonic acid or inorganic salts. The publication proposes a method of adding sugars or organic salts.
また特公昭62−36048号公報には、芳香族アミン
系のマクロポーラス型樹脂の製造方法が提案されており
、無機塩類及び親水性界面活性剤を用いる方法が記載さ
れている。Further, Japanese Patent Publication No. 62-36048 proposes a method for producing an aromatic amine-based macroporous resin, and describes a method using inorganic salts and a hydrophilic surfactant.
微粒球状樹脂の製造方法としては、特願平1−6337
4号に分散剤を用いる方法が提案されている。As a method for producing fine spherical resin, Japanese Patent Application No. 1-6337
No. 4 proposes a method using a dispersant.
前記のような従来法において、破砕型のマクロポーラス
型樹脂は球状の樹脂に比べてハンドリング性が悪く、使
用に際して樹脂塔へ充填する場合、均一な充填か困難で
一部空隙が生じて、塔内で液の流れのショートパスが生
じやすい問題上、使用中に樹脂の破壊が生じ易く、微細
粉が発生し、配管の詰りゃ、塔内の圧の上昇等が起る等
の問題があり、球状の樹脂が望まれていた。In the conventional method described above, the crushed macroporous resin has poor handling properties compared to spherical resin, and when it is filled into a resin tower during use, it is difficult to fill the resin evenly, resulting in some voids and Due to the problem of short paths in the flow of liquid within the tower, the resin tends to break during use, fine powder is generated, and if the pipes become clogged, the pressure inside the tower increases, etc. , a spherical resin was desired.
また、特開昭53−113890号公報や特開昭53−
113891号公報に記載の樹脂のオリゴマー、無機塩
類や有機塩類、糖類を添加する方法は、小さな細孔の樹
脂しか得られず、当初の目的の吸着速度を上げることは
できたが、大きな細孔径を有し、しかも細孔構造の安定
したマクロポーラス型樹脂の製造は困難であった。それ
放水発明の目的とする有機物質の吸着、分離、精製や酵
素などの固定化担体として用いるには不十分なものであ
った。Also, JP-A No. 53-113890 and JP-A No. 53-Sho.
The method of adding resin oligomers, inorganic salts, organic salts, and saccharides described in Publication No. 113891 only yields resin with small pores, and although it was possible to increase the adsorption rate as originally intended, it did not result in large pore diameters. It has been difficult to produce macroporous resins with a stable pore structure. It was insufficient to be used as a support for adsorption, separation, and purification of organic substances or as an immobilization carrier for enzymes, etc., which is the purpose of the water spraying invention.
また特公昭62−36048号公報は、芳香族アミン系
のマクロポーラス型樹脂に関するもので、アミノ基が架
橋反応に関与しており、官能基として有効に利用されな
い問題を有していた。その為、遊離アミン基を官能基と
して有するマクロポーラス型樹脂の製造方法が望まれて
いた。Further, Japanese Patent Publication No. 62-36048 relates to an aromatic amine-based macroporous resin, and has the problem that amino groups are involved in crosslinking reactions and are not effectively utilized as functional groups. Therefore, a method for producing a macroporous resin having a free amine group as a functional group has been desired.
また特願平1−63374号記載の微粒球状樹脂の製造
方法はゲル状の樹脂の製造方法に関するもので、本発明
の目的とするマクロポーラス型樹脂の製造方法には適応
できないものであった。Furthermore, the method for producing a fine spherical resin described in Japanese Patent Application No. 1-63374 relates to a method for producing a gel-like resin, and cannot be applied to the method for producing a macroporous resin, which is the object of the present invention.
本発明、は、安定した大きな細孔構造を有する、即ちマ
クロポーラス型の球状のフェノールアルデヒド系樹脂及
びその製造方法を提供することを目的とするものである
。The object of the present invention is to provide a macroporous spherical phenolaldehyde resin having a stable and large pore structure, and a method for producing the same.
本発明者らは、この様な課題を解決するために鋭意検討
した結果、樹脂の重縮合に際して、事前に水溶性有機溶
媒と無機系充填剤を適当な割合で添加すれば、重縮合の
過程において、有機溶媒による反応生成物の溶解効果と
無機系充填剤による反応生成物の塩析効果との相互効果
により、大きな細孔を有する樹脂が製造できるという事
実を見出し、本発明に到達した。As a result of intensive studies to solve these problems, the present inventors found that if a water-soluble organic solvent and an inorganic filler are added in advance in an appropriate ratio during polycondensation of resin, the process of polycondensation can be improved. In the above, it was discovered that a resin having large pores can be produced by the mutual effect of the dissolution effect of the reaction product by an organic solvent and the salting-out effect of the reaction product by an inorganic filler, and the present invention was achieved based on this discovery.
すなわち、本発明は、フェノール類とアルデヒド類(及
び/又は、フェノール類とアルデヒド類との初期縮合物
)、水と相溶性のある有機溶媒、及び水溶性無機系充填
剤を含む水溶液を触媒の存在下で反応させてプレポリマ
ー組成物を調製し、次いで該プレポリマー組成物を水と
相溶性のない有機溶媒中に加え懸濁重合を行なうことを
特徴とするマクロポーラス型球状フェノールアルデヒド
樹脂の製造方法を要旨とするものである。That is, the present invention provides an aqueous solution containing a phenol and an aldehyde (and/or an initial condensate of a phenol and an aldehyde), an organic solvent that is compatible with water, and a water-soluble inorganic filler as a catalyst. A macroporous spherical phenol aldehyde resin is prepared by reacting in the presence of water to prepare a prepolymer composition, and then adding the prepolymer composition to an organic solvent incompatible with water to carry out suspension polymerization. The gist is the manufacturing method.
本発明に用いられるフェノール類としては、フェノール
樹脂の調製に通常使用されるものでよく、例えばフェノ
ール自身、0−クレゾール、l−クレゾール、p−クレ
ゾール、0−エチルフェノール、l−エチルフェノール
、p−工・チルフェノール、’213−キシレノール、
2,5−キシレノール、3,4−キシレノール、3.5
−キシレノール等のアルキル置換フェノール;レゾルシ
ン、カテコール等の多価フェノール;α−ナフトール、
β−ナフトール等のフェノール性水酸基をもつ化合物等
があげられる。中でもフェ/−ル、0−クレゾール、■
クレゾール、p−クレゾール、3.5−キシレノール、
レゾルシン、カテコール等カ好マしい。The phenols used in the present invention may be those commonly used in the preparation of phenolic resins, such as phenol itself, 0-cresol, l-cresol, p-cresol, 0-ethylphenol, l-ethylphenol, p-cresol, -Tylphenol, '213-xylenol,
2,5-xylenol, 3,4-xylenol, 3.5
- Alkyl-substituted phenols such as xylenol; polyhydric phenols such as resorcinol and catechol; α-naphthol,
Examples include compounds having a phenolic hydroxyl group such as β-naphthol. Among them, fer/-le, 0-cresol, ■
Cresol, p-cresol, 3.5-xylenol,
Resorcinol, catechol, etc. are preferred.
本発明に於いては又フェノール類として、脂肪族アミン
類を導入したフェノール類も使用出来る。In the present invention, phenols into which aliphatic amines have been introduced can also be used as phenols.
このようなフェノール類を使用することにより、遊離ア
ミ7基を官能基として有するマクロポーラス型球状フェ
ノールアルデヒド樹脂を製造することが可能となる。そ
のようなフェノール類は、例えば既知のアミノメチル化
反応等に従い、上記フェノール類、脂肪族アミン類、ア
ルデヒド類、及び酸触媒を攪拌混合することにより得ら
れる。By using such phenols, it becomes possible to produce a macroporous spherical phenolic aldehyde resin having 7 free amide groups as a functional group. Such phenols can be obtained, for example, by stirring and mixing the above-mentioned phenols, aliphatic amines, aldehydes, and acid catalysts according to known aminomethylation reactions.
脂肪族アミン類としては、例えばジメチルアミン、ジエ
チルアミン、ジ−n−ブチルアミン、ジー1so−ブチ
ルアミン、ジ−n−プロピルアミン、ジー1sO−プロ
ピルアミン、N−メチルヘキシルアミン、ジ−エチレン
トリアミン、トリエチレンテトラミン、テトラエチレン
ペンタミンなどがあげられ、好ましくは、ジエチルアミ
ン、ジエチレントリアミン、トリエチレンテトラミンで
ある。Examples of aliphatic amines include dimethylamine, diethylamine, di-n-butylamine, di-1so-butylamine, di-n-propylamine, di-1sO-propylamine, N-methylhexylamine, di-ethylenetriamine, and triethylene. Tetramine, tetraethylenepentamine, etc. are mentioned, and diethylamine, diethylenetriamine, and triethylenetetramine are preferable.
アルデヒド類としては、例えばホルムアルデヒド、パラ
ホルムアルデヒド等のアルデヒド誘導体、アセトアルデ
ヒドやプロピオンアルデヒド等の脂肪族アルデヒド;ヘ
ンズアルデヒド等の芳香族アルデヒド等かあげられる。Examples of the aldehydes include aldehyde derivatives such as formaldehyde and paraformaldehyde, aliphatic aldehydes such as acetaldehyde and propionaldehyde, and aromatic aldehydes such as henzaldehyde.
中でもホルムアルデヒド、パラホルムアルデヒド等が好
ましい。Among them, formaldehyde, paraformaldehyde and the like are preferred.
酸触媒としては、例えば塩酸等が挙げられる。Examples of the acid catalyst include hydrochloric acid.
合成反応は、例えば上記アミン類1モルに対し、塩酸0
.5〜4.0モルを加え、これに前記フェノール類、ア
ルデヒド類を各々0.5〜4.0モルと、水10〜10
0gを加えて混合し、攪拌装置を備えた反応容器中で、
50〜80°Cに加温し、反応することによって得られ
る。In the synthesis reaction, for example, 0% hydrochloric acid is added to 1 mole of the above amines.
.. Add 5 to 4.0 moles of the phenols and aldehydes, and add 0.5 to 4.0 moles of each of the phenols and aldehydes, and 10 to 10 moles of water.
Add 0 g and mix in a reaction vessel equipped with a stirring device.
It is obtained by heating to 50-80°C and reacting.
上記脂肪族アミン類を導入したフェノール類の具体例と
しては、例えばp−ジエチルアミノメチルフェノール、
m−ジエチルアミノメチルフェノール、0−ジエチルア
ミノメチルフェノール等が挙げられる。Specific examples of phenols into which the above aliphatic amines are introduced include p-diethylaminomethylphenol,
Examples include m-diethylaminomethylphenol and 0-diethylaminomethylphenol.
本発明のフェノールアルデヒド樹脂の調製に於いては、
上記フェノール類は1種以上使用することが出来る。In preparing the phenolaldehyde resin of the present invention,
One or more of the above phenols can be used.
本発明のフェノールアルデヒド樹脂の原料として使用す
るアルデヒド類としては、通常使用されるものでよく、
例えば上記脂肪族アミン類を導入したフェノール類の合
成に於いて例示したものか挙げられ、これらの1種以上
が使用される。The aldehydes used as raw materials for the phenolic aldehyde resin of the present invention may be those commonly used.
Examples include those exemplified in the synthesis of phenols into which aliphatic amines are introduced, and one or more of these may be used.
本発明に於いては、上記フェノール類−アルデヒド類混
合物と併用して又はこれの替わりに、フェノール類とア
ルデヒド類との初期縮合物を使用してもよい。初期縮合
物の原料となるフェノール類及びアルデヒド類としては
、それぞれ上記のものが例示される。In the present invention, an initial condensate of phenols and aldehydes may be used in combination with or instead of the phenol-aldehyde mixture. Examples of the phenols and aldehydes that serve as raw materials for the initial condensate include those listed above.
上記初期縮合物の調製法は通常のフェノールアルデヒド
重縮合法に従って行なってよく、例えばフェノール類、
アルデヒド類、及び縮合触媒を水なとの水性媒体中に於
いて懸濁下縮合を行なって調製される。The above-mentioned initial condensate may be prepared according to the usual phenolaldehyde polycondensation method, for example, phenols,
It is prepared by condensing an aldehyde and a condensation catalyst under suspension in an aqueous medium such as water.
縮合触媒としては、フェノール−アルデヒド重縮合に通
常使用されるものでよく、例えば、水酸化ナトリウム、
水酸化カリウム、水酸化マグネシウム、水酸化アンモニ
ウム等の塩基性触媒、塩酸、硫酸、酢酸、ギ酸等の酸性
触媒等が挙げられる。The condensation catalyst may be one commonly used for phenol-aldehyde polycondensation, such as sodium hydroxide,
Examples include basic catalysts such as potassium hydroxide, magnesium hydroxide, and ammonium hydroxide, and acidic catalysts such as hydrochloric acid, sulfuric acid, acetic acid, and formic acid.
反応組成は、フェノール類1モルに対して、アルデヒド
類は0.2〜0,8モル、縮合触媒は0゜05〜0.2
モルが好ましい。The reaction composition is 1 mole of phenol, 0.2 to 0.8 mole of aldehyde, and 0.05 to 0.2 mole of condensation catalyst.
Moles are preferred.
縮合条件は、例えば50〜90°Cで1〜5時間が好ま
しい。Preferably, the condensation conditions are, for example, 50 to 90°C for 1 to 5 hours.
上記のようにして調製される初期縮合物は、−般に重合
度1〜2を有する。The precondensate prepared as described above generally has a degree of polymerization of 1 to 2.
本発明においてプレポリマーの調製に用いられる水と相
溶性のある有機溶媒としては、メチルセロソルブ、エチ
ルセロソルブ、ブチルセロソルブ、メチルカルピトール
、エチルカルピトール、エチレングリコール、ポリエチ
レングリコール(分子量2000以下)、メタノール、
エタノール、プロパツールなどのアルコール類があげら
れる。これらは1種または2種以上を用いることができ
る。Examples of organic solvents compatible with water used in the preparation of the prepolymer in the present invention include methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl calpitol, ethyl calpitol, ethylene glycol, polyethylene glycol (molecular weight 2000 or less), methanol,
Examples include alcohols such as ethanol and propatool. These can be used alone or in combination of two or more.
好ましくは、エチルセロソルブ、メチルカルピトール、
ポリエチレングリコール等である。Preferably ethyl cellosolve, methylcarpitol,
Polyethylene glycol, etc.
本発明に用いられる水溶性無機系充填剤は、プレポリマ
ーを塩析させ、樹脂にマクロポアを付与するものである
。そのような無機充填剤としては、例えば塩化カリウム
、塩化ナトリウム、塩化マグネシウム等のアルカリ、あ
るいはアルカリ土類の塩化物、リン酸−カリウム、リン
酸二カリウム、リン酸〜ナトリウム、リン酸二ナトリウ
ム等のアルカリリン酸塩などがあげられ、これらの1種
以上が使用される。好ましくは、リン酸−カリウム、塩
化ナトリウム、塩化マグネシウム等である。The water-soluble inorganic filler used in the present invention salts out the prepolymer and imparts macropores to the resin. Examples of such inorganic fillers include alkali or alkaline earth chlorides such as potassium chloride, sodium chloride, and magnesium chloride, potassium phosphate, dipotassium phosphate, sodium phosphate, and disodium phosphate. Examples include alkali phosphates, and one or more of these may be used. Preferred are potassium phosphate, sodium chloride, magnesium chloride, and the like.
本発明においてプレポリマーの調製に使用する触媒とし
ては、前記初期縮合物に於いて例示したもの等が挙げら
れる。Examples of the catalyst used in the preparation of the prepolymer in the present invention include those exemplified in connection with the above-mentioned initial condensate.
本発明におけるプレポリマー組成物は、上記各配合剤を
水などの水性媒体に溶解(若しくは分散)させ、混合す
ることにより調製される。上記各配合剤の使用量は、フ
ェノール類1モルに対して、アルデヒド類は2〜10モ
ル、水と相溶性のある有機溶媒は0.1−10モル、水
溶性無機充填剤は0.02〜0.4モル、触媒は0.0
5〜0.2モルが、それぞれ好ましい。又、フェノール
類とアルデヒド類との初期縮合物を使用するときは、そ
の使用量としては、初期縮合物又は初期縮合物とフェノ
ール類との混合物1モルに対して、アルデヒド類2〜1
0モル、水と相溶性のある有機溶媒0.1〜10モル、
水溶性無機充填剤0.02〜0゜4モル、触媒0.05
〜0.2モル使用ればよい。The prepolymer composition in the present invention is prepared by dissolving (or dispersing) each of the above-mentioned ingredients in an aqueous medium such as water and mixing. The amounts of each of the above compounding agents used are 2 to 10 moles of aldehydes, 0.1 to 10 moles of water-compatible organic solvents, and 0.02 moles of water-soluble inorganic fillers to 1 mole of phenols. ~0.4 mol, catalyst is 0.0
5 to 0.2 mol is preferable, respectively. In addition, when using an initial condensate of phenols and aldehydes, the amount used is 2 to 1 of aldehydes per 1 mole of the initial condensate or a mixture of the initial condensate and phenols.
0 mol, 0.1 to 10 mol of an organic solvent compatible with water,
Water-soluble inorganic filler 0.02-0゜4mol, catalyst 0.05
~0.2 mol may be used.
アルデヒド類の使用量が上記の範囲より少なすぎる場合
は、強固な樹脂が得られず、また上記の範囲より多すぎ
る場合は、アルデヒド類のロスか多くなり好ましくない
。水相溶性有機溶媒の使用量が0.1モルより少ないと
、樹脂の重縮合の際に、縮合生成物の充分な溶解かでき
ず、マクロポアの生成が起こりにくくなり、また10モ
ルを越えると、縮合生成物の析出が遅くなり、やはりマ
クロポアの生成が起こりにくくなる。水溶性無機充填剤
の添加量が、0.02モルより少ないと、縮合生成物に
対する塩析効果が低下し、マクロポアが生成しにくくな
り、0.4モルを超える場合、物理強度の低い樹脂を得
る結果となる。If the amount of aldehydes used is too small than the above range, a strong resin cannot be obtained, and if it is too large than the above range, the loss of aldehydes will increase, which is not preferable. If the amount of the water-compatible organic solvent used is less than 0.1 mol, the condensation product cannot be sufficiently dissolved during polycondensation of the resin, making it difficult to form macropores, and if it exceeds 10 mol, , the precipitation of condensation products is delayed, and the formation of macropores is also less likely to occur. If the amount of the water-soluble inorganic filler added is less than 0.02 mol, the salting out effect on the condensation product will be reduced, making it difficult to form macropores, and if it exceeds 0.4 mol, the resin with low physical strength will be The result will be obtained.
本発明におけるプレポリマー組成物の調製に於いて、上
記各配合剤の添加順序等は特に限定されないが、例えば
フェノール類とアルデヒド類を投入した後、水相溶性有
機溶媒、水溶性無機系充填剤を添加するのが好ましい。In preparing the prepolymer composition of the present invention, the order of adding the above-mentioned ingredients is not particularly limited, but for example, after adding phenols and aldehydes, a water-compatible organic solvent and a water-soluble inorganic filler are added. It is preferable to add.
次いでこれらを攪拌装置を備えた反応容器中に投入し、
反応触媒を添加し、必要に応じて水1〜300gを加え
て30°C以下で30〜60分攪拌混合して調製される
。Next, these were put into a reaction vessel equipped with a stirring device,
It is prepared by adding a reaction catalyst, adding 1 to 300 g of water as needed, and stirring and mixing at 30° C. or lower for 30 to 60 minutes.
次いま上記のようにして得られたプレポリマー組成物は
、好ましくは流動性を保持している間に水と相溶性のな
い有機溶媒に懸濁せしめ重縮合反応を行う。本発明に用
いられる水に不溶な有機溶媒の例としては、四塩化炭素
、クロロホルム、トリクロロエチレン、パークロルエチ
レン、ジクロルエチレン、ジクロルエタン、1.2−ジ
クロルプロパン等のハロゲン化炭化水素類;ベンゼン、
トルエン、0−キシレン、m−キシレン、p−キシレン
等の芳香族炭化水素類;シクロヘキサノール、シクロペ
ンタノール等の環状アルコール類等があげられ、これら
の1種以上が使用される。好ましくは、四塩化炭素、パ
ークロルエチレンである。Next, the prepolymer composition obtained as described above is suspended in an organic solvent incompatible with water, preferably while maintaining fluidity, to undergo a polycondensation reaction. Examples of water-insoluble organic solvents used in the present invention include halogenated hydrocarbons such as carbon tetrachloride, chloroform, trichloroethylene, perchlorethylene, dichloroethylene, dichloroethane, and 1,2-dichloropropane; benzene; ,
Examples include aromatic hydrocarbons such as toluene, 0-xylene, m-xylene, and p-xylene; cyclic alcohols such as cyclohexanol and cyclopentanol; one or more of these may be used. Preferred are carbon tetrachloride and perchlorethylene.
尚、その他添加剤として、懸濁系を安定化させる助剤と
しての分散安定剤を用いてもよく、また水に不溶の有機
溶媒の粘度が低い場合は、増粘剤等を加えてもよい。In addition, as other additives, a dispersion stabilizer may be used as an aid to stabilize the suspension system, and if the viscosity of the organic solvent insoluble in water is low, a thickener etc. may be added. .
懸濁重合に際しては、上記の水と相溶性のない有機溶媒
を攪拌装置を備えた反応容器中に入れ、攪拌しながら、
前記プレポリマー組成物を投入し懸濁せしめるのが好ま
しい。この時のプレポリマー組成物と、水と相溶性のな
い有機溶媒との容量比は、1.5〜3が好ましい。懸濁
状態を攪拌により保持したまま加温し、水及びその他の
留出物を系外に留去させながら1〜5時間重縮合を行な
い、最終的に100〜120℃に到達させて反応を完結
させる。During suspension polymerization, the organic solvent that is not compatible with water is placed in a reaction vessel equipped with a stirring device, and while stirring,
Preferably, the prepolymer composition is added and suspended. At this time, the volume ratio between the prepolymer composition and the organic solvent that is incompatible with water is preferably 1.5 to 3. The suspended state is heated while being stirred, and polycondensation is carried out for 1 to 5 hours while water and other distillates are distilled out of the system, and the reaction is finally carried out at 100 to 120°C. complete it.
尚、平均粒径l〜30μの微粒球状樹脂を得たい場合は
、攪拌装置として高速攪拌機を用いて、懸濁状態で高速
攪拌しながら加温し、樹脂が析出した時点で高回転の攪
拌を止め、前記の通常の懸濁重合法に移行し、重縮合を
完結させれば良い。If you want to obtain a fine spherical resin with an average particle size of 1 to 30μ, use a high-speed stirrer as a stirring device, heat it while stirring at high speed in a suspended state, and when the resin precipitates, start stirring at high speed. The polycondensation may be completed by stopping the process and proceeding to the above-mentioned normal suspension polymerization method.
上記高速攪拌機としては、例えばホモジナイザーあるい
はウルトラディスパーサ−(ヤマト科学(株))等が好
ましく用いられ、攪拌速度としては、3000 rpm
以上が好ましい。As the high-speed stirrer, for example, a homogenizer or an ultra-disperser (Yamato Scientific Co., Ltd.) is preferably used, and the stirring speed is 3000 rpm.
The above is preferable.
上記のようにして製造される本発明のマクロポーラス型
球状フェノールアルデヒド樹脂は、一般に平均粒径l〜
1000μm、比表面積20〜500m’/g、孔(ボ
ア)容積0.1〜0.6m(!/g、平均孔径20〜2
00人を有する。The macroporous spherical phenol aldehyde resin of the present invention produced as described above generally has an average particle size of l to
1000 μm, specific surface area 20-500 m'/g, pore volume 0.1-0.6 m (!/g, average pore diameter 20-2
00 people.
次に本発明を実施例によって、より具体的に説明する。 Next, the present invention will be explained in more detail with reference to Examples.
尚、本発明において、マクロポーラス型球状フェノール
系樹脂の比表面積、細孔容積、平均孔径は、流動相式比
表面積測定装置(カンタソーブ@、米・カンタクローム
社製)を用いて、N。In the present invention, the specific surface area, pore volume, and average pore diameter of the macroporous spherical phenolic resin are measured using a fluid phase type specific surface area measuring device (Cantasorb@, manufactured by Quantachrome Co., Ltd., USA).
ガス吸着法により測定した。Measured by gas adsorption method.
(実施例1)
通常の攪拌装置を備えた、500−の三ツロフラスコに
レゾルシン0.5モル、塩化マグネシウム6水塩0.1
モルを入れ、水150gを投入して、レゾルシン、塩化
マグネシウムを溶解した。そこに、メチルセロソルブ0
.33モル、37%のホルムアルデヒド水溶液1モル、
24%の水酸化すト1功ム水溶液10gを投入し、3Q
’Ciこて、30分間反応を行い、樹脂組成物を得た。(Example 1) 0.5 mol of resorcin and 0.1 mol of magnesium chloride hexahydrate were placed in a 500-sized Mitsulo flask equipped with a regular stirring device.
150 g of water was added to dissolve resorcinol and magnesium chloride. There, methyl cellosolve 0
.. 33 mol, 1 mol of 37% formaldehyde aqueous solution,
Pour 10g of 24% hydroxide solution into 3Q
A reaction was carried out using a 'Ci trowel for 30 minutes to obtain a resin composition.
この樹月旨組成物を、パークロルエチレン400m(!
を入れた10100Oセノスラブルフラスコ中ζこ投入
して加温し、水を系外に留去させた後、100°Cで懸
濁重合を行い、球状樹脂を得た。この球状樹月旨の比表
面積、細孔容積及び平均孔径を測定した結果を第1表に
示す。This Jugetsuji composition was added to 400 m of perchlorethylene (!
The mixture was placed in a 10100O ceno-slabble flask containing ζ and heated, water was distilled out of the system, and suspension polymerization was carried out at 100°C to obtain a spherical resin. Table 1 shows the results of measuring the specific surface area, pore volume, and average pore diameter of this spherical tree.
(実施例2)
通常の攪拌装置を備えた500mQ三・ソロフラスコに
、フェノール0.25モル、37%ホルムアルデヒド水
溶液0.2モルを入れ、水100g、及び24%水酸化
ナトリム水溶液6gを投入した後、70°Cで2時間反
応させ初期縮合物を得た。(Example 2) 0.25 mol of phenol and 0.2 mol of a 37% formaldehyde aqueous solution were placed in a 500 mQ tri-Solo flask equipped with a conventional stirring device, and 100 g of water and 6 g of a 24% sodium hydroxide aqueous solution were added thereto. Thereafter, the mixture was reacted at 70°C for 2 hours to obtain an initial condensate.
この後、レゾルシン0.25モル、塩化マグネシウム6
水塩0.2モルを投入し、溶解後、メチルセロソルブ0
.53モル、37%ホルムアルデヒド応させ、樹脂組成
物を得た。この樹脂組成物を、トルエン200m12、
四塩化炭素200mCの混合溶媒を入れた1000m1
2セパラブルフラスコ中に投入して加温し、水を系外に
留去させた後、100°Cで懸濁重合により、反応を行
い、球状樹脂を得た。この球状樹脂の各物性値を実施例
1と同様に測定した結果を第1表に示す。After this, 0.25 mol of resorcinol, 6 mol of magnesium chloride
Add 0.2 mole of aqueous salt and dissolve it, then add 0.2 mole of methyl cellosolve.
.. A resin composition was obtained by reacting with 53 mol, 37% formaldehyde. This resin composition was mixed with 200ml of toluene,
1000ml containing 200mC of carbon tetrachloride mixed solvent
After the mixture was placed in a separable flask and heated, water was distilled out of the system, the reaction was carried out by suspension polymerization at 100°C, and a spherical resin was obtained. The physical property values of this spherical resin were measured in the same manner as in Example 1, and the results are shown in Table 1.
(実施例3)
通常の攪拌装置を備えた500mC三ツロフラスコに、
0−クレゾール0.2モル、37%ホルムアルデヒド水
溶液0.18モル、20%水酸化カリウム水溶液10g
を入れ、水150gを投入した後、50°Cで5時間反
応を行い初期縮谷物を得た。そノ後、分子量400のポ
リエチレングリコール0。(Example 3) In a 500 mC three-tube flask equipped with a normal stirring device,
0.2 mol of 0-cresol, 0.18 mol of 37% formaldehyde aqueous solution, 10 g of 20% potassium hydroxide aqueous solution
After adding 150 g of water, the reaction was carried out at 50°C for 5 hours to obtain an initial shrinkage product. Then, polyethylene glycol 0 with a molecular weight of 400.
05モル、メチルセロソルブ0.26モル、塩化バリウ
ム0.1モルを投入し、30°Cで30分間反応を行い
、樹脂組成物を得た。この樹脂組成物を、パークロルエ
チレン400mf2ヲ入れたlOOOm(!セパラブル
フラスコ中に投入して加温し、水を系外に留去させた後
、100℃で懸濁重合により、反応を行い、球状樹脂を
得た。この球状樹脂の各物性値を実施例1と同様にして
測定した結果を第1表に示す。0.5 mol of methyl cellosolve, 0.26 mol of methyl cellosolve, and 0.1 mol of barium chloride were added, and the reaction was carried out at 30°C for 30 minutes to obtain a resin composition. This resin composition was put into a separable flask containing 400mf2 of perchlorethylene, heated, water was distilled out of the system, and the reaction was carried out by suspension polymerization at 100°C. A spherical resin was obtained.The physical property values of this spherical resin were measured in the same manner as in Example 1, and the results are shown in Table 1.
(実施例4)
通常の攪拌装置を備えた500ml!三ツロフラスコに
、フェノール0.25モル、37%ホルムアルデヒド水
溶液0.2モルを入れ、水15’Og、24%水酸化ナ
トリウム水溶液10gを投入した後、70’Cで5時間
反応を行い初期縮合物を得た。その後レゾルシン0.2
5モル、塩化マグネシウム6水塩0.1モル、ブチルセ
ロソルブ0.17モル、37%ホルムアルデヒド水溶液
0.8モルを投入した後、更に30°Cで1時間反応を
行い樹脂組成物を得た。この樹脂組成物をパークロルエ
チレン400m12を入れた1000−セパラブルフラ
スコ中に投入して加温し、水を系外に留去させた後、1
00°Cで懸濁重合を行い、球状樹脂を得た。この球状
樹脂の各物性値を実施例1と同様にして測定した結果を
第1表に示す。(Example 4) 500ml with a normal stirring device! Put 0.25 mol of phenol and 0.2 mol of 37% formaldehyde aqueous solution into a Mitsuro flask, add 15'Og of water, and 10g of 24% sodium hydroxide aqueous solution, and react at 70'C for 5 hours to obtain an initial condensate. I got it. Then resorcinol 0.2
After adding 5 mol of magnesium chloride hexahydrate, 0.1 mol of butyl cellosolve, and 0.8 mol of a 37% formaldehyde aqueous solution, the reaction was further carried out at 30°C for 1 hour to obtain a resin composition. This resin composition was poured into a 1000-separable flask containing 400 ml of perchlorethylene, heated, and the water was distilled out of the system.
Suspension polymerization was carried out at 00°C to obtain a spherical resin. The physical property values of this spherical resin were measured in the same manner as in Example 1, and the results are shown in Table 1.
(比較例1)
実施例1の方法において、塩化マグネシウムを添加せず
に重縮合反応を行なった以外実施例1と同様に行ない、
得られた樹脂の物性値を実施例1と同様にして測定した
結果を第1表に示す。(Comparative Example 1) The same procedure as in Example 1 was carried out except that the polycondensation reaction was carried out without adding magnesium chloride in the method of Example 1.
The physical properties of the obtained resin were measured in the same manner as in Example 1, and the results are shown in Table 1.
(比較例2)
実施例1の方法において、メチルセロソルブを添加せず
に重縮合反応を行なった以外は実施例1と同様に行ない
、得られた樹脂の物性値を実施例1と同様にビて測定し
た結果を第1表に示す。(Comparative Example 2) The method of Example 1 was repeated except that the polycondensation reaction was carried out without adding methyl cellosolve, and the physical properties of the obtained resin were evaluated in the same manner as in Example 1. The results of the measurements are shown in Table 1.
(参考例1 ニジエチルアミンを導入したフェノールの
調製)
攪拌装置を備えた500−三ツロフラスコに、ジエチル
アミン2.4モルを入れ、35%塩酸水溶液250gを
30℃以下でゆっくりと滴下して加え、その後、フェノ
ール2.4モルと水48g、更に92%バラホルムアル
デヒド2.4モルを加えて、70℃で2時間反応させ、
ジエチルアミンを導入したフェノールの水溶液を得た。(Reference Example 1 Preparation of Phenol Introduced Nidiethylamine) 2.4 mol of diethylamine was placed in a 500-mituro flask equipped with a stirring device, and 250 g of a 35% hydrochloric acid aqueous solution was slowly added dropwise at 30° C. or below, and then , 2.4 moles of phenol, 48 g of water, and 2.4 moles of 92% paraformaldehyde were added and reacted at 70°C for 2 hours.
An aqueous solution of phenol introduced with diethylamine was obtained.
(実施例5)
通常の攪拌装置を備えた1000m12三ツロフラスコ
に、参考例1で得たフェノール水溶液を0。(Example 5) The phenol aqueous solution obtained in Reference Example 1 was added to a 1000 m 12 Mitsuro flask equipped with a normal stirring device.
6モル入れ、レゾルシン0.6モル、リン酸−カリウム
0.09モル、水80g、メチルセロソルブ1.56モ
ルを投入し、37%ホルムアルデヒド水溶液1.8モル
を加えた後、50°Cで15分間反応させ、樹脂組成物
を得た。この樹脂組成物をパークロルエチレン900m
f2を入れた2000m12セパラブルフラスコに投入
して加温し、水を系外に留去させた後、120’Cで懸
濁重合によって反応させ、球状樹脂を得た。この球状樹
脂の各物性値を実施例1と同様にして測定した結果を第
1表に示す。6 mol, 0.6 mol of resorcin, 0.09 mol of potassium phosphate, 80 g of water, 1.56 mol of methyl cellosolve, and after adding 1.8 mol of 37% formaldehyde aqueous solution, heated at 50°C for 15 mol. The reaction was carried out for a minute to obtain a resin composition. This resin composition was mixed with 900ml of perchlorethylene.
The mixture was poured into a 2000 m12 separable flask containing f2, heated, water was distilled out of the system, and then reacted by suspension polymerization at 120'C to obtain a spherical resin. The physical property values of this spherical resin were measured in the same manner as in Example 1, and the results are shown in Table 1.
(実施例6)
通常の攪拌装置を備えた500m12三ツロフラスコに
参考例1て得たフェノール水溶液を0.3モル、レゾル
シン0.3モル、リン酸−カリウム005モル、水40
g1メチルカルピトール0.5モルを投入し、37%ホ
ルムアルデヒド水溶液0゜9モルを加えた後、50℃で
15分間反応させ、樹脂組成物を得た。この樹脂組成物
をパークロルエチレン450m12を入れた10100
O!セパラブルフラスコに投入して加温し、水を系外に
留去させた後、120 ’Cて懸濁重合によって反応さ
せ、球状樹脂を得た。この球状樹脂の各物性値を実施例
1と同様にして測定した結果を第1表に示す。(Example 6) In a 500 m12 Mitsuro flask equipped with a normal stirring device, 0.3 mol of the phenol aqueous solution obtained in Reference Example 1, 0.3 mol of resorcin, 0.05 mol of potassium phosphate, and 40 mol of water were added.
After adding 0.5 mol of g1 methylcarpitol and adding 0.9 mol of 37% formaldehyde aqueous solution, the mixture was reacted at 50°C for 15 minutes to obtain a resin composition. This resin composition was added to 10100ml containing 450ml of perchlorethylene.
O! The mixture was placed in a separable flask and heated, water was distilled out of the system, and the mixture was reacted by suspension polymerization at 120'C to obtain a spherical resin. The physical property values of this spherical resin were measured in the same manner as in Example 1, and the results are shown in Table 1.
(比較例3)
リン酸−カリウムを添加しなかった以外は実施例5と同
様の方法で重縮合反応を進め、得られた樹脂の物性値を
実施例1と同様にして測定した結果を第1表に示す。(Comparative Example 3) The polycondensation reaction was carried out in the same manner as in Example 5 except that potassium phosphate was not added, and the physical properties of the resulting resin were measured in the same manner as in Example 1. It is shown in Table 1.
(比較例4)
メチルセロソルブを添加しなかった以外は実施例5と同
様の方法で重縮合反応を進め、得られた樹脂の物性値を
実施例1と同様にして測定した結果を第1表に示す。(Comparative Example 4) The polycondensation reaction was carried out in the same manner as in Example 5 except that methyl cellosolve was not added, and the physical properties of the resulting resin were measured in the same manner as in Example 1. The results are shown in Table 1. Shown below.
(実施例7)
通常の攪拌装置を備えた500m(!三)ロフラスコに
、レゾルシン0.2モルを入h、水60g、 塩化マグ
ネシウム6水塩0.04モル、メチルセロソルブ0.1
3モルを投入した後、24%水酸化ナトリウム水溶液0
.024モル、37%ホルムアルデヒド水溶液0.4モ
ルを投入し、306Cで300分間反応せ、樹脂組成物
を得た。この樹脂組成物をパークロルエチレン200m
(!を入れたビーカー中に投入し、ウルトラティスパー
サー(ヤマト(株))にて、回転数400 Orpmで
攪拌しながら、加温し、水を系外に留去させた後、樹脂
の析出か確認された時点で、通常の攪拌機による懸濁重
合に移行し、100°Cに到達した時点で重合を終了し
て微小球状樹脂を得た。この球状樹脂の各物性値を実施
例1と同様にして測定した結果、及び、粒度分布を測定
した結果を、第1表に示す。(Example 7) Into a 500 m (!3) flask equipped with a normal stirring device, 0.2 mole of resorcinol, 60 g of water, 0.04 mole of magnesium chloride hexahydrate, and 0.1 mole of methyl cellosolve were added.
After adding 3 mol, 24% sodium hydroxide aqueous solution 0
.. 0.024 mol and 0.4 mol of a 37% aqueous formaldehyde solution were added, and the mixture was reacted at 306C for 300 minutes to obtain a resin composition. This resin composition was mixed with 200ml of perchlorethylene.
(!) was placed in a beaker containing ! and heated while stirring at 400 rpm using an Ultra Tea Purser (Yamato Co., Ltd.) to distill water out of the system, and then precipitate the resin. When this was confirmed, suspension polymerization using a normal stirrer was carried out, and when the temperature reached 100°C, the polymerization was terminated to obtain a microspherical resin.The physical properties of this spherical resin were as shown in Example 1. Table 1 shows the results of measurements made in the same manner and the results of measurements of particle size distribution.
(実施例8)
実施例7と同様にして樹脂組成物を得、その後実施例7
の高速攪拌機の替わりに通常の攪拌機を用い実施例1と
同様にして懸濁重合を行ない、球状樹脂を得た。得られ
た球状樹脂の各物性値を実施例7と同様にして測定した
結果を第1表に示す。(Example 8) A resin composition was obtained in the same manner as in Example 7, and then Example 7
Suspension polymerization was carried out in the same manner as in Example 1 using an ordinary stirrer instead of the high-speed stirrer, to obtain a spherical resin. The physical property values of the obtained spherical resin were measured in the same manner as in Example 7, and the results are shown in Table 1.
本発明によれば、大きな細孔径を有し、しかも細孔構造
が安定゛し、なおかつ/%ンドリング性良好な球状マク
ロポーラス型の、官能基(例えば、アミン基等)を有し
得る樹脂を簡便かつ容易に得る事ができる。According to the present invention, a spherical macroporous resin having a large pore diameter, a stable pore structure, and good handling properties, and capable of having a functional group (for example, an amine group) is used. It can be obtained simply and easily.
Claims (1)
ノール類とアルデヒド類との初期縮合物)、水と相溶性
のある有機溶媒、及び水溶性無機系充填剤を含む水溶液
を触媒の存在下で反応させてプレポリマー組成物を調製
し、次いで該プレポリマー組成物を水と相溶性のない有
機溶媒中に加え懸濁重合を行なうことを特徴とするマク
ロポーラス型球状フェノールアルデヒド樹脂の製造方法
。(1) An aqueous solution containing phenols and aldehydes (and/or an initial condensate of phenols and aldehydes), an organic solvent compatible with water, and a water-soluble inorganic filler in the presence of a catalyst. A method for producing a macroporous spherical phenol aldehyde resin, which comprises reacting to prepare a prepolymer composition, and then adding the prepolymer composition to an organic solvent that is incompatible with water to perform suspension polymerization.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17381490A JPH0459806A (en) | 1990-06-29 | 1990-06-29 | Production of macroporous-type spherical phenol-formaldehyde resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17381490A JPH0459806A (en) | 1990-06-29 | 1990-06-29 | Production of macroporous-type spherical phenol-formaldehyde resin |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0459806A true JPH0459806A (en) | 1992-02-26 |
Family
ID=15967651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17381490A Pending JPH0459806A (en) | 1990-06-29 | 1990-06-29 | Production of macroporous-type spherical phenol-formaldehyde resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0459806A (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010070738A (en) * | 2008-09-22 | 2010-04-02 | Chan Sieh Enterprises Co Ltd | Method for producing cured spherical phenolic resin particle |
JP2011083758A (en) * | 2009-10-15 | 2011-04-28 | Chan Sieh Enterprises Co Ltd | Spherical active carbon and method for production thereof |
JP2011084703A (en) * | 2009-10-15 | 2011-04-28 | Chan Sieh Enterprises Co Ltd | Cured globular particle of phenol resin containing bubble, and manufacturing method thereof |
JP2011168484A (en) * | 2000-08-09 | 2011-09-01 | British American Tobacco (Investments) Ltd | Porous carbon |
JP2012532088A (en) * | 2009-07-01 | 2012-12-13 | エナジーツー・テクノロジーズ・インコーポレイテッド | Ultra high purity synthetic carbon material |
US9269502B2 (en) | 2010-12-28 | 2016-02-23 | Basf Se | Carbon materials comprising enhanced electrochemical properties |
US9412523B2 (en) | 2010-09-30 | 2016-08-09 | Basf Se | Enhanced packing of energy storage particles |
US9409777B2 (en) | 2012-02-09 | 2016-08-09 | Basf Se | Preparation of polymeric resins and carbon materials |
JP2016531195A (en) * | 2013-09-20 | 2016-10-06 | ジョージア − パシフィック ケミカルズ エルエルシー | Method for producing a wet gel and method for producing a dry gel from the wet gel |
US9680159B2 (en) | 2010-03-12 | 2017-06-13 | Basf Se | Mesoporous carbon materials comprising bifunctional catalysts |
US10141122B2 (en) | 2006-11-15 | 2018-11-27 | Energ2, Inc. | Electric double layer capacitance device |
US10147950B2 (en) | 2015-08-28 | 2018-12-04 | Group 14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US10195583B2 (en) | 2013-11-05 | 2019-02-05 | Group 14 Technologies, Inc. | Carbon-based compositions with highly efficient volumetric gas sorption |
US10454103B2 (en) | 2013-03-14 | 2019-10-22 | Group14 Technologies, Inc. | Composite carbon materials comprising lithium alloying electrochemical modifiers |
US10490358B2 (en) | 2011-04-15 | 2019-11-26 | Basf Se | Flow ultracapacitor |
US10522836B2 (en) | 2011-06-03 | 2019-12-31 | Basf Se | Carbon-lead blends for use in hybrid energy storage devices |
US10590277B2 (en) | 2014-03-14 | 2020-03-17 | Group14 Technologies, Inc. | Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same |
US10763501B2 (en) | 2015-08-14 | 2020-09-01 | Group14 Technologies, Inc. | Nano-featured porous silicon materials |
US11174167B1 (en) | 2020-08-18 | 2021-11-16 | Group14 Technologies, Inc. | Silicon carbon composites comprising ultra low Z |
US11335903B2 (en) | 2020-08-18 | 2022-05-17 | Group14 Technologies, Inc. | Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z |
US11611071B2 (en) | 2017-03-09 | 2023-03-21 | Group14 Technologies, Inc. | Decomposition of silicon-containing precursors on porous scaffold materials |
US11639292B2 (en) | 2020-08-18 | 2023-05-02 | Group14 Technologies, Inc. | Particulate composite materials |
US12046744B2 (en) | 2020-09-30 | 2024-07-23 | Group14 Technologies, Inc. | Passivated silicon-carbon composite materials |
-
1990
- 1990-06-29 JP JP17381490A patent/JPH0459806A/en active Pending
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011168484A (en) * | 2000-08-09 | 2011-09-01 | British American Tobacco (Investments) Ltd | Porous carbon |
JP4834281B2 (en) * | 2000-08-09 | 2011-12-14 | ブリティッシュ・アメリカン・タバコ・(インベストメンツ)・リミテッド | Porous carbon |
US10141122B2 (en) | 2006-11-15 | 2018-11-27 | Energ2, Inc. | Electric double layer capacitance device |
US10600581B2 (en) | 2006-11-15 | 2020-03-24 | Basf Se | Electric double layer capacitance device |
JP2010070738A (en) * | 2008-09-22 | 2010-04-02 | Chan Sieh Enterprises Co Ltd | Method for producing cured spherical phenolic resin particle |
US9580321B2 (en) | 2009-07-01 | 2017-02-28 | Basf Se | Ultrapure synthetic carbon materials |
JP2012532088A (en) * | 2009-07-01 | 2012-12-13 | エナジーツー・テクノロジーズ・インコーポレイテッド | Ultra high purity synthetic carbon material |
US9112230B2 (en) | 2009-07-01 | 2015-08-18 | Basf Se | Ultrapure synthetic carbon materials |
US10287170B2 (en) | 2009-07-01 | 2019-05-14 | Basf Se | Ultrapure synthetic carbon materials |
JP2011083758A (en) * | 2009-10-15 | 2011-04-28 | Chan Sieh Enterprises Co Ltd | Spherical active carbon and method for production thereof |
JP2011084703A (en) * | 2009-10-15 | 2011-04-28 | Chan Sieh Enterprises Co Ltd | Cured globular particle of phenol resin containing bubble, and manufacturing method thereof |
US9680159B2 (en) | 2010-03-12 | 2017-06-13 | Basf Se | Mesoporous carbon materials comprising bifunctional catalysts |
US9412523B2 (en) | 2010-09-30 | 2016-08-09 | Basf Se | Enhanced packing of energy storage particles |
US9985289B2 (en) | 2010-09-30 | 2018-05-29 | Basf Se | Enhanced packing of energy storage particles |
US9269502B2 (en) | 2010-12-28 | 2016-02-23 | Basf Se | Carbon materials comprising enhanced electrochemical properties |
US10490358B2 (en) | 2011-04-15 | 2019-11-26 | Basf Se | Flow ultracapacitor |
US10522836B2 (en) | 2011-06-03 | 2019-12-31 | Basf Se | Carbon-lead blends for use in hybrid energy storage devices |
US9409777B2 (en) | 2012-02-09 | 2016-08-09 | Basf Se | Preparation of polymeric resins and carbon materials |
US12006400B2 (en) | 2012-02-09 | 2024-06-11 | Group14 Technologies, Inc. | Preparation of polymeric resins and carbon materials |
US11718701B2 (en) | 2012-02-09 | 2023-08-08 | Group14 Technologies, Inc. | Preparation of polymeric resins and carbon materials |
US11401363B2 (en) | 2012-02-09 | 2022-08-02 | Basf Se | Preparation of polymeric resins and carbon materials |
US12084549B2 (en) | 2012-02-09 | 2024-09-10 | Group 14 Technologies, Inc. | Preparation of polymeric resins and carbon materials |
US11725074B2 (en) | 2012-02-09 | 2023-08-15 | Group 14 Technologies, Inc. | Preparation of polymeric resins and carbon materials |
US11732079B2 (en) | 2012-02-09 | 2023-08-22 | Group14 Technologies, Inc. | Preparation of polymeric resins and carbon materials |
US11999828B2 (en) | 2012-02-09 | 2024-06-04 | Group14 Technologies, Inc. | Preparation of polymeric resins and carbon materials |
US11495793B2 (en) | 2013-03-14 | 2022-11-08 | Group14 Technologies, Inc. | Composite carbon materials comprising lithium alloying electrochemical modifiers |
US10454103B2 (en) | 2013-03-14 | 2019-10-22 | Group14 Technologies, Inc. | Composite carbon materials comprising lithium alloying electrochemical modifiers |
US10714744B2 (en) | 2013-03-14 | 2020-07-14 | Group14 Technologies, Inc. | Composite carbon materials comprising lithium alloying electrochemical modifiers |
JP2016531195A (en) * | 2013-09-20 | 2016-10-06 | ジョージア − パシフィック ケミカルズ エルエルシー | Method for producing a wet gel and method for producing a dry gel from the wet gel |
US10814304B2 (en) | 2013-11-05 | 2020-10-27 | Group14 Technologies, Inc. | Carbon-based compositions with highly efficient volumetric gas sorption |
US12064747B2 (en) | 2013-11-05 | 2024-08-20 | Group14 Technologies, Inc. | Carbon-based compositions with highly efficient volumetric gas sorption |
US11707728B2 (en) | 2013-11-05 | 2023-07-25 | Group14 Technologies, Inc. | Carbon-based compositions with highly efficient volumetric gas sorption |
US10195583B2 (en) | 2013-11-05 | 2019-02-05 | Group 14 Technologies, Inc. | Carbon-based compositions with highly efficient volumetric gas sorption |
US11661517B2 (en) | 2014-03-14 | 2023-05-30 | Group14 Technologies, Inc. | Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same |
US10711140B2 (en) | 2014-03-14 | 2020-07-14 | Group14 Technologies, Inc. | Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same |
US10590277B2 (en) | 2014-03-14 | 2020-03-17 | Group14 Technologies, Inc. | Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same |
US12173165B2 (en) | 2014-03-14 | 2024-12-24 | Group14 Technologies, Inc. | Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same |
US10763501B2 (en) | 2015-08-14 | 2020-09-01 | Group14 Technologies, Inc. | Nano-featured porous silicon materials |
US11942630B2 (en) | 2015-08-14 | 2024-03-26 | Group14 Technologies, Inc. | Nano-featured porous silicon materials |
US11611073B2 (en) | 2015-08-14 | 2023-03-21 | Group14 Technologies, Inc. | Composites of porous nano-featured silicon materials and carbon materials |
US10147950B2 (en) | 2015-08-28 | 2018-12-04 | Group 14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US11646419B2 (en) | 2015-08-28 | 2023-05-09 | Group 14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US11495798B1 (en) | 2015-08-28 | 2022-11-08 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US10608254B2 (en) | 2015-08-28 | 2020-03-31 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US11437621B2 (en) | 2015-08-28 | 2022-09-06 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US10756347B2 (en) | 2015-08-28 | 2020-08-25 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US10784512B2 (en) | 2015-08-28 | 2020-09-22 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US10923722B2 (en) | 2015-08-28 | 2021-02-16 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US11611071B2 (en) | 2017-03-09 | 2023-03-21 | Group14 Technologies, Inc. | Decomposition of silicon-containing precursors on porous scaffold materials |
US12155066B2 (en) | 2017-03-09 | 2024-11-26 | Group14 Technologies, Inc. | Decomposition of silicon-containing precursors on porous scaffold materials |
US11174167B1 (en) | 2020-08-18 | 2021-11-16 | Group14 Technologies, Inc. | Silicon carbon composites comprising ultra low Z |
US11804591B2 (en) | 2020-08-18 | 2023-10-31 | Group14 Technologies, Inc. | Highly efficient manufacturing of silicon-carbon composite materials comprising ultra low Z |
US11498838B2 (en) | 2020-08-18 | 2022-11-15 | Group14 Technologies, Inc. | Silicon carbon composites comprising ultra low z |
US12057569B2 (en) | 2020-08-18 | 2024-08-06 | Group14 Technologies, Inc. | Highly efficient manufacturing of silicon-carbon composite materials comprising ultra low Z |
US11335903B2 (en) | 2020-08-18 | 2022-05-17 | Group14 Technologies, Inc. | Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z |
US11492262B2 (en) | 2020-08-18 | 2022-11-08 | Group14Technologies, Inc. | Silicon carbon composites comprising ultra low Z |
US11639292B2 (en) | 2020-08-18 | 2023-05-02 | Group14 Technologies, Inc. | Particulate composite materials |
US11611070B2 (en) | 2020-08-18 | 2023-03-21 | Group14 Technologies, Inc. | Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low Z |
US12046744B2 (en) | 2020-09-30 | 2024-07-23 | Group14 Technologies, Inc. | Passivated silicon-carbon composite materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0459806A (en) | Production of macroporous-type spherical phenol-formaldehyde resin | |
EP1874866B1 (en) | Stable aqueous dispersions of hydrophilic phenolic resins having low xylenol and bisphenol-a content | |
US8557381B2 (en) | Resol beads, methods of making them, and methods of using them | |
US20070191572A1 (en) | Resol beads, methods of making them, and methods of using them | |
KR101412929B1 (en) | Resolvide, a method for producing the same, and a method for using the same | |
CN101384508A (en) | Activated carbon monoliths and methods of making them | |
JP2001114852A (en) | Method for producing spherical phenolic resin | |
CN101384509A (en) | Activated carbon beads and methods of making them | |
US4788236A (en) | Process for producing particulate novolac resins and aqueous dispersions | |
JPS61258819A (en) | Production of spherulitic cured phenolic resin particle | |
KR20110116739A (en) | Method for producing spherical phenolic resin using phenolic resin oligomer | |
JP2013023616A (en) | Method for producing phenol resin particle, and phenol resin particle | |
CA1216697A (en) | Process for producing particulate novolac resins and aqueous dispersions | |
CA1082383A (en) | Aqueous phenolic resole dispersion containing certain hydroxyalkylated gums as interfacial agents | |
JP2000256431A (en) | Preparation of low-density globular phenol resin cured product | |
KR101637623B1 (en) | Method of making a particulate epoxy resin | |
JPH1180300A (en) | Production of microspherical cured phenolic resin particle | |
JPS6116511B2 (en) | ||
US20090062501A1 (en) | Resol beads, methods of making them, and methods of using them | |
JPS61108641A (en) | Expandable resol resin particle and production thereof | |
JPH06104750B2 (en) | Method for producing porous molded body made of phenolic resin | |
JPH0757824B2 (en) | Method for producing phenolic resin porous body | |
JPS59196732A (en) | Preparation of microcapsule | |
JPS61127719A (en) | Flame-retardant very small spherical resol resin particle and production thereof |