[go: up one dir, main page]

JPH04258923A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH04258923A
JPH04258923A JP3041295A JP4129591A JPH04258923A JP H04258923 A JPH04258923 A JP H04258923A JP 3041295 A JP3041295 A JP 3041295A JP 4129591 A JP4129591 A JP 4129591A JP H04258923 A JPH04258923 A JP H04258923A
Authority
JP
Japan
Prior art keywords
liquid crystal
refractive index
optically anisotropic
crystal cell
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3041295A
Other languages
Japanese (ja)
Inventor
Masahito Ishikawa
正仁 石川
Junko Hirata
純子 平田
Yoshihiro Kinoshita
木下 喜宏
Hitoshi Hado
羽藤 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3041295A priority Critical patent/JPH04258923A/en
Publication of JPH04258923A publication Critical patent/JPH04258923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

PURPOSE:To obtain the liquid crystal display element which is improved in visual angle characteristic and has high visual recognizability by providing specific optically anisotropic elements between a liquid crystal cell and two sheets of polarizing plates holding the liquid crystal therebetween. CONSTITUTION:The optically anisotropic elements 17.1, 17.4 are the biaxially stretched elements having two optical axes within a thickness direction (z-axis direction) and an element plane (the plane normal to the z-axis) and have relations nx>nx, nx=ny between the refractive index nx of the optical axis direction 17.2 within the plane normal to the z-axis and likewise the refractive index ny of the optical axis directions 17.5 or have relations nz>nx, nx>ny, nxnot equal to ny. Further, the twist angle of the liquid crystal cell 4 is set at nearly 90 deg. between two sheets of substrates 4a and 4b.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は、液晶表示素子に係わり
、特にコントラスト比及び表示色の視角依存性を制御し
た液晶表示素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device in which contrast ratio and viewing angle dependence of displayed colors are controlled.

【0002】0002

【従来の技術】近年、薄型軽量、低消費電力という大き
な利点をもつ液晶表示素子は、日本語ワードプロセッサ
やディスクトップパーソナルコンピュータ等のパーソナ
ルOA機器の表示装置として積極的に用いられている。 液晶表示素子(以下LCDと略称)のほとんどは、ねじ
れネマティック液晶を用いており、表示方式としては、
複屈折モードと旋光モードの2つの方式に大別できる。
2. Description of the Related Art In recent years, liquid crystal display devices, which have the great advantages of being thin, lightweight, and low power consumption, have been actively used as display devices for personal office automation equipment such as Japanese word processors and desktop personal computers. Most liquid crystal display elements (hereinafter abbreviated as LCD) use twisted nematic liquid crystal, and the display method is as follows:
It can be roughly divided into two modes: birefringence mode and optical rotation mode.

【0003】ねじれネマティック液晶を用いた複屈折モ
ードの表示方式のLCDは、90゜以上ねじれた分子配
列をもち(ST方式と呼ばれる)、急峻な電気光学特性
をもつ為、各画素ごとにスイッチング素子(薄膜トラン
ジスタやダイオード)が無くても単純なマトリクス状の
電極構造でも時分割駆動により容易に大容量表示が得ら
れる。しかし、ST方式では、複屈折効果を利用してい
るため表示色が黄色と濃紺色のいわゆるイエローモード
表示や、白色と青色のいわゆるブルーモード表示となり
、白黒表示やカラー表示が不可能であった。このような
表示の色づきを解消する手段として、素子面内で屈折率
の異方性をもつ光学異方素子を偏光板と液晶セルの間に
配置することによって白黒表示を実現できることがヨー
ロッパ公開特許第246842号公報にて報告されてい
る。
[0003] LCDs with a birefringence mode display method using twisted nematic liquid crystals have a molecular arrangement twisted by more than 90 degrees (called the ST method) and have steep electro-optical characteristics, so a switching element is required for each pixel. Even without (thin film transistors or diodes), a large capacity display can be easily obtained by time-division driving even with a simple matrix-like electrode structure. However, because the ST system uses birefringence, the display colors are yellow and dark blue, the so-called yellow mode, and white and blue, the so-called blue mode, making black-and-white or color display impossible. . As a means to eliminate such discoloration of the display, a European patent publication has revealed that a black and white display can be achieved by placing an optically anisotropic element with anisotropy of refractive index within the element plane between the polarizing plate and the liquid crystal cell. It is reported in Publication No. 246842.

【0004】旋光モードのLCDは90゜ねじれた分子
配列をもち、応答速度が速く(数十ミリ秒)高いコント
ラスト比と良好な階調表示性を示すことから、時計や電
卓、さらにはスイッチング素子を各画素ごとに設けるこ
とにより大表示容量で高コントラストな高い表示性能を
もったLCD(TFT−LCDやMIM−LCD)を実
現することができる。
[0004] Optical rotation mode LCDs have a molecular arrangement twisted at 90°, and have a fast response speed (several tens of milliseconds), exhibiting a high contrast ratio and good gradation display properties, so they are used in watches, calculators, and even switching devices. By providing each pixel, an LCD (TFT-LCD or MIM-LCD) with a large display capacity, high contrast, and high display performance can be realized.

【0005】しかし、これらねじれネマティック液晶を
用いたLCDは、見る角度や方向によって表示色やコン
トラスト比が変化するといった視角依存性をもち、陰極
線管CRTの表示性能を完全に越えるまでにはいたらな
い。
However, LCDs using twisted nematic liquid crystals have viewing angle dependence, with the display color and contrast ratio changing depending on the viewing angle and direction, and their display performance has not completely surpassed that of cathode ray tube CRTs. .

【0006】[0006]

【発明が解決しようとする課題】液晶分子は、液晶分子
の長軸方向と短軸方向に異なる屈折率を有することは一
般に知られている。この様な屈折率の異方性を示す液晶
分子にある偏光光が入射すると、その偏光光は液晶分子
の角度に依存して偏光状態が変化する。ねじれネマティ
ック液晶の液晶セルの分子配列は、液晶セルの厚み方向
に液晶分子の配列がねじれた構造を有しているが、液晶
セル中を透過する光は、このねじれた配列の液晶分子の
個々の液晶分子の向きによって逐次偏光して伝搬する。 従って、液晶セルに対し光が垂直に入射した場合と斜め
に入射した場合とでは、液晶セル中を伝搬する光の偏光
状態は異なり、その結果、液晶表示素子を見る時の方向
や角度によって表示のパターンが反転して見えたり、表
示のパターンが全く見えなくなったりするという現象と
して現れ、実用上好ましくない。
It is generally known that liquid crystal molecules have different refractive indices in the major axis direction and the minor axis direction of the liquid crystal molecules. When polarized light enters a liquid crystal molecule exhibiting such anisotropy of refractive index, the polarization state of the polarized light changes depending on the angle of the liquid crystal molecule. The molecular arrangement of a twisted nematic liquid crystal cell has a structure in which the arrangement of liquid crystal molecules is twisted in the thickness direction of the liquid crystal cell, but the light that passes through the liquid crystal cell is transmitted through each of the liquid crystal molecules in this twisted arrangement. The light propagates while being sequentially polarized depending on the orientation of the liquid crystal molecules. Therefore, the polarization state of the light propagating through the liquid crystal cell is different depending on whether the light is incident perpendicularly to the liquid crystal cell or obliquely, and as a result, the display may vary depending on the direction or angle when viewing the liquid crystal display element. This appears as a phenomenon in which the displayed pattern appears reversed or the displayed pattern becomes completely invisible, which is undesirable from a practical standpoint.

【0007】[発明の構成][Configuration of the invention]

【0008】[0008]

【課題を解決するための手段】第1の発明は、2枚の偏
光板と、これら偏光板間に配置された液晶セルと少なく
とも1つの光学異方素子とを具備してなる液晶表示素子
において、前記液晶セルは2枚の基板間でのねじれた角
がほぼ90°に設定されており、前記光学異方素子はそ
の素子面内の光軸方向の屈折率をnx、光軸法線方向の
屈折率をny、厚み方向の屈折率をnzとすると、nz
>nx nx=ny であることを特徴とする液晶表示素子にある。
[Means for Solving the Problems] A first invention provides a liquid crystal display element comprising two polarizing plates, a liquid crystal cell disposed between these polarizing plates, and at least one optically anisotropic element. In the liquid crystal cell, the twisted angle between the two substrates is set to approximately 90°, and the optically anisotropic element has a refractive index in the optical axis direction in the element plane of nx, and a refractive index in the optical axis normal direction. If the refractive index of is ny and the refractive index in the thickness direction is nz, then nz
>nx nx=ny.

【0009】第2の発明は、2枚の偏光板と、これら偏
光板間に配置された液晶セルと少なくとも1つの光学異
方素子とを具備してなる液晶表示素子において、前記液
晶セルは2枚の基板間でのねじれた角がほぼ90°に設
定されており、前記光学異方素子はその素子面内の光軸
方向の屈折率をnx、素子面内の光軸法線方向の屈折率
をny、厚み方向の屈折率をnzとすると、nz>nx nz>ny nx≠ny であることを特徴とする液晶表示素子にある。
A second aspect of the present invention is a liquid crystal display element comprising two polarizing plates, a liquid crystal cell disposed between these polarizing plates, and at least one optically anisotropic element, wherein the liquid crystal cell has two polarizing plates. The twisted angle between the two substrates is set to approximately 90°, and the optically anisotropic element has a refractive index of nx in the optical axis direction within the element plane, and a refraction index in the optical axis normal direction within the element plane. The liquid crystal display element is characterized in that, where ny is the refractive index and nz is the refractive index in the thickness direction, nz>nx nz>ny nx≠ny.

【0010】第3の発明は、2枚の偏光板と、これら偏
光板間に配置された液晶セルと少なくとも1つの光学異
方素子とを具備してなる液晶表示素子において、前記2
枚の基板間でねじれた配向をしている液晶セルを少なく
とも2つ配置し、前記光学異方素子はその素子面内の光
軸方向の屈折率をnx、光学異方素子の面内の光軸法線
方向の屈折率をny、素子厚み方向の屈折率をnzとす
ると、 nz>nx nz>ny nx≠ny であることを特徴とする液晶表示素子にある。
A third aspect of the invention is a liquid crystal display element comprising two polarizing plates, a liquid crystal cell disposed between these polarizing plates, and at least one optically anisotropic element.
At least two liquid crystal cells with twisted orientation are arranged between two substrates, and the optically anisotropic element has a refractive index of nx in the optical axis direction in the element plane, and the optical anisotropic element has a refractive index in the optical axis direction in the element plane. The liquid crystal display element is characterized in that, where ny is the refractive index in the axis normal direction and nz is the refractive index in the element thickness direction, nz>nx nz>ny nx≠ny.

【0011】[0011]

【作用】一般にねじれネマティック液晶を用いた液晶装
置LCDに用いられる偏光板の配置には大きく分けて2
通りあり、1つは2枚の基板間に液晶を配した液晶セル
に電圧を印加しないとき、光が透過せず、電圧を印加し
たとき、光の透過状態が得られる(ノーマリークローズ
)方式であり、他は液晶セルに電圧を印加しないとき光
が透過し、電圧を印加したとき光が遮断される(ノーマ
リーオープン)方式である。図5は、従来例のTN方式
のノーマリーオープンとノーマリークローズの表示面法
線から左右の方向に0゜から60゜まで傾いた時のコン
トラスト比依存性を示す図で、ノーマリーオープンの場
合は(10.0)、ノーマリークローズの場合は (1
1.0) で示されている。これらを比較すると、ノー
マリークローズの方がノーマリーオープンよりコントラ
スト比の視角依存性が少ないことが分かる。コントラス
ト比とは、光が透過した状態(明状態)の輝度を光が遮
断された状態(暗状態)の輝度で割った値であり、コン
トラスト比は暗状態の輝度に大きく影響する。そこでノ
ーマリーオープンとノーマリークローズの両方式の暗状
態の輝度の左右方向における視角依存性を測定してみる
と、図6に示したような特性が得られる。ノーマリーオ
ープンの場合を(10.1)でノーマリークローズの場
合を (11.1) で示した。図から明らかなように
、ノーマリークローズの方がノーマリーオープンより暗
状態の視角依存性が小さく、その結果ノーマリークロー
ズの方がノーマリーオープンよりコントラスト比の視角
特性が良くなっている。
[Operation] Generally speaking, there are two main types of arrangement of polarizing plates used in LCD, a liquid crystal device using twisted nematic liquid crystal.
There are two types of liquid crystal cells: one is a liquid crystal cell in which a liquid crystal is placed between two substrates; when no voltage is applied to the liquid crystal cell, light does not pass through; when voltage is applied, light is transmitted (normally closed). The other is a normally open method in which light is transmitted when no voltage is applied to the liquid crystal cell, and light is blocked when voltage is applied. Figure 5 is a diagram showing the dependence of the contrast ratio when the display surface is tilted from 0° to 60° to the left and right from the display surface normal for normally open and normally closed conventional TN systems. (10.0), normally closed (1
1.0). Comparing these, it can be seen that the contrast ratio is less dependent on viewing angle in the normally closed mode than in the normally open mode. The contrast ratio is a value obtained by dividing the brightness in a state where light is transmitted (bright state) by the brightness in a state in which light is blocked (dark state), and the contrast ratio greatly affects the brightness in the dark state. Therefore, when we measured the viewing angle dependence of the luminance in the dark state in the left and right direction for both the normally open and normally closed systems, we obtained the characteristics shown in FIG. 6. The normally open case is shown in (10.1) and the normally closed case is shown in (11.1). As is clear from the figure, the viewing angle dependence of the dark state is smaller in the normally closed mode than in the normally open mode, and as a result, the viewing angle characteristics of the contrast ratio are better in the normally closed mode than in the normally open mode.

【0012】ノーマリーオープンとノーマリークローズ
の暗状態の違いを考察してみると、ノーマリーオープン
の場合は光を遮断するために電圧を液晶セルに印加して
おり、分子配列状態のねじれ構造が歪んでいる。従って
、この歪んだ分子配列状態が視角特性に影響を与えてい
る。ノーマリーオープンの暗状態を示す電圧値を印加し
た時のセル中の分子配列状態、すなわち液晶分子の傾き
角(チルト角)、およびねじれ角(ツイスト角)を計算
してみると、図7に示すように電圧が印加された状態で
は、傾き角は7aのように液晶セルの中央付近では電界
に対してほぼ液晶分子が平行になるが、上下に基板表面
付近では、基板表面の配向規制力に影響を受けて電界に
平行にすならない。また、ねじれ角は8aのようにSの
字型の分布となる。ここで傾き角とねじれ角とは、図8
に示す座標系において液晶セルの基板面をxy面とした
とき、xy面に対する液晶分子(8.1) の長軸8.
1Lの傾き角7aを傾き角、液晶分子(8.1)をz軸
空xy面へ投射した軸とx軸とのなす角度8aがねじれ
角である。x軸は下側の基板のラビング軸に相当し、y
軸は上側の基板のラビング軸に相当する。例えば、ノー
マリーオープンの暗状態の視角特性を制御するには、図
7のように複雑に歪んだ分子配列状態を種々の方向から
光が入射したとき、ほぼ同一な偏光状態が得られるよう
に光学補償することが必要である。そこで、複雑に歪ん
だ分子配列状態を同時に光学補償することは困難である
から、液晶セルの中央付近の液晶分子が基板に対してほ
ぼ垂直に配列している部分と、上下の基板付近の若干液
晶分子がねじれて、起き上がっている部分とを別々に光
学補償する。
Considering the difference between the normally open and normally closed dark states, in the normally open case a voltage is applied to the liquid crystal cell to block light, and the twisted structure of the molecular arrangement state is distorted. Therefore, this distorted molecular arrangement state affects the viewing angle characteristics. Figure 7 shows the molecular arrangement state in the cell when a voltage value indicating a normally open dark state is applied, that is, the tilt angle and twist angle of the liquid crystal molecules. As shown in the figure, when a voltage is applied, the liquid crystal molecules are almost parallel to the electric field near the center of the liquid crystal cell, as shown in the tilt angle 7a, but near the top and bottom of the substrate surface, the alignment regulating force of the substrate surface It is influenced by the electric field and cannot be parallel to the electric field. Further, the twist angle has an S-shaped distribution as shown in 8a. Here, the tilt angle and torsion angle are shown in Figure 8.
In the coordinate system shown in , when the substrate surface of the liquid crystal cell is the xy plane, the long axis of the liquid crystal molecule (8.1) with respect to the xy plane is 8.
The tilt angle 7a of 1L is the tilt angle, and the angle 8a formed by the axis of the liquid crystal molecules (8.1) projected onto the z-axis empty xy plane and the x-axis is the torsion angle. The x-axis corresponds to the rubbing axis of the lower substrate, and the y-axis
The axis corresponds to the rubbing axis of the upper substrate. For example, in order to control the viewing angle characteristics in a normally open dark state, it is necessary to control the viewing angle characteristics so that almost the same polarization state is obtained when light enters the complexly distorted molecular arrangement state from various directions as shown in Figure 7. Optical compensation is necessary. Therefore, it is difficult to optically compensate for the complicatedly distorted molecular alignment state at the same time. The liquid crystal molecules are twisted and the raised portion is optically compensated separately.

【0013】液晶のような光学異方体は、三次元xyz
軸の屈折率楕円体で記述される。図9は液晶分子が垂直
に立った状態を屈折率楕円体で示したものであるが、複
屈折現象は、この屈折率楕円体をある方向からみたとき
の2次元面内での屈折率差に関する現象であるから、z
方向から見たとき、すなわち液晶セルを真正面から見た
ときの屈折率差と視軸(9.1) から見たときの屈折
率差とは異なる。ノーマリーオープン(クロスニコル)
の場合、z方向から見たときの屈折率差は0であるから
暗状態であるが、視軸(9.1) から見たときは屈折
率差が生じるために暗状態とはならない。
[0013] Optically anisotropic bodies such as liquid crystals are three-dimensional xyz
It is described by an axial index ellipsoid. Figure 9 shows a state in which liquid crystal molecules stand vertically using a refractive index ellipsoid, and the birefringence phenomenon is caused by the difference in refractive index within a two-dimensional plane when this refractive index ellipsoid is viewed from a certain direction. Since it is a phenomenon related to z
The refractive index difference when viewed from the direction, that is, when the liquid crystal cell is viewed directly from the front, is different from the refractive index difference when viewed from the visual axis (9.1). Normally Open (Cross Nicol)
In this case, the refractive index difference when viewed from the z direction is 0, so it is a dark state, but when viewed from the visual axis (9.1), there is a refractive index difference, so it is not a dark state.

【0014】そこで液晶セルの中央付近の液晶分子が基
板に対してほぼ垂直に配列している部分を光学補償する
には図10のような円盤状の屈折率楕円体を、図9の屈
折率楕円体とを組み合わせると、(9.1) から見た
ときでも2次元面は円となり、暗状態が得られる。
Therefore, in order to optically compensate for the part near the center of the liquid crystal cell where the liquid crystal molecules are arranged almost perpendicularly to the substrate, a disk-shaped refractive index ellipsoid as shown in FIG. When combined with an ellipsoid, the two-dimensional surface becomes a circle even when viewed from (9.1), and a dark state is obtained.

【0015】次に、上側の基板付近の若干液晶分子がね
じれて、起き上がっている部分をz方向(セル厚み方向
)から見ると図11のようになる。このような状態を1
つの屈折率楕円体に置き換えると、図12に示すように
楕円体の長軸12.1L がラビング軸から多少ずれる
。このような屈折率楕円体を光学補償するには、同一の
屈折率楕円体を前記屈折率楕円体の長軸と垂直になるよ
うに配置すると種々の観測点から見たときの2次元面内
で屈折率差は小さくなる。もう一方の下側の基板付近の
液晶分子配列状態の光学補償も同様にして行えば視角特
性が改善される。
[0015] Next, when the liquid crystal molecules near the upper substrate are slightly twisted and raised, the portion is viewed from the z direction (cell thickness direction) as shown in Fig. 11. This state is 1
When the refractive index ellipsoid is replaced with one refractive index ellipsoid, the long axis 12.1L of the ellipsoid is slightly shifted from the rubbing axis as shown in FIG. In order to optically compensate such a refractive index ellipsoid, if the same refractive index ellipsoid is arranged perpendicular to the long axis of the refractive index ellipsoid, the difference in the two-dimensional plane when viewed from various observation points is The refractive index difference becomes smaller. If the optical compensation of the alignment state of liquid crystal molecules near the other lower substrate is also performed in the same manner, the viewing angle characteristics will be improved.

【0016】以上述べた原理により、液晶セル中で種々
の傾き角、ねじれ角で配列している状態の光学補償を行
う屈折率楕円体として、光軸が素子面内と光軸がセル厚
み方向の2軸を有する光学異方素子を液晶セルと組み合
わせて用いることにより液晶表示素子のコントラスト比
や表示色の視角特性を自由に設計することができる。
Based on the above-mentioned principle, the refractive index ellipsoid that performs optical compensation when arranged at various tilt angles and twist angles in a liquid crystal cell has an optical axis in the element plane and an optical axis in the cell thickness direction. By using an optically anisotropic element having two axes in combination with a liquid crystal cell, it is possible to freely design the contrast ratio and viewing angle characteristics of displayed colors of the liquid crystal display element.

【0017】以上TN液晶セルを例にとって説明したが
、TN方式のみならずST方式やねじれ角が90゜以下
の小さなねじれ角の表示方式のLCDにも同様な効果が
得られる。
Although the above description has been made by taking the TN liquid crystal cell as an example, similar effects can be obtained not only in the TN type but also in the ST type and the LCD display type with a small twist angle of 90° or less.

【0018】[0018]

【実施例】以下本発明の液晶表示素子の実施例を詳細に
説明する。 (実施例1)図1に本実施例におけるセル構成を示す。 1及び6は偏光板で(1.1) 、(6.1) は偏光
板の吸収軸に相当する。4は液晶セルで(4.1) 、
(4.2) は、上下の基板4a、4bのラビング軸を
示す。ラビング軸(4.1) と(4.2) は液晶の
配向を決定するもので互いに直行して液晶に捩じれを与
えている(電圧無印加状態)。吸収軸(1.1) と上
側基板4aのラビング軸(4.1) は平行で、吸収軸
視角方向(6.1) と下側基板4bのラビング軸(4
.2) は平行である。
EXAMPLES Examples of the liquid crystal display element of the present invention will be described in detail below. (Example 1) FIG. 1 shows a cell configuration in this example. 1 and 6 are polarizing plates, and (1.1) and (6.1) correspond to the absorption axes of the polarizing plates. 4 is a liquid crystal cell (4.1),
(4.2) indicates the rubbing axis of the upper and lower substrates 4a and 4b. The rubbing axes (4.1) and (4.2) determine the orientation of the liquid crystal, and are perpendicular to each other to give a twist to the liquid crystal (no voltage applied). The absorption axis (1.1) and the rubbing axis (4.1) of the upper substrate 4a are parallel, and the absorption axis viewing angle direction (6.1) and the rubbing axis (4.1) of the lower substrate 4b are parallel.
.. 2) are parallel.

【0019】(17.1)、 (17.4) は厚み方
向(z軸方向)と素子面(z軸法線面)内に2つの光軸
を持つ2軸延伸の光学異方素子で、z軸方向の光軸方向
(17.3)の屈折率nzと、z軸法線面内の光軸方向
(17.2)の屈折率nxとz軸法線面内の光軸法線方
向(17.5)の屈折率nyとが異なり厚み方向の屈折
率nx、nyより大きい。(17.1)、 (17.4
) の2軸延伸の光学異方素子のz軸法線面内のリタデ
ーション値は、軸延伸の光学異方素子の厚さ(17.8
)、(17.9)をdとすると、 (nx−nz)×d=300nm であり、z軸方向のリタデーション値は(nx−nz)
×d=−500nm である。(17.1)の2軸延伸の光学異方素子の光軸
(17.2)は、上側基板のラビング軸(4.1) と
平行になるように液晶セル4と偏光板1との間に配置し
た。(17.4)の2軸延伸の光学異方素子の光軸(1
7.5)は、下側基板のラビング軸(4.2) と平行
になるように液晶セル4と偏光板6との間に配置した。 また、液晶セルのリタデーション値は480nmである
(17.1) and (17.4) are biaxially stretched optically anisotropic elements having two optical axes in the thickness direction (z-axis direction) and in the element plane (z-axis normal plane), The refractive index nz in the optical axis direction (17.3) in the z-axis direction, the refractive index nx in the optical axis direction (17.2) in the z-axis normal plane, and the optical axis normal direction in the z-axis normal plane (17.5) is different from the refractive index ny, which is larger than the refractive index nx, ny in the thickness direction. (17.1), (17.4
) The retardation value in the z-axis normal plane of the biaxially stretched optically anisotropic element is the thickness of the axially stretched optically anisotropic element (17.8
), (17.9) as d, (nx-nz)×d=300nm, and the retardation value in the z-axis direction is (nx-nz)
xd=-500 nm. The optical axis (17.2) of the biaxially stretched optically anisotropic element (17.1) is placed between the liquid crystal cell 4 and the polarizing plate 1 so that it is parallel to the rubbing axis (4.1) of the upper substrate. It was placed in (17.4) Optical axis (1
7.5) was placed between the liquid crystal cell 4 and the polarizing plate 6 so as to be parallel to the rubbing axis (4.2) of the lower substrate. Further, the retardation value of the liquid crystal cell is 480 nm.

【0020】本構成の液晶表示素子の電気光学特性の一
例を図13、図14に、後に示す比較例については図1
5、図16に示す。
An example of the electro-optical characteristics of the liquid crystal display element of this configuration is shown in FIGS. 13 and 14, and a comparative example shown later is shown in FIG.
5, shown in Figure 16.

【0021】図13、図14は、液晶セルの正面方向と
、横方向における本構成の液晶表示素子の透過率の印加
電圧特性で、液晶セル法線方向から10゜置きに60゜
まで゜液晶セルが傾いた時の光透過率の印加電圧特性で
ある。理想的には、液晶セルがどんなに傾いても光透過
率(規格値)の印加電圧特性が変化しないことが望まし
い。これらの図を比較すると、本実施例の方が、横方向
において特に約2.5Vから約4Vまでの印加電圧の範
囲において、透過率の視角依存性が小さく、階調表示時
のコントラスト比の視角特性が改善できた。このセル構
成の液晶表示素子の視角特性を測定したところ、60゜
コーン(垂直軸から入射角を60゜傾けた位置からの観
察)でコントラスト比35:1以上が得られ、入射角が
60゜以上でも表示画の反転が生じない着色の無い白黒
の良好な表示が得られた。 (比較例)実施例1において、光学異方素子を液晶セル
4と上下の偏光板1、6との間に配置しない場合の液晶
表示素子の視角特性を測定した。電気光学特性の測定結
果を正面方向に対して図15、横方向に対して図16に
示す。暗状態は視角により変化し、60゜コーンではコ
ントラスト比の最大値が、5:1しか得られず、入射角
が60゜以上になると見る方位によって表示画が反転し
たり、全く見えなくなった。 (実施例2)実施例1において、(17.1)、 (1
7.4) の2軸延伸の光学異方素子のz軸法線面内の
リタデーション値を100nm、z軸方向のリタデーシ
ョン値を−150nmとした。(17.1)の2軸延伸
の光学異方素子の光軸(17.2)を下側基板のラビン
グ軸(4.2) と平行になるように、(17.4)の
2軸延伸の光学異方素子の光軸(17.5)は上側基板
のラビング軸(4.1) と平行となるように配置した
。実施例1と同様に、本実施例の液晶表示素子の正面方
向と横方向における電気光学特性を図17、18に示す
と、とくに正面方向において、図のように暗状態の透過
率の印加電圧特性の視角依存性が少なく、その結果、高
いコントラスト比の視角特性が得られた。このセル構成
の液晶表示素子の視角特性を測定したところ、60゜コ
ーンでコントラスト比35:1以上が得られ、入射角が
60゜以上でも表示画の反転が生じない着色の無い白黒
の良好な表示が得られた。 (実施例3)実施例1において、偏光板1、6に通常設
けられる保護膜のかわりに、図2に示すような(17.
1)、 (17.4) の2軸延伸の光学異方素子を一
体形成した偏光板1a、6aを作成し、光学異方素子を
液晶セル4側にして液晶表示素子を作成した。なお、図
2において図1と同一符号は同一部品を示す。
FIGS. 13 and 14 show the applied voltage characteristics of the transmittance of the liquid crystal display element of this configuration in the front direction and the lateral direction of the liquid crystal cell. This is the applied voltage characteristic of light transmittance when the cell is tilted. Ideally, it is desirable that the applied voltage characteristics of the light transmittance (standard value) do not change no matter how tilted the liquid crystal cell is. Comparing these figures, it can be seen that the dependence of the transmittance on the viewing angle is smaller in the horizontal direction, especially in the range of applied voltage from about 2.5 V to about 4 V, and the contrast ratio when displaying gradations is lower in this example. Visual angle characteristics were improved. When we measured the viewing angle characteristics of a liquid crystal display element with this cell configuration, we found that a contrast ratio of 35:1 or more was obtained at a 60° cone (observation from a position with an incident angle of 60° from the vertical axis); Even in the above manner, a good black and white display without coloration was obtained without inversion of the displayed image. (Comparative Example) In Example 1, the viewing angle characteristics of the liquid crystal display element were measured when the optically anisotropic element was not disposed between the liquid crystal cell 4 and the upper and lower polarizing plates 1 and 6. The measurement results of the electro-optical characteristics are shown in FIG. 15 in the front direction and in FIG. 16 in the lateral direction. The dark state changes depending on the viewing angle, and a maximum contrast ratio of only 5:1 was obtained with a 60° cone, and when the incident angle exceeded 60°, the displayed image was inverted or not visible at all depending on the viewing direction. (Example 2) In Example 1, (17.1), (1
7.4) The retardation value in the z-axis normal plane of the biaxially stretched optically anisotropic element was 100 nm, and the retardation value in the z-axis direction was -150 nm. Biaxially stretched (17.4) so that the optical axis (17.2) of the biaxially stretched optically anisotropic element (17.1) is parallel to the rubbing axis (4.2) of the lower substrate. The optical axis (17.5) of the optically anisotropic element was arranged to be parallel to the rubbing axis (4.1) of the upper substrate. Similar to Example 1, the electro-optical characteristics of the liquid crystal display element of this example in the front direction and the lateral direction are shown in FIGS. 17 and 18. Especially in the front direction, the applied voltage of the transmittance in the dark state is The viewing angle dependence of the characteristics was small, and as a result, viewing angle characteristics with a high contrast ratio were obtained. When we measured the viewing angle characteristics of a liquid crystal display element with this cell configuration, we found that a contrast ratio of 35:1 or more was obtained at a 60° cone, and a good black and white display with no coloration was obtained, with no inversion of the displayed image even at an incident angle of 60° or more. The display was obtained. (Example 3) In Example 1, instead of the protective film normally provided on the polarizing plates 1 and 6, a protective film (17.
Polarizing plates 1a and 6a integrally formed with biaxially stretched optically anisotropic elements of 1) and (17.4) were prepared, and a liquid crystal display element was prepared with the optically anisotropic element placed on the liquid crystal cell 4 side. Note that in FIG. 2, the same symbols as in FIG. 1 indicate the same parts.

【0022】この構成の液晶表示素子の視角特性を測定
したところ、60゜コーンでコントラスト比43:1以
上が得られ、入射角が60゜以上でも表示画の反転が生
じない着色の無い白黒の良好な表示が得られた。 (実施例4)図1において、光学異方素子(17.1)
,(17.4) 厚み方向(z方向)のリタデーション
値が−100nmの光学異方素子を用いた。ここで光学
異方素子の面内方向の屈折率の異方性はなく、屈折率は
1.541である。また、厚み方向の屈折率は1.54
2である。液晶セルのリタデーション値(=Δnd)は
、480nmである。
When the viewing angle characteristics of the liquid crystal display element with this configuration were measured, a contrast ratio of 43:1 or more was obtained at a 60° cone, and a black and white display with no coloring was obtained, with no inversion of the displayed image even at an incident angle of 60° or more. A good display was obtained. (Example 4) In FIG. 1, the optically anisotropic element (17.1)
, (17.4) An optically anisotropic element with a retardation value of -100 nm in the thickness direction (z direction) was used. Here, there is no anisotropy in the refractive index in the in-plane direction of the optically anisotropic element, and the refractive index is 1.541. Also, the refractive index in the thickness direction is 1.54
It is 2. The retardation value (=Δnd) of the liquid crystal cell is 480 nm.

【0023】図19は液晶セルの正面方向から横方向に
15°置きに60°まで傾いた方向における透過率の印
加電圧特性であり、明状態は0V、暗状態は4.5Vの
電圧を液晶セルに印加して表示する。以下に示す比較例
の特性(図20)と比較すると、本実施例の方が、透過
率の印加電圧特性と透過率の印加電圧特性の4.5V付
近の透過率(暗状態)が、ほとんど変わらず、表示コン
トラスト比の視角特性が改善できた。この構成の液晶表
示素子の視角特性を測定したところ、60°コーンでコ
ントラスト比35:1以上が得られ、入射角が60°以
上でも表示画の反転が生じない着色の無い白黒の良好な
表示が得られた。 (比較例)実施例4において光学異方素子を液晶セル4
と上下偏光板との間に配置しない場合の液晶表示素子の
視角特性を測定した。電気光学特性の測定結果を図20
に示す。暗状態は視角により変化し、60°コーンでは
コントラスト比の最大値が5:1しか得られず、入射角
が60°以上では見る方位によって表示画が反転したり
まったく見えなくなった。 (実施例5)実施例4において、液晶セル4と偏光板1
との間にリタデーション値がー150nmの光学異方素
子を配置した。この構成の液晶表示素子の電気光学特性
の一例を図21に示す。前記図20の比較例の電気光学
特性と比較すると、本実施例の方が視角を変化させても
暗状態が変化せず、表示コントラストの視角特性が改善
できた。この構成の液晶表示素子の視角特性を測定した
ところ、60゜コーンでコントラスト比38:1以上が
得られ、入射角が60゜以上でも表示画の反転が生じな
い着色の無い白黒の良好な表示が得られた。 (実施例6)実施例4において液晶セル4と偏光板1と
の間にリタデーション値が−300nmの光学異方素子
を配置した。実際に、この構成の液晶表示素子の電気光
学特性の一例を図22に示す。図20の比較例に電気光
学特性と比較すると、本実施例の方が視角を変化させて
も暗状態が変化せず、表示コントラストの視角特性が改
善できた。この構成の液晶表示素子の視角特性を測定し
たところ、60゜コーンでコントラスト比40:1以上
が得られ、入射角が60゜以上でも表示画の反転が生じ
ない着色の無い白黒の良好な表示が得られた。 (実施例7)実施例4において偏光板1、6に通常形成
される保護膜のかわりに、(17.1)、(17.4)
の光学異方素子を一体形成した偏光板を作成し、液晶表
示素子を作成した。この構成の液晶表示素子の視角特性
を測定したところ、60゜コーンでコントラスト比38
:1以上が得られ、入射角が60゜以上でも表示画の反
転が生じない着色の無い白黒の良好な表示が得られた。 (実施例8)実施例5において偏光板1、6の保護膜の
かわりに、(17.1)、(17.4)の光学異方素子
を一体形成した偏光板を作成し、液晶表示素子を作成し
た。この構成の液晶表示素子の視角特性を測定したとこ
ろ、60゜コーンでコントラスト比40:1以上が得ら
れ、入射角が60゜以上でも表示画の反転が生じない着
色の無い白黒の良好な表示が得られた。 (実施例9)図3に本実施例の液晶表示素子のセル構成
を示す。ここに図1と同一符号は同一部分を示す。1,
6は偏光板、20は光学異方素子、3、4はねじれ角が
90゜の液晶セルである。各軸の角度をx軸を基準にし
てxy面内で反時計回りで示すと、偏光板1の光軸(1
.1) =45゜ 偏光板6の光軸(6.1) =45゜ 液晶セル3の上側基板のラビング軸(3.1) =45
゜液晶セル4の上側基板のラビング軸(4.1) =1
35゜である。
FIG. 19 shows the applied voltage characteristics of the transmittance in directions tilted up to 60° at 15° intervals in the horizontal direction from the front direction of the liquid crystal cell. Apply it to the cell and display it. Compared with the characteristics of the comparative example shown below (Fig. 20), in this example, the applied voltage characteristics of transmittance and the applied voltage characteristics of transmittance near 4.5V (dark state) are almost the same. However, the display contrast ratio and viewing angle characteristics were improved. When we measured the viewing angle characteristics of the liquid crystal display element with this configuration, we found that a contrast ratio of 35:1 or more was obtained with a 60° cone, and a good black and white display with no coloration was achieved with no inversion of the displayed image even at an incident angle of 60° or more. was gotten. (Comparative example) In Example 4, the optically anisotropic element was
The viewing angle characteristics of the liquid crystal display element when it is not placed between the upper and lower polarizing plates were measured. Figure 20 shows the measurement results of electro-optical characteristics.
Shown below. The dark state changes depending on the viewing angle, with a 60° cone, the maximum contrast ratio was only 5:1, and when the incident angle was 60° or more, the displayed image was reversed or completely invisible depending on the viewing direction. (Example 5) In Example 4, liquid crystal cell 4 and polarizing plate 1
An optically anisotropic element with a retardation value of -150 nm was placed between the two. An example of the electro-optical characteristics of a liquid crystal display element having this configuration is shown in FIG. When compared with the electro-optical characteristics of the comparative example shown in FIG. 20, the dark state of this example did not change even when the viewing angle was changed, and the viewing angle characteristics of display contrast were improved. When we measured the viewing angle characteristics of the liquid crystal display element with this configuration, we found that a contrast ratio of 38:1 or more was obtained at a 60° cone, and a good black and white display with no coloration was achieved with no inversion of the displayed image even at an incident angle of 60° or more. was gotten. (Example 6) In Example 4, an optically anisotropic element having a retardation value of -300 nm was placed between the liquid crystal cell 4 and the polarizing plate 1. FIG. 22 actually shows an example of the electro-optical characteristics of a liquid crystal display element having this configuration. When comparing the electro-optical characteristics with the comparative example shown in FIG. 20, the dark state does not change even when the viewing angle is changed in this example, and the viewing angle characteristics of the display contrast can be improved. When we measured the viewing angle characteristics of the liquid crystal display element with this configuration, we found that a contrast ratio of 40:1 or more was obtained at a 60° cone, and a good black and white display with no coloration was achieved, with no inversion of the displayed image even at an incident angle of 60° or more. was gotten. (Example 7) In place of the protective films normally formed on the polarizing plates 1 and 6 in Example 4, (17.1) and (17.4) were used.
A polarizing plate integrally formed with an optically anisotropic element was fabricated, and a liquid crystal display element was fabricated. When we measured the viewing angle characteristics of a liquid crystal display element with this configuration, we found that the contrast ratio was 38 at a 60° cone.
: 1 or more was obtained, and a good black and white display without coloration was obtained without inversion of the displayed image even at an incident angle of 60° or more. (Example 8) In place of the protective films of polarizing plates 1 and 6 in Example 5, a polarizing plate in which the optically anisotropic elements of (17.1) and (17.4) were integrally formed was created, and a liquid crystal display element was It was created. When we measured the viewing angle characteristics of the liquid crystal display element with this configuration, we found that a contrast ratio of 40:1 or more was obtained at a 60° cone, and a good black and white display with no coloration was achieved, with no inversion of the displayed image even at an incident angle of 60° or more. was gotten. (Example 9) FIG. 3 shows the cell structure of the liquid crystal display element of this example. Here, the same reference numerals as in FIG. 1 indicate the same parts. 1,
6 is a polarizing plate, 20 is an optically anisotropic element, and 3 and 4 are liquid crystal cells with a twist angle of 90°. If the angle of each axis is shown counterclockwise in the xy plane with the x-axis as a reference, the optical axis (1
.. 1) =45° Optical axis of polarizing plate 6 (6.1) =45° Rubbing axis of upper substrate of liquid crystal cell 3 (3.1) =45
゜Rubbing axis of upper substrate of liquid crystal cell 4 (4.1) = 1
It is 35°.

【0024】光学異方素子20の屈折率は、x軸方向(
20.2)(光軸)、y軸方向(20.3)ともに等し
く1.543で、z軸方向(20.1) の屈折率は1
.545である。液晶セル3および4のリタデーション
値は、500nmであり、液晶セル3には透明電極が設
けられ液晶層に電圧が印加される。
The refractive index of the optically anisotropic element 20 is in the x-axis direction (
20.2) (optical axis) and the y-axis direction (20.3) are both equally 1.543, and the refractive index in the z-axis direction (20.1) is 1.
.. It is 545. The retardation value of liquid crystal cells 3 and 4 is 500 nm, liquid crystal cell 3 is provided with a transparent electrode, and a voltage is applied to the liquid crystal layer.

【0025】本構成の液晶表示素子の視角特性を測定し
たところ、60゜コーンでコントラスト比35:1以上
が得られ、入射角が60゜以上でも表示画の反転が生じ
ない着色のない良好な表示が得られた。 (比較例)実施例9において光学異方素子を液晶セル3
と偏光板1との間に配置せず、偏光板6の偏光軸(6.
1) を135゜に配置した場合の液晶表示素子の視角
特性を測定した。60゜コーンではコントラスト比の最
大値が5:1しか得られず、入射角が60゜以上になる
と見る方位によって表示画が反転したり、見えなくなる
。(実施例10)実施例9において光学異方素子20を
液晶セル3と4の間に配置した。本構成の液晶表示素子
の視角特性を測定したところ、60゜コーンでコントラ
スト比37:1以上が得られ、入射角が60゜以上でも
表示画の反転が生じない着色のない白黒の良好な表示が
得られた。 (実施例11)図4に本実施例の液晶表示素子のセル構
成を示す。なお、図1と同一符号は同一部分を示す。
When the viewing angle characteristics of the liquid crystal display element with this configuration were measured, a contrast ratio of 35:1 or more was obtained at a 60° cone, and the display image did not invert even at an incident angle of 60° or more, and had good coloration. The display was obtained. (Comparative example) In Example 9, the optically anisotropic element was
and the polarizing plate 1, and the polarizing axis of the polarizing plate 6 (6.
1) The viewing angle characteristics of the liquid crystal display element were measured when the display was placed at an angle of 135°. With a 60° cone, a maximum contrast ratio of only 5:1 can be obtained, and when the angle of incidence exceeds 60°, the displayed image may become inverted or invisible depending on the viewing direction. (Example 10) In Example 9, the optically anisotropic element 20 was placed between the liquid crystal cells 3 and 4. When the viewing angle characteristics of the liquid crystal display element with this configuration were measured, a contrast ratio of 37:1 or more was obtained at a 60° cone, and a good black and white display with no coloration was achieved without inversion of the displayed image even at an incident angle of 60° or more. was gotten. (Example 11) FIG. 4 shows the cell structure of the liquid crystal display element of this example. Note that the same symbols as in FIG. 1 indicate the same parts.

【0026】偏光板1、6間に2枚の光学異方素子20
、50が配置され、さらにその内側に2枚の各ねじれ角
が90゜の液晶セル3、4が隣接して配置されている。
Two optically anisotropic elements 20 are provided between the polarizing plates 1 and 6.
, 50 are disposed, and further inside thereof two liquid crystal cells 3 and 4 each having a twist angle of 90° are disposed adjacent to each other.

【0027】各軸の角度をx軸を基準にxy面内で反時
計回りで示すと、 偏光板1の偏光軸(1.1) =45゜偏光板6の偏光
軸(6.1) =45゜液晶セル3の上側基板のラビン
グ軸(3.1)=45゜液晶セル4の上側基板のラビン
グ軸(4.1) =135゜である。
When the angles of each axis are shown counterclockwise in the xy plane with the x-axis as a reference, the polarizing axis of the polarizing plate 1 (1.1) = 45° The polarizing axis of the polarizing plate 6 (6.1) = 45° Rubbing axis (3.1) of the upper substrate of liquid crystal cell 3 = 45° Rubbing axis (4.1) of the upper substrate of liquid crystal cell 4 = 135°.

【0028】偏光板1と液晶セル3との間に配置される
光学異方素子20のxy平面内の光軸(20.2)方向
の屈折率は1.543、光軸(20.2)とxy平面内
で垂直方向の屈折率は1.541、z軸方向(20.1
)の屈折率は1.545である。
The optical anisotropic element 20 disposed between the polarizing plate 1 and the liquid crystal cell 3 has a refractive index of 1.543 in the optical axis (20.2) direction in the xy plane; The refractive index in the vertical direction in the xy plane is 1.541, and the refractive index in the z-axis direction (20.1
) has a refractive index of 1.545.

【0029】もう一方の光学異方素子50は偏光板6と
液晶セル4間に配置される。xy平面内の光軸(50.
2)方向の屈折率は1.543、光軸(50.2)とx
y平面内で垂直方向(50.3)の屈折率は1.541
、z軸方向(50.1)の屈折率は1.541である。 また、光学異方素子50の厚み(50.5)は150n
mである。
The other optically anisotropic element 50 is placed between the polarizing plate 6 and the liquid crystal cell 4. Optical axis in xy plane (50.
2) The refractive index in the direction is 1.543, the optical axis (50.2) and x
The refractive index in the vertical direction (50.3) in the y-plane is 1.541
, the refractive index in the z-axis direction (50.1) is 1.541. Moreover, the thickness (50.5) of the optically anisotropic element 50 is 150n
It is m.

【0030】光学異方素子20の光軸(20.2)は1
35°、光学異方素子50の光軸(50.2)は45°
である。液晶セル3および4のリタデーション値は、5
00nmであり、液晶セル3には透明電極が設けられ液
晶層に電圧が印加される。本構成の液晶表示素子の視角
特性を測定したところ、60°コーンでコントラスト比
38:1以上が得られ、入射角が60°以上でも表示画
の反転が生じない着色の白黒の良好な表示が得られた。 (実施例12)実施例9において、液晶セル3、4とし
てねじれ角が240°の液晶セルを用い、液晶セル3、
4はねじれ方向が互いに逆である。液晶セル3の上側基
板のラビング軸(3.1) を60°、液晶セル4の上
側基板のラビング軸(4.1) を150°とした。こ
れら2つの液晶セルのリタデーション値は110nmで
ある。偏光板1の偏光軸(1.1) は0°、偏光板6
の偏光軸(6.1) は90°である。本構成の液晶表
示素子の視角特性は、60°コーンでコントラスト比2
0:1以上となり、入射角が60°以上でも表示画の反
転が生じない着色のない白黒の良好な表示が得られた。
The optical axis (20.2) of the optically anisotropic element 20 is 1
35°, the optical axis (50.2) of the optically anisotropic element 50 is 45°
It is. The retardation value of liquid crystal cells 3 and 4 is 5
00 nm, a transparent electrode is provided in the liquid crystal cell 3, and a voltage is applied to the liquid crystal layer. When the viewing angle characteristics of the liquid crystal display element with this configuration were measured, a contrast ratio of 38:1 or more was obtained with a 60° cone, and a good colored black and white display was achieved with no inversion of the displayed image even at an incident angle of 60° or more. Obtained. (Example 12) In Example 9, liquid crystal cells with a twist angle of 240° were used as the liquid crystal cells 3 and 4, and the liquid crystal cells 3 and 4 were
In No. 4, the twist directions are opposite to each other. The rubbing axis (3.1) of the upper substrate of liquid crystal cell 3 was 60°, and the rubbing axis (4.1) of the upper substrate of liquid crystal cell 4 was 150°. The retardation value of these two liquid crystal cells is 110 nm. The polarization axis (1.1) of polarizing plate 1 is 0°, polarizing plate 6
The polarization axis (6.1) of is 90°. The viewing angle characteristic of the liquid crystal display element with this configuration is that the contrast ratio is 2 at a 60° cone.
0:1 or more, and a good black-and-white display without coloration was obtained without inversion of the displayed image even when the incident angle was 60° or more.

【0031】[0031]

【発明の効果】本発明によれば、ねじれネマティック液
晶を用いた液晶表示素子の視角特性が改善され、視認性
のすぐれた液晶表示素子が得られる。また、本発明をT
FTやMIMなどの3端子、2端子素子を用いたアクテ
ィブマトリクス液晶表示素子に応用してもすぐれた効果
を発揮することはいうまたまもない。
According to the present invention, the viewing angle characteristics of a liquid crystal display element using twisted nematic liquid crystal are improved, and a liquid crystal display element with excellent visibility can be obtained. In addition, the present invention can be
It goes without saying that excellent effects can be exhibited even when applied to active matrix liquid crystal display elements using three-terminal or two-terminal elements such as FT and MIM.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の液晶表示素子を示す分解斜
視図である。
FIG. 1 is an exploded perspective view showing a liquid crystal display element according to an embodiment of the present invention.

【図2】本発明の他の実施例の液晶表示素子を示す分解
斜視図である。
FIG. 2 is an exploded perspective view showing a liquid crystal display element according to another embodiment of the present invention.

【図3】本発明の他の実施例の液晶表示素子を示す分解
斜視図である。
FIG. 3 is an exploded perspective view showing a liquid crystal display element according to another embodiment of the present invention.

【図4】本発明の他の実施例の液晶表示素子を示す分解
斜視図である。
FIG. 4 is an exploded perspective view showing a liquid crystal display element according to another embodiment of the present invention.

【図5】ねじれネマティック形液晶表示素子の左右方向
のノーマリーオープンとノーマリークローズのコントラ
スト比の視角特性を説明する図である。
FIG. 5 is a diagram illustrating viewing angle characteristics of normally open and normally closed contrast ratios in the horizontal direction of a twisted nematic liquid crystal display element.

【図6】ねじれネマティック形液晶表示素子の左右方向
のノーマリーオープンとノーマリークローズの暗状態の
輝度の視角特性を説明する図である。
FIG. 6 is a diagram illustrating viewing angle characteristics of luminance in a normally open and normally closed dark state in the horizontal direction of a twisted nematic liquid crystal display element.

【図7】液晶セルに電圧が印加された状態における液晶
セル厚み方向の分子配列状態を示す図である。
FIG. 7 is a diagram showing the state of molecular alignment in the thickness direction of the liquid crystal cell when a voltage is applied to the liquid crystal cell.

【図8】図7の液晶分子の傾き角とねじれ角の座標系を
示す図である。
8 is a diagram showing a coordinate system of tilt angles and twist angles of liquid crystal molecules in FIG. 7. FIG.

【図9】液晶が立った状態の三次元の屈折率楕円体を示
す図である。
FIG. 9 is a diagram showing a three-dimensional refractive index ellipsoid with liquid crystal standing up.

【図10】図9の屈折率楕円体を光学補償する屈折率楕
円体を説明する図である。
10 is a diagram illustrating a refractive index ellipsoid that optically compensates for the refractive index ellipsoid in FIG. 9. FIG.

【図11】基板表面付近に存在する液晶分子の配列状態
を示す図である。
FIG. 11 is a diagram showing the arrangement state of liquid crystal molecules existing near the substrate surface.

【図12】図8と等価な屈折率楕円体を示す図である。FIG. 12 is a diagram showing a refractive index ellipsoid equivalent to FIG. 8;

【図13】本発明の実施例1の効果を説明するもので液
晶セル印加電圧(V)対光等価率(規格値)特性の曲線
図である。
FIG. 13 is a curve diagram of the liquid crystal cell applied voltage (V) versus light equivalent ratio (standard value) characteristic for explaining the effect of Example 1 of the present invention.

【図14】本発明の実施例1の効果を説明するもので液
晶セル印加電圧(V)対光等価率(規格値)特性の曲線
図である。
FIG. 14 is a curve diagram of the liquid crystal cell applied voltage (V) versus light equivalent ratio (standard value) characteristic for explaining the effects of Example 1 of the present invention.

【図15】本発明の実施例1の効果と対比する比較例の
特性を説明するもので液晶セル印加電圧(V)対光等価
率(規格値)特性の曲線図である。
FIG. 15 is a curve diagram of liquid crystal cell applied voltage (V) vs. light equivalent ratio (standard value) characteristic, explaining the characteristics of a comparative example in comparison with the effects of Example 1 of the present invention.

【図16】本発明の実施例1の効果と対比する比較例の
特性を説明するもので液晶セル印加電圧(V)対光等価
率(規格値)特性の曲線図である。
FIG. 16 is a curve diagram of liquid crystal cell applied voltage (V) vs. light equivalent ratio (standard value) characteristic, for explaining the characteristics of a comparative example in comparison with the effects of Example 1 of the present invention.

【図17】本発明の実施例2の効果を説明するもので液
晶セル印加電圧(V)対光等価率(規格値)特性の曲線
図である。
FIG. 17 is a curve diagram of the liquid crystal cell applied voltage (V) versus light equivalent ratio (standard value) characteristic for explaining the effect of Example 2 of the present invention.

【図18】本発明の実施例2の効果を説明するもので液
晶セル印加電圧(V)対光等価率(規格値)特性の曲線
図である。
FIG. 18 is a curve diagram of the liquid crystal cell applied voltage (V) versus light equivalent ratio (standard value) characteristic to explain the effect of Example 2 of the present invention.

【図19】本発明の実施例4の効果を説明するもので液
晶セル印加電圧(V)対光等価率(規格値)特性の曲線
図である。
FIG. 19 is a curve diagram of the liquid crystal cell applied voltage (V) versus light equivalent ratio (standard value) characteristic for explaining the effect of Example 4 of the present invention.

【図20】本発明の実施例4、5、6の効果と対比する
比較例の特性を説明するもので液晶セル印加電圧(V)
対光等価率(規格値)特性の曲線図である。
FIG. 20 illustrates the characteristics of a comparative example in comparison with the effects of Examples 4, 5, and 6 of the present invention, and shows the applied voltage (V) of the liquid crystal cell.
FIG. 3 is a curve diagram of light equivalent ratio (standard value) characteristics.

【図21】本発明の実施例5の効果を説明するもので液
晶セル印加電圧(V)対光等価率(規格値)特性の曲線
図である。
FIG. 21 is a curve diagram of the liquid crystal cell applied voltage (V) versus light equivalent ratio (standard value) characteristic for explaining the effect of Example 5 of the present invention.

【図22】本発明の実施例6の効果を説明するもので液
晶セル印加電圧(V)対光等価率(規格値)特性の曲線
図である。
FIG. 22 is a curve diagram of the liquid crystal cell applied voltage (V) versus light equivalent ratio (standard value) characteristic for explaining the effect of Example 6 of the present invention.

【符号の説明】[Explanation of symbols]

1、6…偏光板 4…液晶セル 17.1、17.4…光学異方素子 1, 6...Polarizing plate 4...Liquid crystal cell 17.1, 17.4...Optical anisotropic element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】2枚の偏光板と、これら偏光板間に配置さ
れた液晶セルと少なくとも1つの光学異方素子とを具備
してなる液晶表示素子において、前記液晶セルは2枚の
基板間でのねじれた角がほぼ90°に設定されており、
前記光学異方素子はその素子面内の光軸方向の屈折率を
nx、素子面内の光軸法線方向の屈折率をny、厚み方
向の屈折率をnzとすると、 nz>nx nx=ny であることを特徴とする液晶表示素子
1. A liquid crystal display element comprising two polarizing plates, a liquid crystal cell disposed between these polarizing plates, and at least one optically anisotropic element, wherein the liquid crystal cell is located between two substrates. The twisted angle at is set to approximately 90°,
The optically anisotropic element has a refractive index in the optical axis direction in the element plane of nx, a refractive index in the optical axis normal direction in the element plane as ny, and a refractive index in the thickness direction as nz, then nz>nx nx= A liquid crystal display element characterized by ny
【請求項2】2枚の偏光板と、これら偏光板間に配置さ
れた液晶セルと少なくとも1つの光学異方素子とを具備
してなる液晶表示素子において、前記液晶セルは2枚の
基板間でのねじれた角がほぼ90°に設定されており、
前記光学異方素子はその素子面内の光軸方向の屈折率を
nx、素子面内の光軸法線方向の屈折率をny、厚み方
向の屈折率をnzとすると、 nz>nx nz>ny nx≠ny であることを特徴とする液晶表示素子
2. A liquid crystal display element comprising two polarizing plates, a liquid crystal cell disposed between these polarizing plates, and at least one optically anisotropic element, wherein the liquid crystal cell is located between two substrates. The twisted angle at is set to approximately 90°,
The optically anisotropic element has a refractive index in the optical axis direction in the element plane of nx, a refractive index in the optical axis normal direction in the element plane as ny, and a refractive index in the thickness direction as nz, then nz>nx nz> A liquid crystal display element characterized in that ny nx≠ny
【請求項3】2枚の偏光板と、これら偏光板間に配置さ
れた液晶セルと少なくとも1つの光学異方素子とを具備
してなる液晶表示素子において、前記2枚の基板間でね
じれた配向をしている液晶セルを少なくとも2つ配置し
、前記光学異方素子はその素子面内の光軸方向の屈折率
をnx、光学異方素子の面内の光軸法線方向の屈折率を
ny、素子厚み方向の屈折率をnzとすると、nz>n
x nz>ny nx≠ny であることを特徴とする液晶表示素子
3. A liquid crystal display element comprising two polarizing plates, a liquid crystal cell disposed between these polarizing plates, and at least one optically anisotropic element, wherein the polarizing plate is twisted between the two substrates. At least two oriented liquid crystal cells are arranged, and the optically anisotropic element has a refractive index in the optical axis direction in the element plane of nx, and a refractive index in the optical axis normal direction in the optically anisotropic element plane. When ny is the refractive index in the element thickness direction, nz>n
A liquid crystal display element characterized in that x nz>ny nx≠ny
JP3041295A 1991-02-13 1991-02-13 Liquid crystal display element Pending JPH04258923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3041295A JPH04258923A (en) 1991-02-13 1991-02-13 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3041295A JPH04258923A (en) 1991-02-13 1991-02-13 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH04258923A true JPH04258923A (en) 1992-09-14

Family

ID=12604468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3041295A Pending JPH04258923A (en) 1991-02-13 1991-02-13 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH04258923A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188367A (en) * 1992-01-08 1993-07-30 Sharp Corp Liquid crystal display device
JPH0675116A (en) * 1992-06-26 1994-03-18 Sharp Corp Phase difference plate and liquid crystal display device
FR2726919A1 (en) * 1994-11-14 1996-05-15 Thomson Lcd LIQUID CRYSTAL DISPLAY DEVICE USING BIREFRINGENT FILMS
US6115095A (en) * 1997-10-24 2000-09-05 Nec Corporation In-plane switching type liquid crystal display having a compensation layer with the principal optical axis extending perpendicularly to the substrate
US6650386B1 (en) * 1998-06-29 2003-11-18 Sharp Kabushiki Kaisha Nematic liquid crystal display device with multi-domain pixels and compensation with nc>na>nb
US7046443B2 (en) * 2002-07-24 2006-05-16 Nitto Denko Corporation Anisotropic light scattering element, anisotropic light scattering polarizing plate using the same, and image display device using the same
DE19635894B4 (en) * 1995-09-04 2008-02-07 Fujifilm Corp. Method of making an endless optical compensatory sheet
US20090086112A1 (en) * 2007-09-28 2009-04-02 Sony Corporation Projection type liquid crystal display and compensation plate
US8580358B2 (en) 2005-06-29 2013-11-12 Konica Minolta Opto, Inc. Cellulose ester film, polarizing plate for in-plane-switching mode display and in-plane-switching mode display using the cellulose ester film
KR20130143492A (en) 2012-06-21 2013-12-31 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film, phase difference film, method for forming phase difference film, liquid crystal display device, and polymer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188367A (en) * 1992-01-08 1993-07-30 Sharp Corp Liquid crystal display device
JPH0675116A (en) * 1992-06-26 1994-03-18 Sharp Corp Phase difference plate and liquid crystal display device
FR2726919A1 (en) * 1994-11-14 1996-05-15 Thomson Lcd LIQUID CRYSTAL DISPLAY DEVICE USING BIREFRINGENT FILMS
WO1996015473A1 (en) * 1994-11-14 1996-05-23 Thomson-Lcd Liquid crystal display device using birefringent films
DE19635894B4 (en) * 1995-09-04 2008-02-07 Fujifilm Corp. Method of making an endless optical compensatory sheet
US6115095A (en) * 1997-10-24 2000-09-05 Nec Corporation In-plane switching type liquid crystal display having a compensation layer with the principal optical axis extending perpendicularly to the substrate
US6650386B1 (en) * 1998-06-29 2003-11-18 Sharp Kabushiki Kaisha Nematic liquid crystal display device with multi-domain pixels and compensation with nc>na>nb
US7327424B2 (en) 1998-06-29 2008-02-05 Sharp Kabushiki Kaisha Nematic liquid crystal display device with multi-domain pixels and six phase difference compensators
US7046443B2 (en) * 2002-07-24 2006-05-16 Nitto Denko Corporation Anisotropic light scattering element, anisotropic light scattering polarizing plate using the same, and image display device using the same
US8580358B2 (en) 2005-06-29 2013-11-12 Konica Minolta Opto, Inc. Cellulose ester film, polarizing plate for in-plane-switching mode display and in-plane-switching mode display using the cellulose ester film
US20090086112A1 (en) * 2007-09-28 2009-04-02 Sony Corporation Projection type liquid crystal display and compensation plate
KR20130143492A (en) 2012-06-21 2013-12-31 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film, phase difference film, method for forming phase difference film, liquid crystal display device, and polymer

Similar Documents

Publication Publication Date Title
KR100386042B1 (en) Liquid crystal display apparatus
CA2148156C (en) Lcd with a pair of retardation films on one side of liquid crystal layer
US5541753A (en) Liquid crystal display and device having a total retardance of (M+1) λ/2 and (Mλ/2) at first and second operating voltages
US6359671B1 (en) High contrast liquid crystal device
EP0498614B1 (en) A liquid crystal display device
JPH10246885A (en) Liquid crystal display device
JPH04258923A (en) Liquid crystal display element
JPH1172777A (en) Liquid crystal display device
JPH1172783A (en) Liquid crystal display device
JPH04229828A (en) Liquid crystal display element
JP2856942B2 (en) Liquid crystal display element and optically anisotropic element
JP3007524B2 (en) Liquid crystal display device and liquid crystal element
KR100357359B1 (en) Liquid crystal display device using a birefringent film
JP3599176B2 (en) Liquid crystal display
JP2713328B2 (en) Twisted nematic liquid crystal display device
JPH04289818A (en) liquid crystal display device
JPH05107534A (en) Liquid crystal display element
JPH04322224A (en) Liquid crystal display element
JP3728409B2 (en) Liquid crystal display device
JPH05232464A (en) Liquid crystal display element
JP3959258B2 (en) Liquid crystal display
JPH055863A (en) Liquid crystal display element
JPH06148642A (en) Liquid crystal display element
JPH04322226A (en) Liquid crystal display element
JPH04326331A (en) Liquid crystal display element