JPH04336915A - Tooth alignment method for nc device - Google Patents
Tooth alignment method for nc deviceInfo
- Publication number
- JPH04336915A JPH04336915A JP3132137A JP13213791A JPH04336915A JP H04336915 A JPH04336915 A JP H04336915A JP 3132137 A JP3132137 A JP 3132137A JP 13213791 A JP13213791 A JP 13213791A JP H04336915 A JPH04336915 A JP H04336915A
- Authority
- JP
- Japan
- Prior art keywords
- gear
- tool
- angle
- encoder
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 22
- 238000003754 machining Methods 0.000 claims abstract description 24
- 238000001514 detection method Methods 0.000 claims abstract description 5
- 238000012545 processing Methods 0.000 claims description 8
- 230000001186 cumulative effect Effects 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Landscapes
- Gear Processing (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、シェービングカッタ或
いは歯車状砥石を用いた歯車加工機械を制御するCNC
装置において、加工前或いは加工後の被加工歯車のピッ
チ精度を機上で測定し、工具歯車と被加工歯車とを噛み
合わせするためのNC装置の歯合わせ方法に関する。[Industrial Application Field] The present invention is a CNC system that controls a gear processing machine using a shaving cutter or a gear-shaped grindstone.
The present invention relates to a method of gearing an NC device for measuring the pitch accuracy of a gear to be machined before or after machining on the machine and meshing a tool gear and a gear to be machined.
【0002】0002
【従来の技術】従来の歯車加工法として知られるシェー
ビング法は工具であるシェービングカッタを駆動モータ
によって回転させ、一方の被加工歯車はカッタによって
従動され両者の歯面の滑りによって歯面を切削するよう
にしている。そのため、両歯車の噛合位相を一定に保持
する作用が無いため、被加工歯車の加工前のピッチ誤差
を矯正しにくいという欠点があった。そのため、加工後
にピッチ誤差を測定することが必須の工程であった。[Prior Art] In the conventional shaving method known as a gear processing method, a shaving cutter, which is a tool, is rotated by a drive motor, and one of the gears to be processed is driven by the cutter, and the tooth surfaces are cut by the sliding of the tooth surfaces of both gears. That's what I do. Therefore, since there is no function to maintain the meshing phase of both gears constant, there is a drawback that it is difficult to correct the pitch error of the gear to be machined before machining. Therefore, it was an essential step to measure the pitch error after processing.
【0003】一方、近年、前述の欠点を解決しさらに熱
処理後に歯車を仕上げる方法としてハードシェービング
法の開発が進められている。ハードシェービング加工で
は歯車の形状のCNB砥石を使用するが、滑りで切削或
いは研削する原理はシェービング法と全く同様である。
しかし、熱処理後の歯車を加工するため、工具と加工物
は同期駆動する必要があり、工具軸と加工物の軸とを別
々の駆動モータで駆動して、両駆動モータを電気的に同
期制御する方式が開発されている。この場合、従来の方
式と異なり、両者の回転位相を一定に拘束することにな
るので、加工物の取付時の両者の位相関係は、常に取り
代が両歯面均等になるようにしなければならない。その
ため、加工物の取付を手動で行う場合には、噛み合いが
おおよそ中心と成るように設定し、その位相関係を電気
的に記憶させてから同期回転させて加工を行うようにし
ている。On the other hand, in recent years, a hard shaving method has been developed as a method for solving the above-mentioned drawbacks and for finishing gears after heat treatment. In hard shaving processing, a gear-shaped CNB grindstone is used, but the principle of cutting or grinding by sliding is exactly the same as in the shaving method. However, in order to machine gears after heat treatment, the tool and workpiece must be driven synchronously, so the tool axis and workpiece axis are driven by separate drive motors, and both drive motors are electrically synchronously controlled. A method has been developed to do so. In this case, unlike the conventional method, the rotational phase of both is constrained to a constant value, so the phase relationship between the two when installing the workpiece must always be such that the machining allowance is equal on both tooth surfaces. . Therefore, when attaching a workpiece manually, the meshing is set so that it is approximately centered, the phase relationship is electrically memorized, and the workpieces are rotated synchronously to perform the machining.
【0004】0004
【発明が解決しようとする課題】歯車のピッチを簡単に
測定する方法としては二歯面噛合試験と一歯面噛合試験
が良く知られている(例えば、「最近における自動歯車
精度測定技術」機械の研究 第34巻 第11号)
が、二歯面噛合試験はマスターギアと被測定歯車をバッ
クラッシュの無い状態で噛み合わせるので、本発明の適
用目的のようにマスターとなる歯車が工具となっている
場合は、噛み合わせによって切削或いは研削されてしま
ったり、工具の歯面が損傷を受けたりするという問題を
有する。従って、二歯面噛合試験は好ましくなく、一歯
面噛合試験による測定法が適当である。[Problems to be Solved by the Invention] Two-tooth meshing tests and one-tooth meshing tests are well known as methods for easily measuring the pitch of gears (for example, "Recent Automatic Gear Accuracy Measuring Techniques") Research Vol. 34 No. 11)
However, in the two-tooth mesh test, the master gear and the gear to be measured are meshed without backlash, so if the master gear is a tool, as is the purpose of this invention, the meshing will result in cutting. Otherwise, there is a problem that the tool is ground or the tooth surface of the tool is damaged. Therefore, a two-tooth surface meshing test is not preferred, and a single tooth surface meshing test is appropriate.
【0005】この一歯面噛合試験による測定法は、マス
ターギアと被測定歯車の両回転軸にそれぞれエンコウダ
を取り付け、マスターギアを駆動して、マスターギアに
より駆動され被測定歯車に伝達されたマスターギアの回
転角に対するその回転角を検出して、その値と理論的な
歯数比とから伝達誤差を計算により求めるものである。
しかし、この方法においても、被測定歯車の歯面とマス
ターギアの歯面とが密着するよう被測定歯車の軸にブレ
ーキをかけ、それに一定のトルクを与えながら従動させ
るようにしているため、歯車状工具と被加工歯車とを噛
み合わせて加工を行う機械におけるピッチ精度の機上測
定を行うという本発明の適用目的に対しては好ましくな
い影響を与えるという問題があった。[0005] In this measurement method using a single tooth meshing test, encoders are attached to both the rotating shafts of the master gear and the gear to be measured, and the master gear is driven, and the master gear driven by the master gear is transmitted to the gear to be measured. The rotation angle relative to the rotation angle of the gear is detected, and the transmission error is calculated from that value and the theoretical tooth number ratio. However, even in this method, the shaft of the gear to be measured is braked so that the tooth surface of the gear to be measured and the tooth surface of the master gear come into close contact, and the gear is driven while applying a constant torque. There is a problem in that this has an unfavorable effect on the purpose of application of the present invention, which is to perform on-machine measurement of pitch accuracy in a machine that performs machining by meshing a shaped tool and a gear to be machined.
【0006】本発明の目的は、工具歯車と被加工歯車の
回転を制御するCNC装置に対し被加工歯車のピッチ誤
差を自動測定する機能を内蔵させることにより、機上で
被加工歯車のピッチ誤差を測定する機能を有するCNC
装置を提供することによって、シェービング盤において
はピッチ誤差測定装置を使用せずに、加工後のピッチ誤
差を容易に測定しうるようにし、ハードシェービング盤
においては歯車の初期噛合位相を取り代の中心に自動設
定しうるようにして、加工の取り代が少ない場合でも、
両歯面共に削り残し無く加工することができるようにす
ることである。An object of the present invention is to provide a CNC device that controls the rotation of the tool gear and the workpiece gear with a built-in function to automatically measure the pitch error of the workpiece gear, thereby measuring the pitch error of the workpiece gear on the machine. CNC with the function of measuring
By providing a device, it is possible to easily measure the pitch error after machining without using a pitch error measuring device on a shaving machine, and it is possible to easily measure the pitch error after machining without using a pitch error measuring device on a shaving machine. Even if the machining allowance is small,
To enable machining of both tooth surfaces without leaving any uncut parts.
【0007】[0007]
【課題を解決するための手段】本発明は上記の目的に鑑
みて成されたもので、歯車状工具を回転させ、該歯車状
工具に被加工歯車を噛み合わせて歯面の加工を行う歯車
加工機械のNC制御装置において、前記歯車状工具の工
具軸及び前記被加工歯車の取付軸に結合された角度検出
用エンコーダにより前記歯車の回転位置を検出し、前記
工具軸を前記歯車状工具の1歯の角度より充分大きい角
度分正転させた後、前記被加工歯車の整数倍回転に相当
する角度を回転する間前記歯車状工具の微小角度毎に前
記両エンコーダの値を記憶し、更に充分大きい角度だけ
回転して停止後、逆転方向に回転させ前記正転時のエン
コーダの値の記憶終了時点における角度から前記歯車状
工具の微小角度毎に逆方向に前記両エンコーダの値を記
憶し、前記微小角度毎の各点において記憶した前記工具
軸のエンコーダの値と前記被加工歯車の取付軸のエンコ
ーダの値との差を求め、該差のデータ群の最大値の半分
を取り代の中心とし、前記歯車状工具と被加工歯車の歯
数比から計算される前記被加工歯車の取付軸のエンコー
ダの理論値に前記取り代の中心の値を加算した位置で前
記工具軸を位置決めすることを特徴とするNC装置の歯
合わせ方法を提供して上記の問題を解決した。[Means for Solving the Problems] The present invention has been made in view of the above objects, and provides a gear for machining a tooth surface by rotating a gear-shaped tool and meshing a gear to be machined with the gear-shaped tool. In the NC control device of the processing machine, the rotational position of the gear is detected by an angle detection encoder coupled to the tool axis of the gear-shaped tool and the mounting axis of the gear to be machined, and the rotational position of the gear is connected to the tool axis of the gear-shaped tool. After rotating forward by an angle sufficiently larger than the angle of one tooth, storing the values of both encoders for each minute angle of the gear-like tool while rotating the gear by an angle corresponding to an integral multiple of the rotation of the gear to be machined, and further After rotating by a sufficiently large angle and stopping, the tool is rotated in the reverse direction and the values of both encoders are stored in the opposite direction for each minute angle of the gear-shaped tool from the angle at which the storage of the encoder values during the forward rotation is completed. , find the difference between the encoder value of the tool axis stored at each point of the minute angle and the encoder value of the attachment axis of the workpiece gear, and use half of the maximum value of the data group of the difference as the machining allowance. The tool axis is positioned at a position where the value of the center of the machining allowance is added to the theoretical value of the encoder of the attachment axis of the gear to be machined, which is calculated from the tooth number ratio of the gear-shaped tool and the gear to be machined. The above problem has been solved by providing a method for aligning teeth of an NC device characterized by the following.
【0008】更に本発明では、歯車状工具を回転させ、
該歯車状工具に被加工歯車を噛み合わせて歯面の加工を
行う歯車加工機械のNC制御装置において、前記歯車状
工具の工具軸及び前記被加工歯車の取付軸に結合された
角度検出用エンコーダにより前記歯車の回転位置を検出
し、前記工具軸を前記歯車状工具の1歯の角度より充分
大きい角度分正転させた後、前記被加工歯車の整数倍回
転に相当する角度を回転する間前記歯車状工具の微小角
度毎に前記両エンコーダの値を記憶し、更に充分大きい
角度だけ回転して停止後、逆転方向に回転させ前記正転
時のエンコーダの値の記憶終了時点における角度から前
記歯車状工具の微小角度毎に逆方向に前記両エンコウダ
の値を記憶し、それぞれの回転方向毎の前記工具軸のエ
ンコウダの値に対応した前記被加工歯車の取付軸のエン
コウダの値と前記歯車状工具と被加工歯車の歯数比から
計算される前記被加工歯車の取付軸のエンコーダの理論
値との差を求めて前記被加工歯車の累積ピッチ誤差とし
、該累積ピッチ誤差の最大値と最小値と中央値及び平均
値を求め、正転時と逆転時の中央値の差をバックラッシ
ュとし、該中央値の差の半分の位置で前記工具軸を位置
決めすることを特徴とするNC装置の歯合わせ方法を提
供することによって上記の問題を解決した。Furthermore, in the present invention, the gear-like tool is rotated,
In an NC control device for a gear processing machine that processes a tooth surface by meshing a workpiece gear with the gear-like tool, an angle detection encoder coupled to a tool shaft of the gear-like tool and a mounting shaft of the workpiece gear; After detecting the rotational position of the gear and rotating the tool shaft in the forward direction by an angle sufficiently larger than the angle of one tooth of the gear-like tool, the rotation position of the gear is rotated through an angle corresponding to an integral multiple of the rotation of the gear to be machined. The values of both encoders are stored for each minute angle of the gear-like tool, and after the tool is rotated by a sufficiently large angle and stopped, the tool is rotated in the reverse direction and the values of the encoders are calculated from the angle at the end of storing the encoder values during the forward rotation. The values of both the encoders are stored in opposite directions for each minute angle of the gear-like tool, and the values of the encoder of the attachment shaft of the gear to be machined corresponding to the encoder values of the tool axis for each rotation direction and the gear are stored. The difference between the theoretical value of the encoder of the mounting shaft of the gear to be machined, which is calculated from the ratio of the number of teeth between the shaped tool and the gear to be machined, is determined to be the cumulative pitch error of the gear to be machined, and the maximum value of the cumulative pitch error and An NC device characterized in that a minimum value, a median value, and an average value are determined, the difference between the median values during forward rotation and reverse rotation is used as a backlash, and the tool axis is positioned at a position half of the difference between the median values. The above problem was solved by providing a tooth alignment method.
【0009】[0009]
【作用】本発明は上記のように構成したことにより、歯
車状工具と被加工歯車とを噛み合わせて加工を行う機械
において、特別な装置を追加すること無く、少なくとも
一方の軸を駆動するだけで被加工歯車のピッチを機上で
測定することができ良否判定が可能になるばかりでなく
、その両者をそれぞれ別に駆動し同期して加工する機械
においては被加工歯車の取付と適切な噛み合い位相の設
定とを自動的に行うことができる。[Operation] By having the above-described structure, the present invention can drive at least one axis without adding any special equipment in a machine that performs machining by meshing a gear-like tool with a workpiece gear. This not only makes it possible to measure the pitch of the gear to be machined on-machine, making it possible to judge whether it is good or bad, but also allows for the installation of the gear to be machined and the appropriate meshing phase in a machine that drives both gears separately and processes them in synchronization. settings can be done automatically.
【0010】0010
【実施例】次に、添付図1乃至図4に基づき本発明の一
実施例を詳細に説明する。図1は本発明の一実施例によ
る機械と制御装置の概要構成を示すブロック図、図2は
ピッチ誤差を測定するために工具軸を正転及び逆転させ
その結果得られる駆動軸のエンコーダとそれに対する従
動軸のエンコーダから得られる角度計数パルスの値を示
したグラフ図、図3は図2から得られたピッチ誤差とバ
ックラッシュの最大値を求めて噛み合わせ位置を求める
方法を示すグラフ図、図4はピッチ誤差とバックラッシ
ュの平均値を求めるグラフ図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, one embodiment of the present invention will be described in detail with reference to the accompanying FIGS. 1 to 4. Fig. 1 is a block diagram showing the general configuration of a machine and a control device according to an embodiment of the present invention, and Fig. 2 shows an encoder of the drive shaft obtained by rotating the tool shaft in normal and reverse directions in order to measure the pitch error, and its encoder. 3 is a graph showing the value of the angle count pulse obtained from the encoder of the driven shaft, and FIG. 3 is a graph showing the method of finding the engagement position by finding the maximum value of the pitch error and backlash obtained from FIG. 2. FIG. 4 is a graph diagram for determining average values of pitch error and backlash.
【0011】図1において、歯車状の工具(工具歯車)
1と被加工歯車2は夫々工具歯車駆動モータ3及び被加
工歯車駆動モータ4に直結されており、更に駆動モータ
3、4には回転角度を検出するエンコーダ5,6が結合
されている。一方、制御系はNC装置17の司令部13
からの位置指令により、夫々の位置制御部9、10にお
いて、エンコーダ5、6に接続されそこから入力したパ
ルスをカウントする現在位置カウンタ11、12の値と
共に演算され、速度指令として速度制御部7、8に入力
される。速度制御部7、8はその速度指令とエンコーダ
5、6の出力パルスをF/V変換して得られる速度信号
とによってモータ3、4に対するフィードバック制御が
行われ、その制御によりモータ3、4を適切に回転させ
ることができる。In FIG. 1, a gear-shaped tool (tool gear)
1 and the workpiece gear 2 are directly connected to a tool gear drive motor 3 and a workpiece gear drive motor 4, respectively, and the drive motors 3 and 4 are further connected to encoders 5 and 6 for detecting rotation angles. On the other hand, the control system is controlled by the command center 13 of the NC device 17.
Based on the position command from the position controllers 9 and 10, the values of the current position counters 11 and 12, which are connected to the encoders 5 and 6 and count the pulses input therefrom, are calculated, and the values are calculated as a speed command by the speed controller 7. , 8. The speed control units 7 and 8 perform feedback control on the motors 3 and 4 based on the speed command and a speed signal obtained by F/V conversion of the output pulses of the encoders 5 and 6, and the motors 3 and 4 are controlled by this control. Can be rotated properly.
【0012】ここで得られた現在位置カウンタ11、1
2における現在位置情報は本発明のピッチ誤差及び歯合
わせ中心を演算するためCPU14に送られる。更に、
その他の計測情報を含み全ての情報は表示装置15に表
示し、及び出力ポート16から外部に出力して利用する
事ができる。The current position counter 11, 1 obtained here
The current position information in step 2 is sent to the CPU 14 in order to calculate the pitch error and tooth alignment center of the present invention. Furthermore,
All information including other measurement information can be displayed on the display device 15 and outputted to the outside from the output port 16 for use.
【0013】尚、本発明の実施例に従い、シェービング
盤に適用する場合は被加工歯車を駆動する必要がないの
で、図1に示した駆動モータ4及び速度制御部8は必須
ではなく、その場合エンコーダ6のみが被加工歯車に結
合され、その出力は現在位置カウンタ12に入力される
のみである。According to the embodiment of the present invention, when it is applied to a shaving machine, it is not necessary to drive the gear to be machined, so the drive motor 4 and speed control section 8 shown in FIG. 1 are not essential. Only the encoder 6 is coupled to the gear to be machined, and its output is only input to the current position counter 12.
【0014】次に、図2に従い、ピッチ誤差を測定する
方法を説明する。停止状態にあるときに、工具歯車1と
被加工歯車2とをバックラッシュがある状態で噛合わせ
、工具歯車駆動モータ3を低速で回転させる。被加工歯
車軸は若干の摩擦抵抗で停止しているので、やがて工具
歯車によって従動される。図2においては、工具歯車軸
のエンコーダ5の計数値Xと被加工歯車のエンコーダ6
の計数値Yとの関係を示したグラフを示す。図2におい
て、P点から工具軸を回転させると、最初バックラッシ
ュ回転分回転した後R点から被加工歯車が従動し始める
。測定開始時期は工具歯車の歯の1枚分の回転角度を越
えて回転させれば、必ずバックラッシュが除去され接触
するので、その角度以上に回転させたA1点とする。
A1点からXの微小角度毎にエンコーダの値X、Yをメ
モリーに記憶しておき、被加工歯車の1回転分或いはそ
の整数倍に相当する回転角度だけ工具歯車を回転させる
。図2は1回転の例で説明している。Next, a method for measuring pitch error will be explained with reference to FIG. When in a stopped state, a tool gear 1 and a workpiece gear 2 are engaged with each other with backlash, and a tool gear drive motor 3 is rotated at low speed. Since the gear shaft to be machined is stopped due to some frictional resistance, it will eventually be driven by the tool gear. In FIG. 2, the count value X of the encoder 5 of the tool gear shaft and the encoder 6 of the work gear
A graph showing the relationship between Y and the count value Y is shown. In FIG. 2, when the tool shaft is rotated from point P, the gear to be machined begins to follow from point R after first rotating by the amount of backlash rotation. If the tool gear is rotated beyond the rotation angle of one tooth, the backlash will definitely be removed and contact will be made, so the measurement start time is set at point A1, which is the point at which the tool gear is rotated beyond that angle. Encoder values X and Y are stored in a memory for each minute angle of X from point A1, and the tool gear is rotated by a rotation angle corresponding to one rotation of the gear to be machined or an integral multiple thereof. FIG. 2 illustrates an example of one rotation.
【0015】データの取り込み終了はA2点であるが、
その後更に充分に回転させてから回転を中止させ、その
後工具歯車を逆転させる。余分に回転させる理由は、被
加工歯車軸には回転方向にシール抵抗等に起因するバネ
性があって、工具軸を反転させると従動軸の被加工歯車
がその分だけ勝手に逆転するため、バックラッシュに相
当する角度だけ回転させても歯面が接触しない可能性が
あるためである。O点から逆点させると、S点までは被
加工歯車軸も同方向に回転し、やがて両歯面が離れ、更
に工具歯車を回転させていくと反対歯面に接触するよう
になり、それから更に回転させた点がB1点である。こ
こで工具軸の角度はB1点とA2点とが同じである。B
1点から同様にデータを記憶し始めB2点で終了する。
これまでの過程で得られた角度データX、Yの関係をグ
ラフに示せば、図2のとおりとなる。[0015] Data acquisition is completed at point A2, but
After that, the tool is rotated sufficiently, and then the rotation is stopped, and then the tool gear is reversed. The reason for the extra rotation is that the gear shaft to be machined has spring properties in the direction of rotation due to seal resistance, etc., and when the tool axis is reversed, the gear to be machined on the driven shaft automatically rotates by that amount. This is because the tooth surfaces may not come into contact even if the tooth surfaces are rotated by an angle corresponding to backlash. When the point is reversed from point O, the shaft of the gear to be machined rotates in the same direction until point S, and eventually both tooth surfaces separate, and as the tool gear rotates further, it comes into contact with the opposite tooth surface, and then The point further rotated is point B1. Here, the angle of the tool axis is the same at point B1 and point A2. B
Data is similarly stored from point 1 and ends at point B2. If the relationship between the angle data X and Y obtained in the process up to now is shown in a graph, it will be as shown in FIG.
【0016】ここで同じXの角度で検出され記憶された
正転時と逆転時の被加工歯車軸の角度を示す値Yとの差
を求める。これは図3のX−Y’のグラフに示す。ここ
で示す曲線nは工具歯車の角度に対応して噛み合わされ
た被加工歯車のバックラッシュに相当するもので、その
最大値y0 はバックラッシュの最大値であり、図2中
のB0 とA0 の差と同義である。従って、このバッ
クラッシュの半分の位置M点に、取り代の中心として位
置決めすれば両歯面共に取り残しなく加工出来ることに
なる。[0016] Here, the difference between the value Y indicating the angle of the gear shaft to be machined during forward rotation and reverse rotation detected and stored at the same angle of X is determined. This is shown in the X-Y' graph of FIG. The curve n shown here corresponds to the backlash of the gears to be machined that are meshed according to the angle of the tool gear, and its maximum value y0 is the maximum value of the backlash, which is the difference between B0 and A0 in Fig. 2. It is synonymous with difference. Therefore, if the center of the machining allowance is positioned at point M, which is half of this backlash, both tooth surfaces can be machined without leaving anything behind.
【0017】一方、両歯車の歯数比で決まる伝達比から
駆動軸の回転角度に対する従動軸の回転角度は容易に得
ることができる。図2のM点を通る理論的歯車の角度関
係を示す直線mの傾きが伝達比である。この伝達比をK
とし、X0 における正転時の被加工歯車の記憶角度を
Y0 とすると、任意の角度における歯合わせ位置yは
理論直線mから容易に得ることができ、それは次の方程
式で計算することができる。On the other hand, the rotation angle of the driven shaft relative to the rotation angle of the drive shaft can be easily obtained from the transmission ratio determined by the ratio of the number of teeth of both gears. The slope of a straight line m indicating the theoretical angular relationship of gears passing through point M in FIG. 2 is the transmission ratio. This transmission ratio is K
If the memorized angle of the gear to be machined during normal rotation at X0 is Y0, the tooth alignment position y at any angle can be easily obtained from the theoretical straight line m, and can be calculated using the following equation.
【0018】y=〔Y0 +(y0 /2)〕+K・x
[0018]y=[Y0 +(y0/2)]+K・x
【0019】従って、本発明において正転時には任意の
被加工歯車の角度に対する工具歯車の角度Xの値を次の
方程式で計算し、与えられたxの位置に工具歯車を位置
決めすることによって歯合わせを完了する。Therefore, in the present invention, during normal rotation, the value of the angle complete.
【0020】x=〔y−(Y0 +y0 /2)〕/K
[0020]x=[y-(Y0 +y0/2)]/K
【0021】次に、図4に基づき、ピッチ誤差及びバッ
クラッシュの平均値を求める方法を説明する。図4にお
いて、A1点を通る理論的歯車の角度関係を示す直線J
の傾きが伝達比である。この伝達比をKとし、X1にお
けるYの値をY1とすれば、理論直線Jと記憶した正転
方向の計測値との差yは容易に得ることができ、本発明
においては、次の方程式で計算する。Next, a method for determining the average value of pitch error and backlash will be explained based on FIG. In Fig. 4, a straight line J passing through point A1 indicates the theoretical angular relationship of gears.
The slope of is the transmission ratio. If this transmission ratio is K and the value of Y at X1 is Y1, the difference y between the theoretical straight line J and the memorized measured value in the forward direction can be easily obtained, and in the present invention, the following equation is used. Calculate with.
【0022】y=(Y−Y1 )・K[0022]y=(Y-Y1)・K
【0023】同様に、逆転時の理論値と計測値との差も
計算できる。工具歯車が理想的な形状であれば、この結
果得られた差の値は歯車の累積ピッチ誤差を表している
。又、累積ピッチ誤差で正転時の最大値は au 、最
小値は al 、平均値は ao であり、逆転時の最
大値は bu 、最小値は bl 、平均値は bo
として容易に得ることができる。その結果、バックラッ
シュの平均値は bo − ao として与えられる。Similarly, the difference between the theoretical value and the measured value at the time of reverse rotation can be calculated. If the tool gear is of ideal shape, the resulting difference value represents the cumulative pitch error of the gear. In addition, the maximum value of the cumulative pitch error during forward rotation is au, the minimum value is al, and the average value is ao, and the maximum value during reverse rotation is bu, the minimum value is bl, and the average value is bo.
can be easily obtained as As a result, the average value of backlash is given as bo − ao.
【0024】更に、前述のハードシェービング盤に適用
し、歯車の初期位相を設定する場合は、取り代の中心は
bo と ao の真ん中に存在するので、それぞれ
の直線の方程式をya 及びyb で表すと、Furthermore, when applying to the above-mentioned hard shaving machine and setting the initial phase of the gear, since the center of the machining allowance is located in the middle between bo and ao, the equations of the respective straight lines are expressed as ya and yb. and,
【0025】ya = Kx + ayb =
Kx + b[0025]ya=Kx+ayb=
Kx + b
【0026】となり、中心線yc は、 yc =
ya +(yb −ya )/2 であるから、[0026]The center line yc is yc =
Since ya + (yb - ya)/2,
【
0027】yc = Kx +(a+b)/2[
[0027]yc=Kx+(a+b)/2
【0
028】として計算することができ、現在の被加工歯車
軸の計数値Yの値に対応する工具軸の歯合わせの角度X
は、一般的に、0
The tooth alignment angle X of the tool axis corresponding to the value of the current count value Y of the gear axis to be machined can be calculated as
is generally,
【0029】X=〔Y−(a+b)/2〕/K[0029]X=[Y-(a+b)/2]/K
【003
0】で計算して位置決めすることができる。003
0] can be calculated and positioned.
【0031】[0031]
【発明の効果】以上説明したように、本発明のCNC装
置によれば、シェービング盤においては加工前加工後に
工程内で歯車のピッチ誤差が測定できるため、ピッチ誤
差測定装置が不要となり、ハードシェービング盤におい
ては、被加工歯車の状態に関係なく、歯と歯の中央に近
い位置で工具歯車と被加工歯車とを噛み合わせることが
できるので加工の取り代が少ない場合でも両歯面とも削
り残し無く加工することができるようになった。As explained above, according to the CNC device of the present invention, the pitch error of gears can be measured in the process before and after machining on a shaving machine, eliminating the need for a pitch error measuring device and improving hard shaving. On a machine, the tool gear and the workpiece gear can be meshed at a position close to the center of the teeth, regardless of the condition of the workpiece gear, so even if the machining allowance is small, both tooth surfaces are left uncut. Now you can process it without any need for it.
【図1】本発明の一実施例を具現しうる歯車加工機械を
制御する制御装置FIG. 1: A control device for controlling a gear processing machine that can embody an embodiment of the present invention.
【図2】図1の装置により工具軸及び従動軸のエンコウ
ダから得られた角度計数パルスのグラフ図[Fig. 2] Graphical representation of angle counting pulses obtained from the encoders of the tool axis and driven axis by the apparatus of Fig. 1.
【図3】ピッ
チ誤差とバックラッシュの最大値を求める方法を示すグ
ラフ図[Figure 3] Graph diagram showing how to find the maximum value of pitch error and backlash
【図4】ピッチ誤差とバックラッシュの値を求める方法
を示すグラフ図[Figure 4] Graph diagram showing how to calculate pitch error and backlash values
1:工具歯車 2:被加工歯車 3:工具歯車駆動モータ 4:被加工歯車駆動モータ 5、6:エンコーダ 7、8:速度制御部 9、10:位置制御部 11、12:現在位置カウンタ 13:位置指令部 14:ピッチ測定用CPU 15:CRT 16:外部出力ポート 17:NC装置 1: Tool gear 2: Gear to be machined 3: Tool gear drive motor 4: Workpiece gear drive motor 5, 6: Encoder 7, 8: Speed control section 9, 10: Position control section 11, 12: Current position counter 13: Position command section 14: CPU for pitch measurement 15:CRT 16: External output port 17:NC device
Claims (2)
に被加工歯車を噛み合わせて歯面の加工を行う歯車加工
機械のNC制御装置において、前記歯車状工具の工具軸
及び前記被加工歯車の取付軸に結合された角度検出用エ
ンコーダにより前記歯車の回転位置を検出し、前記工具
軸を前記歯車状工具の1歯の角度より充分大きい角度分
正転させた後、前記被加工歯車の整数倍回転に相当する
角度を回転する間前記歯車状工具の微小角度毎に前記両
エンコーダの値を記憶し、更に充分大きい角度だけ回転
して停止後、逆転方向に回転させ前記正転時のエンコー
ダの値の記憶終了時点における角度から前記歯車状工具
の微小角度毎に逆方向に前記両エンコーダの値を記憶し
、前記微小角度毎の各点において記憶した前記工具軸の
エンコーダの値と前記被加工歯車の取付軸のエンコーダ
の値との差を求め、該差のデータ群の最大値の半分を取
り代の中心とし、前記歯車状工具と被加工歯車の歯数比
から計算される前記被加工歯車の取付軸のエンコーダの
理論値に前記取り代の中心の値を加算した位置で前記工
具軸を位置決めすることを特徴とするNC装置の歯合わ
せ方法。1. An NC control device for a gear processing machine which rotates a gear-like tool and engages a workpiece gear with the gear-like tool to machine a tooth surface. After detecting the rotational position of the gear by an angle detection encoder connected to the gear mounting shaft, and rotating the tool shaft forward by an angle sufficiently larger than the angle of one tooth of the gear-like tool, While rotating an angle corresponding to an integral multiple of rotation, the values of both encoders are memorized for each minute angle of the gear-like tool, and after further rotating by a sufficiently large angle and stopping, the tool is rotated in the reverse direction and rotated in the normal rotation. The values of both encoders are stored in the opposite direction for each minute angle of the gear-shaped tool from the angle at the end of storing the encoder values, and the encoder values of the tool axis stored at each point of each minute angle are The difference between the value of the encoder of the mounting shaft of the gear to be machined is determined, half of the maximum value of the data group of the difference is set as the center of the machining allowance, and the machining allowance is calculated from the ratio of the number of teeth of the gear-shaped tool and the gear to be machined. A method for gear alignment of an NC device, characterized in that the tool shaft is positioned at a position obtained by adding a value of the center of the machining allowance to a theoretical value of an encoder of the mounting shaft of the gear to be machined.
に被加工歯車を噛み合わせて歯面の加工を行う歯車加工
機械のNC制御装置において、前記歯車状工具の工具軸
及び前記被加工歯車の取付軸に結合された角度検出用エ
ンコーダにより前記歯車の回転位置を検出し、前記工具
軸を前記歯車状工具の1歯の角度より充分大きい角度分
正転させた後、前記被加工歯車の整数倍回転に相当する
角度を回転する間前記歯車状工具の微小角度毎に前記両
エンコウダの値を記憶し、更に充分大きい角度だけ回転
して停止後、逆転方向に回転させ前記正転時のエンコー
ダの値の記憶終了時点における角度から前記歯車状工具
の微小角度毎に逆方向に前記両エンコーダの値を記憶し
、それぞれの回転方向毎の前記工具軸のエンコーダの値
に対応した前記被加工歯車の取付軸のエンコーダの値と
前記歯車状工具と被加工歯車の歯数比から計算される前
記被加工歯車の取付軸のエンコーダの理論値との差を求
めて前記被加工歯車の累積ピッチ誤差とし、該累積ピッ
チ誤差の最大値と最小値と中央値及び平均値を求め、正
転時と逆転時の中央値の差をバックラッシュとし、該中
央値の差の半分の位置で前記工具軸を位置決めすること
を特徴とするNC装置の歯合わせ方法。2. An NC control device for a gear processing machine that rotates a gear-like tool and engages a workpiece gear with the gear-like tool to perform tooth surface machining, wherein the tool axis of the gear-like tool and the workpiece After detecting the rotational position of the gear by an angle detection encoder connected to the gear mounting shaft, and rotating the tool shaft forward by an angle sufficiently larger than the angle of one tooth of the gear-like tool, The values of both encoders are memorized for each minute angle of the gear-like tool while the tool is rotated through an angle corresponding to an integral multiple of rotation, and after further rotation by a sufficiently large angle and stopped, the tool is rotated in the reverse direction and rotated in the normal direction. The values of both encoders are stored in opposite directions for each minute angle of the gear-like tool from the angle at the end of storing the encoder values, and the encoder values corresponding to the encoder values of the tool axis for each rotation direction are stored. The difference between the encoder value of the attached shaft of the processed gear and the theoretical value of the encoder of the attached shaft of the processed gear calculated from the tooth number ratio of the gear-like tool and the processed gear is calculated, and the cumulative value of the processed gear is calculated. The maximum value, the minimum value, the median value, and the average value of the cumulative pitch error are determined as the pitch error, and the difference between the median values during forward rotation and reverse rotation is defined as the backlash. A method for aligning teeth of an NC device, characterized by positioning a tool axis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3132137A JPH04336915A (en) | 1991-05-09 | 1991-05-09 | Tooth alignment method for nc device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3132137A JPH04336915A (en) | 1991-05-09 | 1991-05-09 | Tooth alignment method for nc device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04336915A true JPH04336915A (en) | 1992-11-25 |
Family
ID=15074233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3132137A Pending JPH04336915A (en) | 1991-05-09 | 1991-05-09 | Tooth alignment method for nc device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04336915A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0609724A2 (en) * | 1993-01-22 | 1994-08-10 | Toyota Jidosha Kabushiki Kaisha | Apparatus and method for machining a gear shape |
EP0632249A1 (en) * | 1993-06-29 | 1995-01-04 | Kapp GmbH & Co KG, Werkzeugmaschinenfabrik | Method and apparatus for determining cumulative pitch error of a gearwheel |
JP2003251529A (en) * | 2002-02-27 | 2003-09-09 | Reishauer Ag | Compensation method for tooth trace correction and/or tooth trace deviation of gear |
WO2008053769A1 (en) * | 2006-10-31 | 2008-05-08 | Mitsubishi Heavy Industries, Ltd. | Method and device for detecting tooth matching angle of gear |
US11383313B2 (en) * | 2018-10-30 | 2022-07-12 | Jtekt Corporation | Machine tool and gear machining method |
-
1991
- 1991-05-09 JP JP3132137A patent/JPH04336915A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0609724A2 (en) * | 1993-01-22 | 1994-08-10 | Toyota Jidosha Kabushiki Kaisha | Apparatus and method for machining a gear shape |
EP0609724A3 (en) * | 1993-01-22 | 1995-07-05 | Toyota Motor Co Ltd | Apparatus and method for machining a gear shape. |
EP0632249A1 (en) * | 1993-06-29 | 1995-01-04 | Kapp GmbH & Co KG, Werkzeugmaschinenfabrik | Method and apparatus for determining cumulative pitch error of a gearwheel |
JP2003251529A (en) * | 2002-02-27 | 2003-09-09 | Reishauer Ag | Compensation method for tooth trace correction and/or tooth trace deviation of gear |
JP4540937B2 (en) * | 2002-02-27 | 2010-09-08 | ライスハウアー アクチェンゲゼルシャフト | Gear tooth trace correction and / or correction of tooth trace deviation |
WO2008053769A1 (en) * | 2006-10-31 | 2008-05-08 | Mitsubishi Heavy Industries, Ltd. | Method and device for detecting tooth matching angle of gear |
JP2008110445A (en) * | 2006-10-31 | 2008-05-15 | Mitsubishi Heavy Ind Ltd | Gear engagement angle detecting method and apparatus |
KR101106889B1 (en) * | 2006-10-31 | 2012-01-25 | 미츠비시 쥬고교 가부시키가이샤 | Method and device for detecting tooth matching angle of gear |
US8463575B2 (en) | 2006-10-31 | 2013-06-11 | Mitsubishi Heavy Industries, Ltd. | Gear meshing angle detection method and device |
US11383313B2 (en) * | 2018-10-30 | 2022-07-12 | Jtekt Corporation | Machine tool and gear machining method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4865506B2 (en) | Gear meshing angle detection method and apparatus | |
US4550508A (en) | Double-flank composite error tester | |
JPS6027004A (en) | Automatic error compensator for servo position adjustor | |
US4757458A (en) | Zero point adjusting robot control method | |
JPH04336915A (en) | Tooth alignment method for nc device | |
JPS6399124A (en) | Machine for lapping two spiral bevel type gear | |
JP2978377B2 (en) | Gear tooth groove runout measuring device | |
JP3129923B2 (en) | Gear hobbing machine finishing method | |
EP3752312A1 (en) | Methods of preparing and performing a machining process, control software therefor, chamfering station and gear machine with chamfering station | |
KR940000366B1 (en) | How to detect the position of the robot | |
JPS6126963Y2 (en) | ||
JPH09174330A (en) | Automatic meshing device in gear grinder | |
JP3097109B2 (en) | Spindle control method for machine tools | |
JP2541809B2 (en) | Encoder open phase detector | |
JP3185462B2 (en) | Synchronization accuracy analyzer | |
JPH07110447B2 (en) | Gear finishing device | |
JPH02221839A (en) | Measuring instrument for backlash of gear engaged unit | |
JPH05301113A (en) | Automatic engagement method and device for gear grinding device | |
JPS60249525A (en) | Meshing apparatus for gear to be worked in gear working machine | |
CN117754056A (en) | tooth aligning method for cutter and gear | |
JP3782959B2 (en) | Automatic meshing method and apparatus for gear grinding machine | |
JPH0733133Y2 (en) | Origin position detector | |
JP2004069584A (en) | Method for measuring and regulating backlash of bevel gear or the like | |
JPH078453B2 (en) | Synchronous operation controller for gear grinding machine | |
JP3167315B2 (en) | Absolute position detector for NC machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19990525 |