[go: up one dir, main page]

JPH04349424A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH04349424A
JPH04349424A JP3121578A JP12157891A JPH04349424A JP H04349424 A JPH04349424 A JP H04349424A JP 3121578 A JP3121578 A JP 3121578A JP 12157891 A JP12157891 A JP 12157891A JP H04349424 A JPH04349424 A JP H04349424A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal cell
display
display element
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3121578A
Other languages
Japanese (ja)
Other versions
JP2856942B2 (en
Inventor
Yuzo Hisatake
雄三 久武
Masahito Ishikawa
正仁 石川
Junko Hirata
純子 平田
Hitoshi Hado
羽藤 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14814713&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04349424(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3121578A priority Critical patent/JP2856942B2/en
Publication of JPH04349424A publication Critical patent/JPH04349424A/en
Application granted granted Critical
Publication of JP2856942B2 publication Critical patent/JP2856942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

PURPOSE:To improve a visual angle characteristic and visibility by disposing a liquid crystal cell for driving and a specific liquid crystal layer for compensation between two sheets of polarizing plates. CONSTITUTION:This display element is constituted by inserting the liquid crystal layer 2 for compensation and the liquid crystal 3 for driving between two sheets of the polarizing plates 1 and 4 disposed to respectively parallel absorption axes 1, 1, 4, 1. The liquid crystal layer 2 for compensation has a liquid crystal structure interposed with a liquid crystal between transparent substrates. The liquid crystal cell 3 for driving is made into such arrangement that the twist angle is >=360 deg. and the spiral axis thereof is inclined with the basic normal of the liquid crystal 3 for driving, i.e., inclines at a prescribed angle with the negative X-axis direction in the biaxial positive directions, by which the visual angle characteristic is improved and the visibility is improved. The high-grade liquid crystal display element us thus obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】 [発明の目的]0001 [Purpose of the invention]

【0002】0002

【産業上の利用分野】本発明は、液晶表示素子に係わり
、特にコントラスト比の視角依存性を制御した液晶表示
素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device in which viewing angle dependence of contrast ratio is controlled.

【0003】0003

【従来の技術】近年、薄型軽量、低消費電力という大き
な利点をもつ液晶表示素子は、日本語ワードプロセッサ
やディスクトップパーソナルコンピュータ等のパーソナ
ルOA機器の表示装置として積極的に用いられている。 液晶表示素子(以下LCDと略称)のほとんどは、ねじ
れネマティック液晶を用いており、表示方式としては、
複屈折モードと旋光モードの2つの方式に大別できる。
2. Description of the Related Art In recent years, liquid crystal display devices, which have the great advantages of being thin, lightweight, and low power consumption, have been actively used as display devices for personal office automation equipment such as Japanese word processors and desktop personal computers. Most liquid crystal display elements (hereinafter abbreviated as LCD) use twisted nematic liquid crystal, and the display method is as follows:
It can be roughly divided into two modes: birefringence mode and optical rotation mode.

【0004】複屈折モードの表示方式のLCDは、一般
に90゜以上ねじれた分子配列をもち(ST方式と呼ば
れる)、急峻な電気光学特性をもつ為、各画素ごとにス
イッチング素子(薄膜トランジスタやダイオード)が無
くても単純なマトリクス状の電極構造でも時分割駆動に
より容易に大容量表示が得られる。しかし、このST方
式では、複屈折効果を利用しているため光の干渉に起因
して表示色が黄色と濃紺色のいわゆるイエローモード表
示や、白色と青色のいわゆるブルーモード表示となり、
白黒表示やカラー表示が不可能であった。このような表
示の色づきを解消する手段として、逆にねじれた第2の
液晶セルを偏光板と液晶セルの間に配置することによっ
て白黒表示を実現できることが特公昭63−53528
(出願人:シャープ)にて報告されている。この白黒化
の原理は、液晶分子がねじれ配列とされる表示用液晶セ
ルで楕円偏光となった常光成分と異常光成分の光を、光
学補償板である第2の液晶セルによって相互に入れ替わ
らせ、楕円偏光を直線偏光へと変換される。その結果、
光の干渉に起因する着色が解消され、白黒表示を実現す
ることができる。ここで上述したように楕円偏光の直線
偏光への変換を行うには、光学補償板が、表示用液晶セ
ルとリタデーション値が、ほぼ同一で、かつねじれ方向
が相互間で逆であり、それらの配置は、相互に最近接す
る液晶分子の配向方位が直交するように構成する。しか
もこの様なLCDは、表示面法線からずれた斜めの角度
では表示色は着色し白黒の表示は得られない。
[0004] Birefringence mode display type LCDs generally have a molecular arrangement twisted by 90° or more (called the ST method) and have steep electro-optic characteristics, so each pixel is equipped with a switching element (thin film transistor or diode). Even without a simple matrix-like electrode structure, a large-capacity display can be easily obtained by time-division driving. However, since this ST method uses the birefringence effect, the display colors are yellow and dark blue (so-called yellow mode display) and white and blue (so-called blue mode display) due to light interference.
Black and white or color display was not possible. As a means to eliminate such discoloration of the display, it was discovered in Japanese Patent Publication No. 63-53528 that a black and white display could be realized by placing a second liquid crystal cell twisted in reverse between the polarizing plate and the liquid crystal cell.
(Applicant: Sharp). The principle behind this black-and-white conversion is that the ordinary light component and the extraordinary light component, which have become elliptically polarized light in a display liquid crystal cell in which liquid crystal molecules are arranged in a twisted arrangement, are exchanged with each other by a second liquid crystal cell, which is an optical compensator. elliptically polarized light is converted into linearly polarized light. the result,
Coloring caused by light interference is eliminated, and black and white display can be achieved. In order to convert elliptically polarized light into linearly polarized light as described above, the optical compensator must have almost the same retardation value as the display liquid crystal cell, and have opposite twist directions. The arrangement is such that the alignment directions of liquid crystal molecules closest to each other are orthogonal. Moreover, in such an LCD, the display color is colored at an oblique angle deviating from the normal line of the display surface, and a black and white display cannot be obtained.

【0005】ST方式以外に複屈折モードの表示方式の
LCDとしては、負の誘電異方性をもつ液晶を基板に対
して略垂直に配列させた液晶セルを用いる方式(ECB
方式)がある。本方式は、電圧を液晶セルに印加するこ
とにより液晶分子を基板法線に対して傾むかせて液晶セ
ルのリタデーション値を変化させることによって表示を
行おうとするものであるが、このECB方式でも液晶セ
ルを見る角度によってはリタデーション値が大きく変化
し、その結果表示画が見えなくなったり、反転して見え
たりするといった現象が生じる。
[0005] In addition to the ST method, there is a birefringence mode LCD that uses a liquid crystal cell in which liquid crystals with negative dielectric anisotropy are arranged approximately perpendicular to the substrate (ECB).
method). This method attempts to perform display by applying a voltage to the liquid crystal cell to tilt the liquid crystal molecules with respect to the normal line of the substrate, thereby changing the retardation value of the liquid crystal cell. However, even with this ECB method, Depending on the angle at which the liquid crystal cell is viewed, the retardation value changes significantly, resulting in phenomena such as the displayed image becoming invisible or appearing inverted.

【0006】一方、旋光モードのLCDは例えば90゜
ねじれた分子配列をもち、応答速度が速く(数十ミリ秒
)高いコントラスト比と良好な階調表示性を示すことか
ら、時計や電卓、さらにはスイッチング素子を各画素ご
とに具備しカラーフィルターと組み合わせたフルカラー
の表示の液晶テレビなど(TFT−LCDやMIM−L
CD)に応用されている(TN方式)。
On the other hand, optically rotating mode LCDs have a molecular arrangement twisted by 90°, for example, and have a fast response time (several tens of milliseconds), exhibiting a high contrast ratio and good gradation display, and are therefore used in watches, calculators, and even other devices. are equipped with switching elements for each pixel and are combined with color filters to display full-color LCD TVs (TFT-LCD and MIM-L).
CD) (TN method).

【0007】カラー表示に関しては偏光板と液晶セルの
間に電圧無印加時に選択散乱を利用したある色相を示す
CN液晶セルを配置し、CN液晶セルと液晶セルへの電
圧印加の有無の組み合わせで特定色相とその補色の2色
カラー表示または、白黒表示モードへの切り替えができ
ることがMol.Cryst.Liq.Cryst.,
1977,VOL.39,PP.127−138 にて
報告されている。
Regarding color display, a CN liquid crystal cell that exhibits a certain hue using selective scattering when no voltage is applied is placed between a polarizing plate and a liquid crystal cell, and a combination of the CN liquid crystal cell and the presence or absence of voltage application to the liquid crystal cell Mol. Cryst. Liq. Cryst. ,
1977, VOL. 39, PP. 127-138.

【0008】しかし、これらの複屈折モードや旋光モー
ドや選択散乱を利用した液晶表示素子は、見る角度や方
位によって表示色やコントラスト比が変化するといった
視角依存性をもち、冷陰極線管(CRT)の表示性能を
完全に越えるまでにはいたらない。
However, these liquid crystal display elements that utilize birefringence mode, optical rotation mode, and selective scattering have viewing angle dependence in that the displayed color and contrast ratio change depending on the viewing angle and orientation, It has not yet reached the point where it completely exceeds the display performance of .

【0009】[0009]

【発明が解決しようとする課題】液晶分子は、液晶分子
の長軸方向と短軸方向に異なる屈折率を有することは一
般に知られている。この様な屈折率の異方性を示す液晶
分子にある偏光状態の光が入射すると、その光は液晶分
子の角度に依存して偏光状態が変化する。従って、液晶
セルに対し光が垂直に入射した場合と斜めに入射した場
合とでは、液晶セル中を伝搬する光の偏光状態は異なり
、その結果、液晶表示素子を見る時の方位や角度によっ
て表示のパターンが反転して見えたり、表示のパターン
が全く見えなくなったり、あるいは表示が色づくといっ
た現象として現れ、実用上好ましくない。
It is generally known that liquid crystal molecules have different refractive indices in the major axis direction and the minor axis direction of the liquid crystal molecules. When light in a certain polarization state is incident on liquid crystal molecules exhibiting such anisotropy of refractive index, the polarization state of the light changes depending on the angle of the liquid crystal molecules. Therefore, the polarization state of the light propagating through the liquid crystal cell is different depending on whether the light is incident perpendicularly to the liquid crystal cell or obliquely. This appears as a phenomenon in which the pattern appears reversed, the display pattern becomes completely invisible, or the display becomes discolored, which is undesirable from a practical standpoint.

【0010】本発明は上記不都合を解決するものである
The present invention solves the above-mentioned disadvantages.

【0011】 [発明の構成][0011] [Structure of the invention]

【0012】0012

【課題を解決するための手段】本発明は、2枚の偏光板
の間に、駆動用液晶セルとねじれ角が360゜以上であ
りその螺旋軸が前記駆動用液晶セルの基板法線に対し傾
いた配列をした補償用液晶層とを配置したことを特徴と
している。
[Means for Solving the Problems] The present invention provides a driving liquid crystal cell between two polarizing plates, which has a twist angle of 360° or more and whose helical axis is inclined with respect to the normal line of the substrate of the driving liquid crystal cell. It is characterized by the arrangement of an aligned compensation liquid crystal layer.

【0013】[0013]

【作用】一般に液晶表示素子に用いられる液晶セルは、
表示領域にわたって均一な分子配列状態を得る為、基板
表面に配向処理が施されている。このような配向処理は
、基板表面上での液晶分子を特定の方向に配列させるば
かりではなく、液晶分子を基板表面に対し斜めに傾かせ
る作用がある。基板表面での基板表面に対する傾き角を
プレチルト角と称しているが、この値は液晶セルに用い
る配向膜や配向処理の条件や方法と液晶材料との組み合
わせによって種々異なり、1゜〜10゜位の値が一般的
である。この基板表面での液晶分子の傾きというのは、
液晶セルにしきい値電圧以上の電圧を印加したときの分
子配列状態を均一に保つためにも非常に重要で、セルに
電圧が印加されたときセル中の液晶分子の傾く方向を優
先づける作用も合わせもつ。この傾きが全く無い場合、
セルに電圧が印加されると液晶分子が傾く方向に優先方
向が無いためにセル中の液晶分子が個々ばらばらの方向
に傾きコントラスト比の低下や、電圧除去後でも表示画
が残ったりするといった不具合が生じる。従って、プレ
チルト角は電圧印加時の分子配列状態を均一化するとい
った利点をもつ。またプレチルト角は、液晶表示素子の
表示特性にも大きく影響する。次にTN方式の液晶表示
素子を例にとり、プレチルト角の表示特性への影響につ
いて説明する。
[Function] Liquid crystal cells generally used for liquid crystal display elements are
In order to obtain a uniform molecular arrangement over the display area, the substrate surface is subjected to alignment treatment. Such alignment treatment not only aligns liquid crystal molecules on the substrate surface in a specific direction, but also has the effect of tilting the liquid crystal molecules obliquely with respect to the substrate surface. The angle of inclination of the substrate surface relative to the substrate surface is called the pretilt angle, and this value varies depending on the combination of the alignment film used in the liquid crystal cell, the conditions and method of alignment treatment, and the liquid crystal material, and is approximately 1° to 10°. The value of is common. The tilt of the liquid crystal molecules on the substrate surface is
It is also very important to maintain a uniform molecular alignment state when a voltage higher than the threshold voltage is applied to the liquid crystal cell, and also has the effect of prioritizing the direction in which the liquid crystal molecules in the cell are tilted when voltage is applied to the cell. Combined with motsu. If this slope does not exist at all,
When a voltage is applied to the cell, there is no preferred direction in which the liquid crystal molecules tilt, so the liquid crystal molecules in the cell tilt in different directions, resulting in problems such as a decrease in contrast ratio and a display image remaining even after the voltage is removed. occurs. Therefore, the pretilt angle has the advantage of making the molecular arrangement state uniform when voltage is applied. Furthermore, the pretilt angle greatly affects the display characteristics of the liquid crystal display element. Next, using a TN mode liquid crystal display element as an example, the influence of the pretilt angle on display characteristics will be explained.

【0014】90゜ねじれたTN方式の液晶セルに暗状
態が得られる電圧値を印加した時の分子配列状態を計算
してみると、図1に示す様になる。ここで、図中の7及
び8はそれぞれチルト(傾き)角及びツイスト(ねじれ
)角で、チルト角とは、図2に示す座標系において液晶
セルの基板面をxy面としたとき、xy面に対する液晶
分子6の長軸Lの傾き角を示し、ツイスト角とは、液晶
分子6をz軸からxy面へ投射した軸とx軸間の角度で
ある。電圧印加時でも上下の基板表面付近では、基板表
面の配向規制力の影響を受けて液晶分子はあまり傾かな
い。また、ツイスト角はSの字型の分布となる。電圧が
印加された状態では液晶セルの中央付近の液晶分子は完
全に垂直には立たずある角度をもって傾く。図3の様に
図1を立体的に示すと、液晶セル中央付近の液晶分子6
の傾く方向は、上下の基板3a、3b表面での液晶分子
の傾く方向に依存し、上下の基板3a、3bでのプレチ
ルト角θp が等しい場合、上下の基板表面の傾き方向
のほぼ中間の方向になる。この様な配向状態で上下の基
板上にそれぞれ偏光板1、4を置き、偏光板の吸収軸1
5、16をそれぞれの基板の配向方向13、14と一致
するように配置すると、コントラスト比(明状態時の輝
度/暗状態の輝度)が最も高くなる方向は、液晶セル中
央付近の液晶分子の傾く方向にほぼ一致する。
When the molecular arrangement state is calculated when a voltage value that provides a dark state is applied to a 90° twisted TN type liquid crystal cell, the state is shown in FIG. 1. Here, 7 and 8 in the figure are the tilt angle and twist angle, respectively, and the tilt angle is the xy plane when the substrate surface of the liquid crystal cell is the xy plane in the coordinate system shown in FIG. The twist angle is the angle between the axis of the liquid crystal molecules 6 projected from the z-axis to the xy plane and the x-axis. Even when voltage is applied, liquid crystal molecules do not tilt much near the upper and lower substrate surfaces due to the influence of the alignment regulating force of the substrate surfaces. Further, the twist angle has an S-shaped distribution. When a voltage is applied, the liquid crystal molecules near the center of the liquid crystal cell do not stand completely vertically, but tilt at a certain angle. When Figure 1 is shown three-dimensionally as shown in Figure 3, the liquid crystal molecules 6 near the center of the liquid crystal cell
The direction in which the liquid crystal molecules are tilted depends on the direction in which the liquid crystal molecules on the surfaces of the upper and lower substrates 3a and 3b are tilted, and when the pretilt angles θp on the upper and lower substrates 3a and 3b are equal, the direction is approximately halfway between the directions in which the surfaces of the upper and lower substrates are tilted. become. Place the polarizing plates 1 and 4 on the upper and lower substrates respectively in such an oriented state, and align the absorption axis 1 of the polarizing plates with
When 5 and 16 are arranged to match the orientation directions 13 and 14 of the respective substrates, the direction in which the contrast ratio (bright state brightness/dark state brightness) is highest is the direction of the liquid crystal molecules near the center of the liquid crystal cell. It almost matches the direction of inclination.

【0015】図4は、TN方式の液晶表示素子の等コン
トラスト比−方位角特性の測定結果である。ここで、等
コントラスト比−方位角特性とは、液晶表示素子の視角
特性を示すもので、液晶表示素子10を観測する点を図
5に示す様に方位角Φ、視角θで定義し、観測する方位
を変化したときある等しいコントラスト比を示す視角を
測定し、図4の様な極座標で示したものである。従って
、コントラスト比(図中5、10、20、30…のよう
に数値で示した)が高い方位では視角θが大きく、理想
的な液晶表示素子としては、どの方位角においても視角
が大きいことが望まれる。図4の測定結果にも見られる
ように、上下の基板の配向方向13、14を図4の図中
の矢印に示すようにし、液晶セル中央付近の液晶分子の
傾く方向を90゜の方位になるようにすると、90゜方
位で最も視角が広くなる。
FIG. 4 shows the measurement results of the equal contrast ratio-azimuth angle characteristics of a TN type liquid crystal display element. Here, the equal contrast ratio-azimuth angle characteristic indicates the viewing angle characteristic of the liquid crystal display element, and the point at which the liquid crystal display element 10 is observed is defined by the azimuth angle Φ and the viewing angle θ as shown in FIG. The visual angles that show a certain equal contrast ratio when changing the orientation are measured and are shown in polar coordinates as shown in FIG. Therefore, the viewing angle θ is large in directions with a high contrast ratio (indicated numerically as 5, 10, 20, 30, etc. in the figure), and an ideal liquid crystal display element should have a large viewing angle at any direction. is desired. As can be seen in the measurement results in FIG. 4, the orientation directions 13 and 14 of the upper and lower substrates are as shown by the arrows in FIG. If the angle of view is set to 90°, the viewing angle will be widest at 90°.

【0016】このようにプレチルト角θp は、液晶表
示素子の視角特性にも大きく影響する。上述したように
、現在、液晶表示素子は陰極線管(CRT)のようにど
こからみてもほぼ均一なコントラスト比を示すといった
特性はなく、見る角度・方位によってコントラスト比が
大きく変化する。すなわち、液晶表示素子には視角特性
が存在し、それゆえ液晶表示素子は、その視角特性を拡
大するあるいは、液晶表示素子の用途により視角特性を
その仕様に合わせて設計する必要性があり、例えばある
特定の方位だけ視角特性を良くするといった手法が要求
される。
As described above, the pretilt angle θp greatly affects the viewing angle characteristics of the liquid crystal display element. As described above, currently, liquid crystal display elements do not have the characteristic of exhibiting a substantially uniform contrast ratio no matter where they are viewed, unlike cathode ray tubes (CRTs), and the contrast ratio varies greatly depending on the viewing angle and direction. That is, liquid crystal display elements have viewing angle characteristics, and therefore, it is necessary to expand the viewing angle characteristics of the liquid crystal display element or to design the viewing angle characteristics according to the specifications depending on the use of the liquid crystal display element. A method is required to improve the viewing angle characteristics only in a specific direction.

【0017】本発明は、上記目的を達成するものであり
以下その達成原理および手法について説明する。
The present invention achieves the above object, and the principle and method for achieving the object will be explained below.

【0018】前述したように、液晶表示素子は製造上及
び配向の安定化のためプレチルト角を有しそれが視角特
性に影響する。液晶セルにしきい値以上の電圧が印加さ
れたとき液晶セル中の液晶分子のほとんどは、基板表面
付近をのぞき基板表面に対して傾いている。このような
液晶の配向状態を3次元の屈折率楕円体により簡略的に
示すと図6のようになる。複屈折現象は、この屈折率楕
円体6aをある方向からみたときの2次元面内での屈折
率差に関する現象であるから、z方向(6.1) から
見たときの(すなわち液晶セルを真正面から見たとき)
2次元面内の屈折率体(6.2) は楕円となり、3次
元の屈折率楕円体の長軸方向(6.3) から見たとき
の屈折率体(6.4) とは異なる。従って、コントラ
スト比が最大となるところは、2次元面内の屈折率体が
完全に円となるところであり、それは3次元の屈折率楕
円体の長軸方向である。
As described above, liquid crystal display elements have a pretilt angle for manufacturing purposes and for stabilizing alignment, which affects viewing angle characteristics. When a voltage equal to or higher than a threshold voltage is applied to a liquid crystal cell, most of the liquid crystal molecules in the liquid crystal cell, except near the substrate surface, are tilted with respect to the substrate surface. FIG. 6 shows the orientation state of the liquid crystal simply using a three-dimensional refractive index ellipsoid. The birefringence phenomenon is a phenomenon related to the difference in refractive index within a two-dimensional plane when the refractive index ellipsoid 6a is viewed from a certain direction. (when viewed from the front)
The refractive index body (6.2) in the two-dimensional plane is an ellipse, which is different from the refractive index body (6.4) when viewed from the long axis direction (6.3) of the three-dimensional refractive index ellipsoid. Therefore, the place where the contrast ratio is maximum is where the refractive index body in the two-dimensional plane becomes a complete circle, and this is in the long axis direction of the three-dimensional refractive index ellipsoid.

【0019】したがって、図7に示すように液晶セルの
3次元の屈折率楕円体の長軸方向を光学補償用の屈折率
楕円体9により変化させることにより、コントラスト比
が最大となる方位及び視角を変化することができる。光
学補償用の屈折率楕円体9としては、液晶セルの3次元
の屈折率楕円体6aの形状に対応させ円盤状の形が良く
、かつ楕円体の長軸方向(6.3) を図7に示すよう
にz軸に対して斜めに配置する事によって、視角方向(
視角が大きい方向)を容易に変化させることができる。
Therefore, as shown in FIG. 7, by changing the major axis direction of the three-dimensional refractive index ellipsoid of the liquid crystal cell using the refractive index ellipsoid 9 for optical compensation, the azimuth and viewing angle at which the contrast ratio is maximized can be determined. can change. As the refractive index ellipsoid 9 for optical compensation, a disk-like shape is preferred, corresponding to the shape of the three-dimensional refractive index ellipsoid 6a of the liquid crystal cell, and the long axis direction (6.3) of the ellipsoid is shown in FIG. By arranging it diagonally to the z-axis as shown in
(direction with a large viewing angle) can be easily changed.

【0020】このような光学補償用の屈折率楕円体は、
光学的に負号で、表示面に対して光軸が斜めである特性
を有する。
[0020] Such a refractive index ellipsoid for optical compensation is
It has a characteristic that it has an optically negative sign and its optical axis is oblique with respect to the display surface.

【0021】光学的に負の光学異方性を示すものとして
は、コレステリック液晶セルがあげられる。コレステリ
ック液晶とは液晶分子が螺旋状にねじれた配列をしてお
り、一般の液晶が正の光学異方性を有するのに対しコレ
ステリック液晶は螺旋状のねじれ配列により光学的に負
の光学異方性を示す。コレステリック液晶セル中でのね
じれ角が非常に大きな場合その光学異方性はほぼ対称に
なる。ここで、例えばコレステリック液晶セルの基板表
面に所定の配向層を設けることにより螺旋軸を基板法線
方向から傾けることができる。このようにすることによ
り、コレステリック液晶セルの光学異方性をセル法線方
向に対して非対称にする事ができ、駆動液晶セルの光学
軸な傾きに合わせることができ駆動用液晶セルの視角特
性を完全に補償することができる。よって広視野角でコ
ントラストの高い液晶表示素子が得られる。この時、基
板表面に用いられる配向層としては例えばSiOの斜方
蒸着層などを用いることができる。このとき、コレステ
リック液晶セルの螺旋軸を駆動用液晶セルの光学特性を
補償する方向に傾けることにより、視野角が拡大され、
また、逆に駆動用液晶セルの光学特性を増長する方向に
傾けることにより視角方向を任意の方向に傾けることが
可能である。
A cholesteric liquid crystal cell is an example of a cell exhibiting negative optical anisotropy. Cholesteric liquid crystal has a spirally twisted arrangement of liquid crystal molecules, and while ordinary liquid crystals have positive optical anisotropy, cholesteric liquid crystal has a negative optical anisotropy due to the spirally twisted arrangement. Show your gender. When the twist angle in a cholesteric liquid crystal cell is very large, its optical anisotropy becomes almost symmetrical. Here, for example, by providing a predetermined alignment layer on the substrate surface of a cholesteric liquid crystal cell, the helical axis can be tilted from the normal direction of the substrate. By doing this, the optical anisotropy of the cholesteric liquid crystal cell can be made asymmetrical with respect to the normal direction of the cell, and the viewing angle characteristics of the driving liquid crystal cell can be adjusted to the optical axis tilt of the driving liquid crystal cell. can be fully compensated. Therefore, a liquid crystal display element with a wide viewing angle and high contrast can be obtained. At this time, the alignment layer used on the surface of the substrate may be, for example, an obliquely vapor deposited layer of SiO. At this time, the viewing angle is expanded by tilting the helical axis of the cholesteric liquid crystal cell in a direction that compensates for the optical characteristics of the driving liquid crystal cell.
In addition, the viewing angle direction can be tilted in any direction by tilting the driving liquid crystal cell in a direction that enhances the optical characteristics.

【0022】以上TN液晶セルを例にとって説明したが
、TN方式のみならずST方式やねじれ角が90゜以下
の小さなねじれ角の表示方式のLCD、さらには垂直配
列をしたECB型の液晶表示素子にも同様な効果が得ら
れる。
[0022] The explanation has been given above using a TN liquid crystal cell as an example, but not only the TN type but also the ST type, LCD with a display type with a small twist angle of 90° or less, and furthermore, the vertically arranged ECB type liquid crystal display element can be used. A similar effect can be obtained.

【0023】また上述のコレステリック液晶セルは、ね
じれ性を持つ高分子液晶層を用いることによっても同様
の機能が得られることは言うまでもなく、この場合、例
えば駆動用液晶セルの基板の少なくともどちらか一方に
、この様な高分子液晶層を塗布することにより得られ、
製造上容易となりより望ましい液晶表示素子が得られる
。この場合もちいる基板上に所定の配向処理を行うこと
や、用いる高分子液晶材料構造を変化させることにより
螺旋軸の傾きを変化させることができる。用いる高分子
液晶としては、例えばポリシロキサン主鎖とし、側鎖に
ビフェニルベンゾエートとコレステリル基などを適当な
比で有した様な高分子共重合体液晶などを用いることな
どができる。
It goes without saying that the above-mentioned cholesteric liquid crystal cell can also obtain the same function by using a polymeric liquid crystal layer with twisting properties, and in this case, for example, at least one of the substrates of the driving liquid crystal cell obtained by coating such a polymer liquid crystal layer on the
It is easier to manufacture and a more desirable liquid crystal display element can be obtained. In this case, the inclination of the helical axis can be changed by performing a predetermined alignment treatment on the substrate used or by changing the structure of the polymeric liquid crystal material used. As the polymer liquid crystal to be used, for example, a polymer copolymer liquid crystal having a polysiloxane main chain and side chains containing biphenyl benzoate and cholesteryl groups in an appropriate ratio can be used.

【0024】[0024]

【実施例】以下本発明の液晶表示素子の実施例を詳細に
説明する。
EXAMPLES Examples of the liquid crystal display element of the present invention will be described in detail below.

【0025】(実施例1)図8及び図9に本実施例にお
けるセル構成を示す。液晶表示素子は2枚の偏光板1、
4と、これらの間に補償用液晶セル2と駆動用液晶セル
3とを挟む構成を有している。偏光板1は透明基板1a
の内側に偏光膜1bを付けたものであり、偏光板4も同
様に透明基板4aに偏光膜4bをつけて形成される。又
これら偏光板1、4の吸収軸(1.1),(4.1) 
はそれぞれ平行するように配置される。
(Embodiment 1) FIGS. 8 and 9 show cell configurations in this embodiment. The liquid crystal display element includes two polarizing plates 1,
4, and a compensating liquid crystal cell 2 and a driving liquid crystal cell 3 are sandwiched therebetween. Polarizing plate 1 is transparent substrate 1a
A polarizing film 1b is attached to the inside of the transparent substrate 4a, and the polarizing plate 4 is similarly formed by attaching a polarizing film 4b to a transparent substrate 4a. Also, the absorption axes (1.1), (4.1) of these polarizing plates 1 and 4
are arranged parallel to each other.

【0026】補償用液晶セル2はこれらの偏光板1、4
間に配置され、透明基板2a, 2b間に液晶2cを介
在させた液晶セル構造を有している。
The compensating liquid crystal cell 2 consists of these polarizing plates 1 and 4.
It has a liquid crystal cell structure in which a liquid crystal 2c is interposed between transparent substrates 2a and 2b.

【0027】駆動用液晶セル3は補償用液晶セル2と偏
光板4間に配置される。上側基板3aと下側基板3bと
はそれぞれ透明電極3c、3d間を形成しており、駆動
電源3fに接続される。基板3a, 3b間にねじれネ
マティック液晶がねじれ角が90゜で導入され、駆動電
源3fから印加電圧に応じて状態を変化する。
The driving liquid crystal cell 3 is arranged between the compensation liquid crystal cell 2 and the polarizing plate 4. The upper substrate 3a and the lower substrate 3b form transparent electrodes 3c and 3d, respectively, and are connected to a drive power source 3f. A twisted nematic liquid crystal is introduced between the substrates 3a and 3b with a twist angle of 90°, and its state changes depending on the voltage applied from the driving power source 3f.

【0028】駆動用液晶セル3の液晶の光軸は下側基板
3bから上側基板3aへと反時計回りにねじれている(
左ねじれ)。(3.1),(3.2) は、それぞれ上
側と下側の基板のラビング軸でこれらは互いに直交し、
図中のy軸とラビング軸(3.1) がz方向から見て
右回りに45゜で配置される。セル3のリタデーション
値は450nmである。この様なTNセルに電圧を印加
した場合、光軸はz軸正の方向で負のx軸方向になる。
The optical axis of the liquid crystal of the driving liquid crystal cell 3 is twisted counterclockwise from the lower substrate 3b to the upper substrate 3a (
left-handed twist). (3.1) and (3.2) are the rubbing axes of the upper and lower substrates, respectively, and these are orthogonal to each other.
The y-axis and the rubbing axis (3.1) in the figure are arranged at 45 degrees clockwise when viewed from the z-direction. The retardation value of cell 3 is 450 nm. When a voltage is applied to such a TN cell, the optical axis is in the positive z-axis direction and in the negative x-axis direction.

【0029】補償用液晶セル2は5490゜ねじれ(右
ねじれ15.25回転)の液晶セルである。基板表面に
はそれぞれ基板法線から85゜でSiOを斜方蒸着され
た膜が設けられており、(2.1) 、(2.2) は
それぞれ上側と下側の基板2a, 2bの蒸着方向を示
しており、補償用液晶セル2中の螺旋軸は基板法線から
z軸正の方向で負のx軸方向に31゜傾いている。
The compensation liquid crystal cell 2 is a liquid crystal cell twisted by 5490° (15.25 rotations to the right). A film of SiO is obliquely deposited on each substrate surface at an angle of 85° from the normal to the substrate, and (2.1) and (2.2) represent the deposition of SiO on the upper and lower substrates 2a and 2b, respectively. The helical axis in the compensating liquid crystal cell 2 is inclined by 31 degrees from the substrate normal in the positive z-axis direction and in the negative x-axis direction.

【0030】本構成の液晶表示素子の等コントラスト比
−方位角特性(明状態:駆動電源3fから液晶セル電極
間に1V印加、暗状態:駆動電源3fから液晶セル電極
間に5V印加)を図10に従来例を図4に合わせて示す
。従来例と比較すると、どの方位でも視角30゜までは
コントラスト比35:1以上を得ることができ、視角特
性が大幅に向上した。また、従来ノーマリークローズ方
式では暗状態の表示色が着色していたのに反して、良好
な黒色が得られた。
The figure shows the equal contrast ratio-azimuth characteristics of the liquid crystal display element of this configuration (bright state: 1V applied from the drive power supply 3f between the liquid crystal cell electrodes; dark state: 5V applied from the drive power supply 3f between the liquid crystal cell electrodes). 10 shows a conventional example along with FIG. Compared to the conventional example, a contrast ratio of 35:1 or more can be obtained up to a viewing angle of 30° in any direction, and the viewing angle characteristics are significantly improved. Furthermore, in contrast to the conventional normally closed system, where the display color in the dark state was colored, a good black color was obtained.

【0031】(実施例2)実施例1の構成において、駆
動用液晶セル3は液晶層に電圧を印加する透明電極が具
備されたねじれ角が240゜のST形の液晶セルで、下
側基板から上側基板へと反時計回りにねじれており液晶
のプレチルト角は5°である。
(Embodiment 2) In the configuration of Embodiment 1, the driving liquid crystal cell 3 is an ST type liquid crystal cell with a twist angle of 240° and equipped with a transparent electrode for applying voltage to the liquid crystal layer. The pretilt angle of the liquid crystal is 5°.

【0032】ラビング軸(3.1) は、z軸より見て
反時計回りに+60゜になるように配置し、ラビング軸
間の角度は120゜である。セル3のリタデーション値
は845nmである。偏光板1の吸収軸(1.1) は
x軸かz軸より見て反時計回りに60゜、偏光板4の吸
収軸(4.1) はx軸から150゜である。
The rubbing axes (3.1) are arranged at an angle of +60° counterclockwise as viewed from the z-axis, and the angle between the rubbing axes is 120°. The retardation value of cell 3 is 845 nm. The absorption axis (1.1) of the polarizing plate 1 is 60° counterclockwise when viewed from the x-axis or the z-axis, and the absorption axis (4.1) of the polarizing plate 4 is 150° from the x-axis.

【0033】補償用液晶セル2は、下側基板から上側基
板へと時計回りに15.25回転し、基板表面にはそれ
ぞれ配向膜が有り、2枚の基板表面で直交するようにラ
ビングが施されている。補償用液晶セル2中の補償用液
晶層の螺旋軸は基板法線から5°傾いている。
The compensation liquid crystal cell 2 rotates 15.25 times clockwise from the lower substrate to the upper substrate, and each substrate surface has an alignment film, and the surfaces of the two substrates are rubbed so as to be perpendicular to each other. has been done. The helical axis of the compensation liquid crystal layer in the compensation liquid crystal cell 2 is inclined by 5° from the substrate normal.

【0034】本構成で640×400ドットのスーパー
ツイスト型LCDを作成し、1/200dutyでフレ
ーム間引き方式により16階調表示したところ、視点を
変化させても16階調間の識別ができる高コントラスト
なLCDが実現できた。視角特性を測定したところ、6
0゜コーンでコントラスト比12:1以上が得られ、入
射角が60゜以上でも表示画の反転や表示色の変化の無
い良好な白黒表示が得られた。
[0034] When we created a 640 x 400 dot super twist type LCD using this configuration and displayed 16 gradations using the frame thinning method at a duty of 1/200, we found that the contrast was high enough to distinguish between the 16 gradations even when the viewpoint was changed. We were able to realize a LCD that When viewing angle characteristics were measured, 6
A contrast ratio of 12:1 or more was obtained with a 0° cone, and a good black and white display without inversion of the display image or change in display color was obtained even at an incident angle of 60° or more.

【0035】(実施例3)実施例1において、駆動用液
晶セル3としてホメオトロピック配列をした液晶セルが
配置される。液晶のプレチルト角は、基板法線から2゜
である。
(Embodiment 3) In Embodiment 1, a homeotropically aligned liquid crystal cell is arranged as the driving liquid crystal cell 3. The pretilt angle of the liquid crystal is 2° from the substrate normal.

【0036】偏光板1の吸収軸(1.1) はz軸から
みて反時計回りにx軸に対し45°となるように配置し
た。
The absorption axis (1.1) of the polarizing plate 1 was arranged counterclockwise when viewed from the z-axis at an angle of 45° to the x-axis.

【0037】補償用液晶セル2は5490゜ねじれ(右
ねじれ15.25回転)の液晶セルである。基板表面に
はそれぞれ配向膜が有り、2枚の基板表面で直交するよ
うにラビングが施されている。補償用液晶セル2中の螺
旋軸は基板法線から2゜傾いている。
The compensation liquid crystal cell 2 is a liquid crystal cell twisted by 5490° (15.25 rotations to the right). Each substrate surface has an alignment film, and rubbing is performed so that the two substrate surfaces are perpendicular to each other. The helical axis in the compensating liquid crystal cell 2 is inclined at 2° from the substrate normal.

【0038】本構成で640×480ドットのECB型
LCDを作成し、1/240dutyで単純マルチプレ
クス駆動したところ、視点を変化させても表示パターン
のが識別できる高コントラスト表示のLCDが実現でき
た。 視角特性を測定したところ、60゜コーンでコントラス
ト比10:1以上が得られ、入射角が60゜以上でも表
示画の反転や表示色の変化の無い良好な表示が得られた
[0038] When we created an ECB type LCD with 640 x 480 dots using this configuration and drove it in a simple multiplex at a duty of 1/240, we were able to realize an LCD with a high contrast display in which the display pattern could be discerned even when the viewpoint was changed. . When viewing angle characteristics were measured, a contrast ratio of 10:1 or more was obtained at a 60° cone, and good display was obtained without inversion of the display image or change in display color even at an incident angle of 60° or more.

【0039】[0039]

【発明の効果】本発明によれば、液晶表示素子の視角特
性が改善され、視認性にすぐれる高品位表示の液晶表示
素子を提供することができる。また、本発明をTFTや
MIMなどの3端子、2端子素子を、用いたアクティブ
マトリクス液晶表示素子に応用しても優れた効果が得ら
れることは言うまでもない。
According to the present invention, the viewing angle characteristics of the liquid crystal display element are improved, and it is possible to provide a liquid crystal display element with high quality display and excellent visibility. Further, it goes without saying that excellent effects can be obtained even when the present invention is applied to active matrix liquid crystal display elements using three-terminal or two-terminal elements such as TFTs and MIMs.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】液晶セルに電圧が印加された状態における液晶
セル厚み方向の分子配列を示す図。
FIG. 1 is a diagram showing the molecular arrangement in the thickness direction of a liquid crystal cell when a voltage is applied to the liquid crystal cell.

【図2】図1の液晶分子のチルト角とツイスト角の座標
系を示す図。
FIG. 2 is a diagram showing a coordinate system of tilt angles and twist angles of liquid crystal molecules in FIG. 1;

【図3】90゜ねじれ液晶セルの電圧印加時の分子配列
状態を示す傾斜図。
FIG. 3 is a tilt diagram showing the molecular arrangement state of a 90° twisted liquid crystal cell when voltage is applied.

【図4】従来のTN型液晶表示素子の等コントラスト特
性を説明する図。
FIG. 4 is a diagram illustrating equal contrast characteristics of a conventional TN type liquid crystal display element.

【図5】第4図の観測点の座標系を説明する図。FIG. 5 is a diagram illustrating the coordinate system of the observation point in FIG. 4.

【図6】液晶分子が立った状態の三次元の屈折率楕円体
を示す図。
FIG. 6 is a diagram showing a three-dimensional refractive index ellipsoid with liquid crystal molecules standing upright.

【図7】図6の屈折率楕円体を光学補償する屈折率楕円
体を説明する図。
7 is a diagram illustrating a refractive index ellipsoid that optically compensates for the refractive index ellipsoid in FIG. 6. FIG.

【図8】本発明の実施例1の液晶表示素子を示す断面図
FIG. 8 is a cross-sectional view showing a liquid crystal display element of Example 1 of the present invention.

【図9】本発明の実施例1の液晶表示素子の構成を示す
分解斜視図。
FIG. 9 is an exploded perspective view showing the configuration of a liquid crystal display element according to Example 1 of the present invention.

【図10】実施例1の効果を説明する図。FIG. 10 is a diagram illustrating the effects of Example 1.

【符号の説明】[Explanation of symbols]

1、4  ・・・偏光板 2・・・補償用液晶セル 3・・・駆動用液晶セル 1, 4...Polarizing plate 2...Compensation liquid crystal cell 3...Drive liquid crystal cell

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  2枚の偏光板の間に、駆動用液晶セル
とねじれ角が360゜以上でありその螺旋軸が前記駆動
用液晶セルの基板法線に対し傾いた配列をした補償用液
晶層とを配置したことを特徴とする液晶表示素子。
1. A compensating liquid crystal layer arranged between two polarizing plates and having a twist angle of 360° or more with respect to a driving liquid crystal cell and whose helical axis is inclined with respect to the normal line of the substrate of the driving liquid crystal cell. A liquid crystal display element characterized by arranging.
JP3121578A 1991-05-28 1991-05-28 Liquid crystal display element and optically anisotropic element Expired - Lifetime JP2856942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3121578A JP2856942B2 (en) 1991-05-28 1991-05-28 Liquid crystal display element and optically anisotropic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3121578A JP2856942B2 (en) 1991-05-28 1991-05-28 Liquid crystal display element and optically anisotropic element

Publications (2)

Publication Number Publication Date
JPH04349424A true JPH04349424A (en) 1992-12-03
JP2856942B2 JP2856942B2 (en) 1999-02-10

Family

ID=14814713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3121578A Expired - Lifetime JP2856942B2 (en) 1991-05-28 1991-05-28 Liquid crystal display element and optically anisotropic element

Country Status (1)

Country Link
JP (1) JP2856942B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07146409A (en) * 1993-11-25 1995-06-06 Fuji Photo Film Co Ltd Optical compensation sheet and manufacture thereof
JPH07281028A (en) * 1994-04-08 1995-10-27 Fuji Photo Film Co Ltd Optical anisotropic sheet and liquid crystal display element using it
JPH07333433A (en) * 1994-06-08 1995-12-22 Fuji Photo Film Co Ltd Optical compensating sheet and liquid crystal display device using same
JPH085837A (en) * 1993-09-22 1996-01-12 Fuji Photo Film Co Ltd Optical compensation sheet, its production and liquid crystal display device using the same
JP2003509725A (en) * 1999-09-16 2003-03-11 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Optical Compensator and Liquid Crystal Display I
CN103033985A (en) * 2012-12-10 2013-04-10 京东方科技集团股份有限公司 Liquid crystal display device and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234225A (en) * 1987-03-23 1988-09-29 Sharp Corp Liquid crystal display device
JPH0233129A (en) * 1988-07-22 1990-02-02 Matsushita Electric Ind Co Ltd Liquid crystal panel
JPH0247629A (en) * 1988-08-09 1990-02-16 Seiko Epson Corp Liquid crystal electrooptic element
JPH02210417A (en) * 1989-02-10 1990-08-21 Ricoh Co Ltd Liquid crystal display element
JPH02256021A (en) * 1988-12-07 1990-10-16 Sharp Corp Liquid crystal display device
JPH0311317A (en) * 1989-06-08 1991-01-18 Sharp Corp Liquid crystal display device
JPH0395517A (en) * 1989-09-08 1991-04-19 Fujitsu Ltd Liquid crystal display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234225A (en) * 1987-03-23 1988-09-29 Sharp Corp Liquid crystal display device
JPH0233129A (en) * 1988-07-22 1990-02-02 Matsushita Electric Ind Co Ltd Liquid crystal panel
JPH0247629A (en) * 1988-08-09 1990-02-16 Seiko Epson Corp Liquid crystal electrooptic element
JPH02256021A (en) * 1988-12-07 1990-10-16 Sharp Corp Liquid crystal display device
JPH02210417A (en) * 1989-02-10 1990-08-21 Ricoh Co Ltd Liquid crystal display element
JPH0311317A (en) * 1989-06-08 1991-01-18 Sharp Corp Liquid crystal display device
JPH0395517A (en) * 1989-09-08 1991-04-19 Fujitsu Ltd Liquid crystal display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085837A (en) * 1993-09-22 1996-01-12 Fuji Photo Film Co Ltd Optical compensation sheet, its production and liquid crystal display device using the same
JPH07146409A (en) * 1993-11-25 1995-06-06 Fuji Photo Film Co Ltd Optical compensation sheet and manufacture thereof
JPH07281028A (en) * 1994-04-08 1995-10-27 Fuji Photo Film Co Ltd Optical anisotropic sheet and liquid crystal display element using it
JPH07333433A (en) * 1994-06-08 1995-12-22 Fuji Photo Film Co Ltd Optical compensating sheet and liquid crystal display device using same
JP2003509725A (en) * 1999-09-16 2003-03-11 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Optical Compensator and Liquid Crystal Display I
CN103033985A (en) * 2012-12-10 2013-04-10 京东方科技集团股份有限公司 Liquid crystal display device and preparation method thereof

Also Published As

Publication number Publication date
JP2856942B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
US6411355B1 (en) Liquid crystal display device with compensation for viewing angle dependency and optical anisotropic element used therein
JP2721284B2 (en) Liquid crystal display element and optically anisotropic element
EP1131671A1 (en) Vertically aligned helix-deformed liquid crystal display
JPH04258923A (en) Liquid crystal display element
JPH04349424A (en) Liquid crystal display element
JPH04322223A (en) Liquid crystal display element
JPH04229828A (en) Liquid crystal display element
JPH05107534A (en) Liquid crystal display element
JPH06235914A (en) Liquid crystal display device
JPH04346312A (en) Liquid crystal display element
JPH04322224A (en) Liquid crystal display element
JPH04366808A (en) Liquid crystal display element
JP3643439B2 (en) Liquid crystal display element
JP3130686B2 (en) Liquid crystal display device
JPH04366809A (en) Liquid crystal display element
JPH04349425A (en) Liquid crystal display element
JPH04366810A (en) Liquid crystal display element
JP3896135B2 (en) Liquid crystal display element and optical anisotropic element
JPH0950026A (en) Liquid crystal display
JPH05289097A (en) Liquid crystal display element
JPH07175058A (en) Liquid crystal display element
JPH0553132A (en) Liquid crystal display element
JPH055863A (en) Liquid crystal display element
JPH06130359A (en) Liquid crystal display element and element for compensation
JPH04322222A (en) Liquid crystal display element

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071127

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111127

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111127

Year of fee payment: 13