[go: up one dir, main page]

JPH0433377A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0433377A
JPH0433377A JP13823890A JP13823890A JPH0433377A JP H0433377 A JPH0433377 A JP H0433377A JP 13823890 A JP13823890 A JP 13823890A JP 13823890 A JP13823890 A JP 13823890A JP H0433377 A JPH0433377 A JP H0433377A
Authority
JP
Japan
Prior art keywords
oxide film
cut
film
etching
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13823890A
Other languages
Japanese (ja)
Other versions
JPH0821720B2 (en
Inventor
Junichi Nishizawa
西沢 潤一
Sohe Suzuki
鈴木 壮兵衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIYOUDENRIYOKU KOSOKU TSUSHIN KENKYUSHO KK
Original Assignee
SHIYOUDENRIYOKU KOSOKU TSUSHIN KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIYOUDENRIYOKU KOSOKU TSUSHIN KENKYUSHO KK filed Critical SHIYOUDENRIYOKU KOSOKU TSUSHIN KENKYUSHO KK
Priority to JP2138238A priority Critical patent/JPH0821720B2/en
Publication of JPH0433377A publication Critical patent/JPH0433377A/en
Publication of JPH0821720B2 publication Critical patent/JPH0821720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To effectively form a microscopic diffused region having a size of 1.0mum or less on the sidewall of a cut part such as a U-shaped groove, etc., in high yield by forming the groove by totally three times cutting steps, and forming an oxide film in the bottom of a third groove with nonoxidative films formed on the sidewalls of the first to third grooves as masks. CONSTITUTION:An operating layer of an n<-> type layer 2 is grown on an n<+> type Si substrate 1, and an oxide film 5 is then formed. Then, with the part except a cut region as a mask the film 5 is removed and the layer 2 is cut. An oxide film 5 is formed on the cut part, and the film 5 in the cut bottom and the layer 2 in the bottom are etched. A thin oxide film 52 is formed only on the sidewall of the cut part, and a cutting depth is further added by third cutting. An Si3N4 film 9 is formed only on the sidewall. Then, with the film 9 as a mask a thermal oxide film 59 is formed in the bottom of the cut part by a selectively oxidizing method. When the film 9 of the sidewall is removed, a gate diffusing window is opened.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、高速、低消費電力の半導体装置の製造方法に
関し、特に、半導体基板より切り込んだU型溝の側壁面
の任意の箇所に任意の大きさの拡散領域を形成し、コン
タクトホールを開孔する工程に係る加工技術に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a high-speed, low-power semiconductor device, and in particular, it relates to a method for manufacturing a semiconductor device with high speed and low power consumption. The present invention relates to a processing technology related to a process of forming a diffusion region with a size of , and opening a contact hole.

[従来の技術] 最近の半導体装置の開発は目覚ましいものがあり、高速
、低消費電力、高効率、高集積密度化を目標として、次
々に新しい構想、構造のトランジスタ、サイリスタ、I
C,メモリ等が提案されている。厚み方向の寸法制御の
方が平面方向に比して容易な点や、64Mビットダイナ
ミックRAMのように超高密度化の要求に対して立体構
造にせざるを得ない点から、基板表面に対して垂直方向
の面に対する加工技術が必要な種々の半導体装置が提案
されている。特に静電誘導トランジスタ(以下SITと
称す)などの静電誘導型半導体装置は、半導体基板表面
より、垂直に切り込まれた側壁部にゲートを形成するこ
とにより、その基本的にすぐれた特性が、さらに高周波
高速動作に適したものとなることが知られている。第2
図は切り込みゲート型SITの断面図の一例で、n“S
i基板1はドレイン、n−層2はチャンネル、p“領域
3はゲート、n+領域4はソースで、酸化膜5の上にゲ
ート電極6が形成された構造となっており、ソース・ゲ
ート間容量、ゲート・ビーレイン間容量を小さくし、か
つ変換コンダクタンスg、、を大きくすることが出来る
ので、マイクロ波からサブミリ波帯での高効率動作に適
したものである。7はソース電極である。
[Prior Art] The recent development of semiconductor devices has been remarkable, with the goal of achieving high speed, low power consumption, high efficiency, and high integration density.
C, memory, etc. have been proposed. It is easier to control dimensions in the thickness direction than in the planar direction, and a three-dimensional structure is required to meet the demands for ultra-high density such as 64M bit dynamic RAM. Various semiconductor devices have been proposed that require processing techniques for vertical surfaces. In particular, static induction type semiconductor devices such as static induction transistors (hereinafter referred to as SITs) have basically excellent characteristics by forming gates on sidewalls cut perpendicularly from the semiconductor substrate surface. Furthermore, it is known that it is suitable for high-frequency, high-speed operation. Second
The figure is an example of a cross-sectional view of a notched gate type SIT.
The i-substrate 1 is the drain, the n- layer 2 is the channel, the p" region 3 is the gate, the n+ region 4 is the source, and the gate electrode 6 is formed on the oxide film 5, so that there is no contact between the source and the gate. Since the capacitance and gate-to-be-rein capacitance can be reduced and the conversion conductance g can be increased, it is suitable for high-efficiency operation in the microwave to submillimeter wave band. 7 is a source electrode.

しかしながら、半導体表面より切り込みを有する半導体
装置において、その切り込み部の側壁面への拡散窓開け
、コンタクトホール開孔等の加工は従来の平面加工技術
の基本となるホトリソグラフ技術ではほとんど不可能で
あった。
However, in a semiconductor device having a cut from the semiconductor surface, processing such as forming a diffusion window or contact hole on the side wall surface of the cut is almost impossible using photolithography technology, which is the basis of conventional planar processing technology. Ta.

[発明が解決しようとする課題] 前述した切り込み部(U型溝)を有する半導体装置の切
り込み部側壁面への拡散窓、コンタクト窓を形成する技
術として、すてに特公昭62−32632号公報、およ
び特公平01−031309号公報等に示された技術が
提案されている。第3図(a)乃至(j)は前記特公昭
82−32632号公報に示されているNチャンネルS
ITの製造工程である。
[Problems to be Solved by the Invention] A technique for forming a diffusion window and a contact window on the side wall surface of a notch in a semiconductor device having the above-mentioned notch (U-shaped groove) is disclosed in Japanese Patent Publication No. 62-32632. , and Japanese Patent Publication No. 01-031309 have been proposed. Figures 3(a) to (j) show the N channel S shown in the above-mentioned Japanese Patent Publication No. 82-32632.
This is an IT manufacturing process.

(1〉第3図(a)に示すようにドレインとなるn”s
i基板(不純物密度10′8/cIn3)1の上にエピ
タキシャル成長によりn−層(不純物密度1013〜1
014/cff13)2の動作層を厚さ1〇−程度成長
し、続いて熱酸化等により酸化膜5を約1μ園形成する
。次にホトリソグラフ技術により0MR83等のレジス
ト膜8を切り込み予定領域以外の部分に選択的に形成す
る。
(1> As shown in Figure 3(a), n”s becomes the drain
An n-layer (impurity density 10'8/cIn3) is formed by epitaxial growth on an i-substrate (impurity density 10'8/cIn3)
014/cff13)2 is grown to a thickness of about 10-100 m, and then an oxide film 5 of about 1 μm is formed by thermal oxidation or the like. Next, a resist film 8 such as 0MR83 is selectively formed in a portion other than the area to be cut using a photolithography technique.

(2)第3図(b)に示すようにレジスト8をマスクと
して酸化膜5を除去してn−層2を約3μ−の深さまで
切り込む。この場合、切り込まれる部分の側面がn−層
2の表面に対してほぼ垂直になることが望ましく、さら
に底面か平らに近いのが望まれるが、その方法としては
側面か垂直になるアルカルエツチングや底面も平らにな
るプラズマエッチ、スパッタエッチ等があげられる。例
えばプラズマエッチで行なうにはn゛基板1の結晶面を
(111)面に選びマスクの方向を<110>方向に合
わせて、まず酸化膜5をC3F8のガスO,1Torr
でプラズマエッチし続いてガスをpcp3ガス0.05
〜0. LTorrに変えてn−層2をプラズマエッチ
すればn−層2の表面に対して垂直な側面(壁面)と平
らな底面を有する形に切り込むことができる。続いて0
□ガスプラズマによりレジスト8を除去する。
(2) As shown in FIG. 3(b), the oxide film 5 is removed using the resist 8 as a mask, and the n- layer 2 is cut to a depth of approximately 3 μ-. In this case, it is desirable that the side surfaces of the cut portion be almost perpendicular to the surface of the n-layer 2, and it is also desirable that the bottom surface be nearly flat, but the best way to do this is by alkaline etching so that the sides are perpendicular. Plasma etching, sputter etching, etc., which also make the bottom surface flat, are examples. For example, to perform plasma etching, select the crystal plane of the n゛ substrate 1 to be the (111) plane, align the mask direction to the <110> direction, and first coat the oxide film 5 with C3F8 gas O, 1 Torr.
Plasma etch with pcp3 gas 0.05
~0. If the n-layer 2 is plasma-etched instead of using LTorr, it is possible to cut into a shape having side surfaces (wall surfaces) perpendicular to the surface of the n-layer 2 and a flat bottom surface. followed by 0
□Remove the resist 8 using gas plasma.

(3)第3図(c)に示すように熱酸化等によって切り
込まれた部分に酸化膜5を5000λ程度形成する。こ
の時1で形成されたn−層2の表面の酸化膜5は1.1
μ曙程度に増加する。
(3) As shown in FIG. 3(c), an oxide film 5 of about 5000λ is formed on the cut portion by thermal oxidation or the like. At this time, the oxide film 5 on the surface of the n-layer 2 formed in step 1 is 1.1
It increases to about μAkebono.

(4)第3図(d)に示すように指向性プラズマエッチ
、スパッタエッチ等により切り込まれた底面の酸化膜5
をエッチする。この場合指向性により側面(壁面)の酸
化膜5は残り、n−層2の表面の酸化膜5は8000λ
程度に減少する。続いて切り込まれた底面のn−層2を
約1.5μm程度プラズマエッチする。例えば、プラズ
マエッチで行なうには酸化H5はC3F s D、1T
orrでエッチしn−層2はP C130,05〜0.
ITorrでエッチすることにより形成できる。
(4) As shown in FIG. 3(d), the oxide film 5 on the bottom surface is cut by directional plasma etching, sputter etching, etc.
have sex with In this case, the oxide film 5 on the side surface (wall surface) remains due to the directivity, and the oxide film 5 on the surface of the n-layer 2 has a thickness of 8000λ.
decrease to a certain degree. Subsequently, the n-layer 2 on the cut bottom surface is plasma etched to a depth of about 1.5 μm. For example, to perform plasma etching, H5 oxide is C3F s D, 1T
The n-layer 2 is etched with PC130,05~0.
It can be formed by etching with ITorr.

(5)第3図(e)に示すようにCVD等によりSi3
N4@9を1000λ程度形成する。
(5) As shown in Figure 3(e), Si3 is formed by CVD etc.
Form N4@9 with a thickness of about 1000λ.

(6)第3図(f)に示すように指向性プラズマエッチ
、スパッタエツチング等によって切り込まれた底面のS
i3N4膜9とn−層2の表面の5i3N411’;+
をエッチする。S i 3N a JI! 9は切り込
まれた側面(壁面)のみに残ることになる。例えば、プ
ラズマエッチで行なうにはC3F80.02〜0.05
Torrでエッチすることにより形成できる。
(6) As shown in Figure 3(f), the bottom surface is cut by directional plasma etching, sputter etching, etc.
5i3N411' on the surface of i3N4 film 9 and n- layer 2;+
have sex with S i 3N a JI! 9 will remain only on the cut side (wall surface). For example, to perform plasma etching, C3F80.02~0.05
It can be formed by etching with Torr.

(7)第3図(g)に示すように熱酸化等により、切り
込まれた底面に酸化1II59を5000λ程度形成す
る。この時、5i3N4s9がある切り込まれた側面(
壁面)には酸化膜59は形成されない。
(7) As shown in FIG. 3(g), approximately 5000λ of oxide 1II59 is formed on the cut bottom surface by thermal oxidation or the like. At this time, the cut side where 5i3N4s9 is (
The oxide film 59 is not formed on the wall surface.

n−層2の表面の酸化膜5は約8000人に増加する。The oxide film 5 on the surface of the n-layer 2 increases to about 8,000 layers.

(8)第3図(h)に示すようにn−層2の表面にホト
リソグラフ技術によりソースとなる領域上部の酸化膜5
を除去して、拡散等によりn°領域10(不純物密度〜
1021/cI113を0.5μ−程度の深さに形成す
る。この場合5L3N4がマスク性の高いAsを不純物
源として使用する。
(8) As shown in FIG. 3(h), the oxide film 5 above the region that will become the source is formed on the surface of the n-layer 2 by photolithography.
is removed and the n° region 10 (impurity density ~
1021/cI113 is formed to a depth of about 0.5μ. In this case, As, which has a high masking property in 5L3N4, is used as an impurity source.

(9)第3図(i)に示すように無指向性プラズマエッ
チ、熱リン酸エッチ等によって切り込まれた側面(壁面
)のSi、N4膜9をエッチすれば酸化膜5の開孔部が
1.0μ厘程度できることになりこの開孔部に拡散等に
よりp+領域11のゲートを側面(端面)より0.5μ
■の深さに形成する。
(9) As shown in FIG. 3(i), if the Si and N4 films 9 on the cut side (wall surface) are etched by non-directional plasma etching, hot phosphoric acid etching, etc., the openings in the oxide film 5 will be formed. By diffusion, etc., the gate of p+ region 11 is formed by about 1.0 μm from the side surface (end surface).
Form to a depth of ■.

このゲートの不純物密度は、n+領域10の不純物密度
より低く1020〜10′9/cm3程度におさえる。
The impurity density of this gate is lower than the impurity density of the n+ region 10, and is suppressed to about 1020 to 10'9/cm3.

したがって、n+領域10はマスクをする必要がなくp
”領域11が形成されても影響は少ない。
Therefore, the n+ region 10 does not need to be masked and the p
``Even if region 11 is formed, there is little effect.

(10)第3図(j)に示すようにAI等の金属膜を蒸
着等によって約1.5μ■厚程度形成しホトリソグラフ
技術によってゲート電極12とソース電極13に形成す
る。通常蒸着は、指向性があるためにn−層2の表面と
切り込まれた底面にのみ蒸着され、側面(壁面)には散
乱した分のみが何者するので、ホトリソグラフ技術を必
要とせずに全面エッチ等の方法で簡単にゲート電極12
、ソース電極13を分離することもできる。なお下面に
も、金属膜を蒸着しドレイン電極14とする。
(10) As shown in FIG. 3(j), a metal film such as AI is formed to a thickness of about 1.5 μm by vapor deposition or the like, and is formed on the gate electrode 12 and the source electrode 13 by photolithography. Normal vapor deposition is directional, so it is deposited only on the surface of the n-layer 2 and the bottom surface of the cut, and only the scattered portion is deposited on the side surfaces (walls), so there is no need for photolithography technology. The gate electrode 12 can be easily etched by etching the entire surface.
, the source electrode 13 can also be separated. Note that a metal film is also deposited on the lower surface to form the drain electrode 14.

[発明が解決しようする課題] しかしながら、第3図に示した方法によれば、ゲート拡
散窓としての開孔部の基板表面に垂直方向の幅が1.0
μ−程度以上の比較的大きな場合には、第3図でのよう
にp”領域11を側壁面に拡散等により形成することは
容易であるか、ゲート拡散窓としての開孔部の幅が1.
0μ−以下の微細寸法になると、p+領域11が十分に
形成されないという不良、あるいは部分的にしか形成さ
れないという問題点が生じ、この結果、ゲートの効きか
悪く、変換フンダクタンスg、が低下し、またゲートに
高電圧を印加しないと動作しなくなるという欠点があっ
た。第4図は側壁面てのゲー拡散窓幅0,7μmの場合
のSITのドレイン電流1d−ドレイン電圧Vd特性で
あるが、ケート電圧を3V以上印加しないとゲートか効
かず、SITとして有効に動作しないことかわかった。
[Problems to be Solved by the Invention] However, according to the method shown in FIG. 3, the width of the opening as a gate diffusion window in the direction perpendicular to the substrate surface is 1.0
If the size is relatively large, on the order of μ- or more, it is easy to form a p” region 11 on the side wall surface by diffusion as shown in FIG. 3, or the width of the opening as a gate diffusion window is 1.
When the fine dimensions are smaller than 0 μ-, a problem arises in that the p+ region 11 is not sufficiently formed, or is formed only partially. As a result, the gate effectiveness becomes poor and the conversion fundance g decreases. Another drawback was that it would not operate unless a high voltage was applied to the gate. Figure 4 shows the drain current 1d vs. drain voltage Vd characteristic of SIT when the gate diffusion window width on the sidewall is 0.7 μm, but the gate does not work unless a gate voltage of 3 V or more is applied, and it operates effectively as an SIT. I knew not to.

したがって、第3図に示される製造方法によれば、電源
電圧1.5Vで動作する省電力(低消費電力)、高効率
の接合型SITや、遮断周波数10GHz以上の高周波
用接合型SITにおいて要求される1、0μm以下の微
細寸法の拡散窓開け、コンタクトホール開孔か極めて困
難である欠点があった。
Therefore, according to the manufacturing method shown in FIG. 3, the requirements for power-saving (low power consumption) and high-efficiency junction-type SITs that operate at a power supply voltage of 1.5V and high-frequency junction-type SITs with a cut-off frequency of 10 GHz or higher are achieved. The drawback is that it is extremely difficult to open diffusion windows and contact holes with minute dimensions of 1.0 μm or less.

ゲート拡散窓幅が1.0μm以下になると窓開けか困難
になるのは、第3図(d)における2回目のプラズマエ
ツチングの断面形状が第5図(a)に不すように底部と
側壁部の境界部が丸みを帯びているため、選択酸化した
時、第5図(b)に示すように、いわゆる平面型のロコ
ス(LOCOS : L。
When the width of the gate diffusion window is less than 1.0 μm, it becomes difficult to open the window because the cross-sectional shape of the second plasma etching in Figure 3(d) is similar to that shown in Figure 5(a), which makes it difficult to open the gate diffusion window at the bottom and side walls. Since the boundaries of the parts are rounded, when selective oxidation is performed, a so-called planar LOCOS (LOCOS: L) is formed, as shown in FIG. 5(b).

cal  0xidation  of  5ilic
on)工程におけるバーズビーク部分が大きくなり、必
要以上に酸化膜59が5i3N49の下部に入り込むた
め、開口部が小さくなる問題点に起因していることがわ
かった。
cal Oxidation of 5ilic
It was found that this is due to the problem that the bird's beak portion in the (on) process becomes larger and the oxide film 59 enters the lower part of the 5i3N49 more than necessary, resulting in a smaller opening.

さらに接合型SITの高周波化にはゲート・ドレイン間
容量を低減することが重要で、このためには酸化膜59
はなるべく厚い方が良い。酸化膜59を厚くするために
は第3図(d)におけるプラズマエツチングはなるべく
深く、出来れば基板まで達することが望ましい。しかし
ながら、垂直な側壁を形成するために指向性の高いプラ
ズマエツチングはエツチングガスの圧力が低いほど良い
が、圧力が低くなるとスパッタ作用が強くなり、酸化膜
とSt とのエツチングの選択比が小さくなるため、指
向性が高い条件で深いS1エツチングをすると、酸化膜
5か無くなってしまう欠点かあった。
Furthermore, it is important to reduce the capacitance between the gate and drain in order to increase the frequency of the junction type SIT, and for this purpose, the oxide film 59
The thicker the better. In order to thicken the oxide film 59, it is desirable that the plasma etching in FIG. 3(d) be as deep as possible, reaching as far as the substrate if possible. However, in highly directional plasma etching to form vertical sidewalls, the lower the pressure of the etching gas, the better; however, as the pressure decreases, the sputtering effect becomes stronger and the etching selectivity between the oxide film and St2 becomes smaller. Therefore, if deep S1 etching was performed under conditions of high directivity, the oxide film 5 would be lost.

本発明の目的は、前述した従来の基板表面に垂直な方向
の加工技術の欠点に鑑みてなされたもので、U型溝等の
切り込み部分の側壁面に、1.0μ■以下の寸法を有す
る微小な拡散領域を確実に、歩留り良く形成する低消費
電力、高効率、高周波で動作する半導体装置の製造方法
を提供することにある。
The object of the present invention has been made in view of the drawbacks of the conventional processing technology in the direction perpendicular to the surface of the substrate as described above. It is an object of the present invention to provide a method for manufacturing a semiconductor device that operates at low power consumption, high efficiency, and high frequency, which can reliably form a minute diffusion region with high yield.

本発明の別の目的は、プラズマエツチングの指向性が比
較的悪くても、U型溝等の切り込み部分の側壁部に確実
に拡散窓やコンタクトホールを開孔する新規な方法を提
供することにある。
Another object of the present invention is to provide a new method for reliably opening a diffusion window or a contact hole in the side wall of a cut portion such as a U-shaped groove, even if the directivity of plasma etching is relatively poor. be.

さらに本発明の別の目的は、プラズマエツチングにおけ
る指向性と、選択比(Si  :酸化膜)との互いにト
レードオフにある関係に制限されないで、深く、かつ垂
直側壁を有する良好なエツチング断面形状の半導体装置
の製造方法を提供することにある。さらに本発明の別の
目的は、ゲート電極の下の酸化膜を厚くすることにより
、高周波動作可能な半導体装置の製造方法を提供するこ
とにある。
Another object of the present invention is to create a good etching cross-sectional shape with deep and vertical sidewalls without being limited by the trade-off relationship between directivity and selectivity (Si:oxide film) in plasma etching. An object of the present invention is to provide a method for manufacturing a semiconductor device. Still another object of the present invention is to provide a method of manufacturing a semiconductor device capable of high frequency operation by thickening the oxide film under the gate electrode.

[課題を解決するための手段および作用〕この目的の達
成を図るため、本発明による方法では、第1の切り込み
でU型溝を形成し、このU型溝を全面酸化し、その後U
型溝側壁の酸化膜を残し、底部の酸化膜のみを除去する
工程と、続いて第2の切り込みで拡散窓寸法相当の深さ
さらに切り込む工程と、第2の切り込みで形成された溝
部側壁に300〜1000人程度の薄い酸化膜を形成す
る工程と、第2の切り込みで形成された溝部に連続して
第3の切り込みを行う工程と、前記第1乃至第3の切り
込みで形成される溝部の側壁面に窒化膜のような非酸化
性被膜を形成し、溝部底面を選択酸化する工程と、前記
非酸化性マスクを除去することにより、側壁面の所定の
場所のみを露出させる工程とから少なく共成ることを特
徴としている。
[Means and effects for solving the problem] In order to achieve this object, in the method according to the present invention, a U-shaped groove is formed with a first cut, the entire surface of this U-shaped groove is oxidized, and then a U-shaped groove is formed.
A process of leaving the oxide film on the side walls of the mold groove and removing only the oxide film at the bottom, followed by a process of making a second cut to a depth equivalent to the diffusion window size, and a process of removing the oxide film on the side wall of the groove formed by the second cut. A step of forming a thin oxide film of about 300 to 1000 layers, a step of making a third cut in succession to the groove formed by the second cut, and a groove formed by the first to third cuts. A step of forming a non-oxidizing film such as a nitride film on the side wall surface of the groove and selectively oxidizing the bottom surface of the groove, and a step of exposing only a predetermined location on the side wall surface by removing the non-oxidizing mask. It is characterized by little coexistence.

[実施例] 以下、本発明の第一実施例の切り込みケート型SITの
製造方法について図面を参照しつつ説明する。
[Example] Hereinafter, a method for manufacturing a cut-gate type SIT according to a first example of the present invention will be described with reference to the drawings.

(1)第1図(a)に示すようにドレインとなるn”S
i基板(不純物密度1018/am3) 1の上にエピ
タキシャル成長によりn−層(不純物密度1013〜1
0 ”/(1)3)2の動作層を厚さ5μ■程度成長し
、続いて熱酸化等により酸化膜5を約1μl形成する。
(1) As shown in Figure 1(a), n”S becomes the drain.
An n-layer (impurity density 1013 to 1
An active layer of 0''/(1)3)2 is grown to a thickness of about 5 .mu.m, and then an oxide film 5 of about 1 .mu.l is formed by thermal oxidation or the like.

次にホトリソグラフ技術により0MR83等のレジスト
膜8を切り込み領域以外の部分に選択的に形成する。
Next, a resist film 8 such as 0MR83 is selectively formed in a portion other than the cut region by photolithography.

(2)第1図(b)に示すようにレジスト8をマスクと
して酸化膜5を除去してn−層2を約0.γμ腸の深さ
まで切り込む(第1の切り込み工程)。
(2) As shown in FIG. 1(b), the oxide film 5 is removed using the resist 8 as a mask, and the n- layer 2 is approximately 0.0. Cut to the depth of the γμ intestine (first cutting step).

この場合、切り込まれる部分の側面かn−層2の表面に
対してほぼ垂直になることが望ましく、さらに底面が平
らに近いのが望まれるか、その方法としては側面が垂直
になるアルカルエツチングや底面も平らになるプラズマ
エッチ、スパッタエッチ等があげられる。例えばプラズ
マエッチで行なうにはn+基板1の結晶面を(111)
面に選びマスクの方向を<110>方向に合わせて、ま
ず酸化膜5をC3F8のガス0.1Torrでプラズマ
エッチし続いてガスをPCII、ガス0.05〜0.1
Torrに変えてn−層2をプラズマエッチすればn−
層2の表面に対して垂直な側面(壁面)と平らな底面を
有する形に切り込むことができる。続いて02ガスプラ
ズマによりレジスト8を除去する。
In this case, it is desirable that the sides of the part to be cut be almost perpendicular to the surface of the n-layer 2, and it is also desirable that the bottom surface be nearly flat, or alternatively, the method is alkaline etching in which the sides are perpendicular. Plasma etching, sputter etching, etc., which also make the bottom surface flat, are examples. For example, to perform plasma etching, the crystal plane of n+ substrate 1 is (111)
Select the surface and align the direction of the mask to the <110> direction, first plasma-etch the oxide film 5 with C3F8 gas at 0.1 Torr, then use PCII gas and gas at 0.05 to 0.1 Torr.
If you change to Torr and plasma-etch n- layer 2, n-
It is possible to cut into a shape having side surfaces (wall surfaces) perpendicular to the surface of layer 2 and a flat bottom surface. Subsequently, the resist 8 is removed using 02 gas plasma.

(3)第1図(c)に示すように熱酸化等によって切り
込まれた部分に酸化M5を5000λ程度形成する。こ
の時1で形成されたn−層2の表面の酸化膜5は1.1
μm程度に増加する。
(3) As shown in FIG. 1(c), oxide M5 of about 5000λ is formed in the cut portion by thermal oxidation or the like. At this time, the oxide film 5 on the surface of the n-layer 2 formed in step 1 is 1.1
It increases to about μm.

(4)第1図(d)に示すように指向性プラズマエッチ
、スパッタエッチ等により切り込まれた底面の酸化膜5
をエッチする。この場合指向性により側面(壁面)の酸
化膜5は残り、n−層2の表面の酸化膜5は6000人
程度に減少する。
(4) As shown in FIG. 1(d), the oxide film 5 on the bottom surface is cut by directional plasma etching, sputter etching, etc.
have sex with In this case, the oxide film 5 on the side surfaces (wall surfaces) remains due to the directivity, and the oxide film 5 on the surface of the n- layer 2 is reduced to about 6,000 layers.

続いて切り込まれた底面のn−層2をさらに0.5μ印
程度プラズマエッチする(第2の切り込み)。この第2
の切り込みにおいては、エツチングの指向性に対する要
求は緩和されているので、第1図(d)に示すように比
較的等方的なエツチングで良い。したがって、PCl3
ガスの圧力は0.1〜0.2 Torr  の高圧側の
値で良く、この時の選択比(Sl/Si 02 )は極
めて高いので、第2の切り込みにおいては酸化膜5はほ
とんど薄くならない。
Subsequently, the cut n-layer 2 on the bottom surface is further plasma etched by about 0.5 μm (second cut). This second
In the notch, the requirement for etching directionality is relaxed, so relatively isotropic etching is sufficient as shown in FIG. 1(d). Therefore, PCl3
The gas pressure may be on the high pressure side of 0.1 to 0.2 Torr, and since the selectivity (Sl/Si 02 ) at this time is extremely high, the oxide film 5 is hardly thinned in the second incision.

(5)第1図(e)に示すように熱酸化等により全面に
300〜1000人の薄い酸化膜52を形成し、指向性
プラズマエッチにより切り込み部側壁面のみにこの薄い
酸化膜52を残す。
(5) As shown in FIG. 1(e), a thin oxide film 52 of 300 to 1000 layers is formed on the entire surface by thermal oxidation, etc., and this thin oxide film 52 is left only on the side wall surface of the cut portion by directional plasma etching. .

(6)第1図(f)に示すように第3の切り込みにより
さらに0.5μ腹切り込み深さを追加する。
(6) As shown in FIG. 1(f), add an additional 0.5μ deep cut by making the third cut.

SITの高周波化のためには、第3の切り込みを基板に
達するまで約5μ■行うことが望ましい。
In order to increase the frequency of SIT, it is desirable to make the third cut approximately 5 .mu.m until it reaches the substrate.

この場合第1図h (f)に示すように、多少エツチン
グの指向性が悪く、等方的エツチングでも良いので、こ
の分、酸化膜に対する選択比が高くなり、深いエツチン
グが可能となる。20g3のプラズマエツチングでは指
向性を犠牲にして高圧側でエツチングすれば選択比30
〜50は容易に実現できる。側壁のLOGO3における
バーズビークを考えるならば、第3の切り込みのプラズ
マエツチングを2段階にして最初高圧の0.1〜0.2
Torrでエツチングし、はぼ目的の深さに達したら0
.03〜0.05Torr  のエツチングに切り換え
れば切り込み部の底面と側壁面とは垂直に近い断面形状
となる。前述したように第3の切り込みが0.5μ履程
度以下の場合は最初からガス圧0.03〜0,05To
rr  でエツチングしても良い。
In this case, as shown in FIG. 1h(f), the etching directionality is somewhat poor and isotropic etching may be sufficient, so that the selectivity to the oxide film is increased accordingly and deep etching is possible. In 20g3 plasma etching, if you sacrifice directivity and etch on the high pressure side, the selectivity can be 30.
~50 can be easily achieved. Considering the bird's beak in LOGO3 on the side wall, plasma etching of the third notch is done in two stages, first at a high pressure of 0.1 to 0.2.
Etch with Torr, and when the desired depth is reached, 0
.. If etching is switched to etching at 0.03 to 0.05 Torr, the bottom surface of the notch and the side wall surface will have a nearly perpendicular cross-sectional shape. As mentioned above, if the third cut is about 0.5 μm or less, the gas pressure is 0.03 to 0.05 To from the beginning.
It may be etched with rr.

(7)第1図(g)に示すようにCVD等により5is
N4膜9を1000〜1300人程度形成する。
(7) As shown in Figure 1 (g), 5is is made by CVD etc.
About 1,000 to 1,300 people form the N4 film 9.

(8)第1図(h)に示すように、指向性プラズマエッ
チ、スパッタエッチ等により、側壁面のみの513N4
膜9を残し、他はエツチング除去する。次いで、このS
i3N4膜9をマスクとして切り込み部底面に3000
〜4000人の熱酸化膜59を選択酸化法にて形成する
。第1図(f)で5μ−程度法(切り込み部を形成した
時は、熱酸化の前に、SiO2もしくはS10の指向性
電子ビーム蒸着等により酸化物を前もって4〜4.5μ
m堆積しておく。通常蒸着法により四部に酸化物を堆積
すると酸化物は凹部に台形に堆積され、凹部側壁と台形
の酸化物との間にはすきまが生じるのでこれを熱酸化で
埋めれば良い。
(8) As shown in Figure 1 (h), 513N4 only on the side wall surface was removed by directional plasma etching, sputter etching, etc.
The film 9 is left and the rest are removed by etching. Next, this S
Using the i3N4 film 9 as a mask, apply 3000 μm to the bottom of the cut.
A thermal oxide film 59 of ~4000 layers is formed by a selective oxidation method. As shown in Fig. 1(f), an oxide of about 4 to 4.5 μm is deposited in advance by directional electron beam evaporation of SiO2 or S10 before thermal oxidation.
Deposit m. When oxide is deposited on the four parts by the normal vapor deposition method, the oxide is deposited in a trapezoidal shape in the recess, and a gap is created between the sidewall of the recess and the trapezoidal oxide, which can be filled by thermal oxidation.

(9)第1図(i)に示すように、n−層2の凸部の中
央部付近の表面に、ホトリソグラフ技術により、ソース
となるn″領域10を0.3〜0.5μm程度の深さに
形成する。75A s ’イオン注入を用いれば不純物
密度102Icrn−3程度のソース領域は容易に形成
される。イオン注入後、熱酸化等により、ソース拡散窓
部上部にも3000〜3500人の酸化膜を形成する。
(9) As shown in FIG. 1(i), an n'' region 10 that will become a source is formed with a thickness of about 0.3 to 0.5 μm on the surface near the center of the convex portion of the n-layer 2 by photolithography. By using 75A s' ion implantation, a source region with an impurity density of about 102Icrn-3 can be easily formed.After the ion implantation, by thermal oxidation, etc., a 3000 to 3500% impurity concentration is formed in the upper part of the source diffusion window. Forms an oxide film on humans.

この結果切り込み部底面の酸化膜59は5000〜60
00人の厚さになる。
As a result, the oxide film 59 on the bottom surface of the notch has a density of 5000 to 60%.
It will be 00 people thick.

(10)第1図(j)に示すように無指向性プラズマエ
ッチ、熱リン酸エッチ等により、側壁部のSl、N4膜
9を除去すれば、ゲート拡散窓か0.4〜0.5μmの
幅で開孔される。この開孔部に不純物密度5 x l 
Q l 8〜1020crn−3程度、側壁面よりの深
さ0.5μ−程度にボロンを拡散する。拡散後、開孔部
表面にBSGが形成される場合にはエツチング除去し、
ゲートコンタクトホールを開孔する。次にホトリソグラ
フにより、ソース拡散領域10の上部の酸化膜を除去し
、ソースコンタクトホールを開孔、通常のメタライゼー
ション技術により、ゲート電極12、ソース電極13、
トレイン電極14を形成する。
(10) As shown in FIG. 1(j), if the Sl and N4 films 9 on the sidewalls are removed by non-directional plasma etching, hot phosphoric acid etching, etc., the gate diffusion window will be removed by 0.4 to 0.5 μm. The hole is drilled with a width of . This opening has an impurity density of 5 x l.
Boron is diffused to a depth of about 0.5 μ- from the side wall surface with a Q l of about 8 to 1020 crn-3. After diffusion, if BSG is formed on the surface of the opening, remove it by etching.
Drill a gate contact hole. Next, the oxide film above the source diffusion region 10 is removed by photolithography, a source contact hole is opened, and the gate electrode 12, source electrode 13,
A train electrode 14 is formed.

[発明の効果] 本発明によれば、半導体基板の切り込まれた部分の側壁
面の任意の位置に、任意の導電型の領域を選択的に設け
ることが出来る。又、本発明によれば、側壁部の選択酸
化において、マスクとしてのSi、N4膜の下への酸化
膜の喰い込みであるいわゆるバーズビークが極めて小さ
くなるので、微小寸法の拡散窓開けか、制御性良く、か
つ再現性良く実現出来る。さらに本発明によれば、合計
3回の切り込み工程でU型溝を形成しているので、それ
ぞれの切り込み工程におけるプラズマエツチングの指向
性が悪くても、結果としては垂直に近い側壁が得られる
。すなわち、プラズマエツチングの指向性と選択比(S
t対5t02)とはトレドオフ関係にあることが知られ
ているが、指向性を犠牲にして選択比を高くすることが
可能で、この分深いエツチングが可能になる。さらに本
発明によればプラズマエツチング装置に対する性能上の
要求が緩和されるので、装置は簡単なもので良く、結果
として安価にかつ歩留りよく半導体装置が製造される。
[Effects of the Invention] According to the present invention, a region of any conductivity type can be selectively provided at any position on the side wall surface of the cut portion of the semiconductor substrate. Furthermore, according to the present invention, in the selective oxidation of the sidewall portion, the so-called bird's beak, which is the digging of the oxide film under the Si and N4 films as a mask, becomes extremely small, so it is possible to control the opening of minute-sized diffusion windows. It can be realized with good performance and reproducibility. Further, according to the present invention, since the U-shaped groove is formed in a total of three cutting steps, nearly vertical sidewalls can be obtained even if the plasma etching directionality in each cutting step is poor. In other words, the directivity and selectivity of plasma etching (S
Although it is known that there is a trade-off relationship between t and 5t02), it is possible to increase the selectivity at the expense of directivity, which allows for deeper etching. Furthermore, according to the present invention, the performance requirements for the plasma etching apparatus are relaxed, so the apparatus can be simple, and as a result, semiconductor devices can be manufactured at low cost and with high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る切り込みケート型SI
Tの製造方法を説明するための断面図、第2図は従来の
切り込みゲート型SITを示す断面図、第3図は従来の
NチャンネルSITの製造方法を説明するための断面図
、第4図は従来のSITのドレイン電流Id−Vd特性
の一例を示す特性図、第5図は第3図の一部を拡大して
示す断面図である。 1・・・n′″Si基板、2・・・n−層、5・・・酸
化膜、59・・・熱酸化膜、8・・・レジスト膜、9・
・・Si。 N4膜、10・・・n+領領域52・・・酸化膜。 出願人代理人 弁理士 鈴江武彦 (e) (f) 第1図−(2) (h) 第 図−(3) (a) (f) 第 図 第2 図 第 図
FIG. 1 shows an incision cage type SI according to an embodiment of the present invention.
2 is a sectional view showing a conventional notched gate type SIT, FIG. 3 is a sectional view showing a conventional N-channel SIT manufacturing method, and FIG. 5 is a characteristic diagram showing an example of drain current Id-Vd characteristics of a conventional SIT, and FIG. 5 is a cross-sectional view showing an enlarged part of FIG. 3. DESCRIPTION OF SYMBOLS 1... n'''Si substrate, 2... n- layer, 5... oxide film, 59... thermal oxide film, 8... resist film, 9...
...Si. N4 film, 10... n+ region 52... oxide film. Applicant's agent Patent attorney Takehiko Suzue (e) (f) Figure 1-(2) (h) Figure-(3) (a) (f) Figure 2 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)第1の切り込みによって半導体基板に第1の溝を
掘り、この第1の溝の側壁部に酸化膜を形成する第1の
工程と、 第2の切り込みによって前記第1の溝の底部に連続して
、さらに第2の溝を掘り、この第2の溝の側壁部に酸化
膜を形成する第2の工程と、第3の切り込みによって、
前記第2の溝の底部に連続して、さらに第3の溝を掘る
第3の工程と、前記第1乃至第3の溝の側壁部に選択的
に非酸化性被膜を形成し、この非酸化性被膜をマスクと
して、前記第3の溝部底部に酸化膜を形成する第4の工
程と から少なく共成ることを特徴とする半導体装置の製造方
法。
(1) A first step of digging a first trench in a semiconductor substrate by a first cut and forming an oxide film on the sidewalls of the first trench; Continuing with this, a second step of digging a second trench and forming an oxide film on the side wall of the second trench, and a third incision,
A third step of digging a third groove continuously at the bottom of the second groove, and selectively forming a non-oxidizing film on the side walls of the first to third grooves. A method for manufacturing a semiconductor device, comprising at least a fourth step of forming an oxide film at the bottom of the third trench using an oxidizing film as a mask.
(2)前記第3の工程におけるプラズマエッチングを2
段階にて行ない、最初高圧でエッチングし、次に低圧で
指向性良くエッチングすることを特徴とする請求項1記
載の半導体装置の製造方法。
(2) Plasma etching in the third step
2. The method of manufacturing a semiconductor device according to claim 1, wherein the etching is performed in steps, first etching at high pressure and then etching at low pressure with good directionality.
JP2138238A 1990-05-30 1990-05-30 Method for manufacturing semiconductor device Expired - Fee Related JPH0821720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2138238A JPH0821720B2 (en) 1990-05-30 1990-05-30 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2138238A JPH0821720B2 (en) 1990-05-30 1990-05-30 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0433377A true JPH0433377A (en) 1992-02-04
JPH0821720B2 JPH0821720B2 (en) 1996-03-04

Family

ID=15217305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2138238A Expired - Fee Related JPH0821720B2 (en) 1990-05-30 1990-05-30 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0821720B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6921932B1 (en) * 2002-05-20 2005-07-26 Lovoltech, Inc. JFET and MESFET structures for low voltage, high current and high frequency applications
US7262461B1 (en) 2002-05-20 2007-08-28 Qspeed Semiconductor Inc. JFET and MESFET structures for low voltage, high current and high frequency applications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343483A (en) * 1976-10-01 1978-04-19 Handotai Kenkyu Shinkokai Semiconductor device
JPS60154622A (en) * 1984-01-25 1985-08-14 Hitachi Ltd Etching method
JPS60173871A (en) * 1984-02-20 1985-09-07 Nec Corp MIS type semiconductor memory device and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343483A (en) * 1976-10-01 1978-04-19 Handotai Kenkyu Shinkokai Semiconductor device
JPS60154622A (en) * 1984-01-25 1985-08-14 Hitachi Ltd Etching method
JPS60173871A (en) * 1984-02-20 1985-09-07 Nec Corp MIS type semiconductor memory device and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6921932B1 (en) * 2002-05-20 2005-07-26 Lovoltech, Inc. JFET and MESFET structures for low voltage, high current and high frequency applications
US7045397B1 (en) * 2002-05-20 2006-05-16 Lovoltech, Inc. JFET and MESFET structures for low voltage high current and high frequency applications
US7262461B1 (en) 2002-05-20 2007-08-28 Qspeed Semiconductor Inc. JFET and MESFET structures for low voltage, high current and high frequency applications

Also Published As

Publication number Publication date
JPH0821720B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
US6511885B2 (en) Vertical MOS transistor and method of manufacturing the same
CN109545855B (en) Preparation method of active region of silicon carbide double-groove MOSFET device
US20050110072A1 (en) Precise patterning of high-K films
US20150097242A1 (en) Channel Epitaxial Regrowth Flow (CRF)
JPH0433377A (en) Manufacture of semiconductor device
JP2009535817A (en) Mask structure for the manufacture of trench-type semiconductor devices
KR20010075177A (en) Device and method for etching spacers formed upon an integrated circuit gate conductor
JPS60198841A (en) Element isolation method for semiconductor devices
JPH0415959A (en) Manufacture of semiconductor device
US20070178647A1 (en) Semiconductor devices having recessed structures and methods of forming the same
KR100417195B1 (en) Fabricating method of semiconductor device
JP2008305870A (en) Semiconductor device and manufacturing method thereof
JP3321613B2 (en) Method for forming shallow and deep grooves in silicon substrate
JPS62165356A (en) Complementary insulated gate field effect transistor and manufacturing method thereof
KR100380981B1 (en) Method for forming salicide gate electrode
JP3645032B2 (en) A method for producing a silicon quantum wire structure.
KR20010004268A (en) Method of manufacturing a splite gate flash EEPROM cell
KR100323720B1 (en) Elevated semiconductor layer and method for forming the same
KR940006082B1 (en) Isolation Method of Semiconductor Devices
KR970013116A (en) Manufacturing method of semiconductor device
KR100781887B1 (en) How to form a gate of a transistor
JPS62206873A (en) Manufacturing method of semiconductor device
KR100489534B1 (en) Method for forming a shallow trench isolation using of porous silicon evaporation
JPH0897232A (en) Manufacture of semiconductor device
JP2007234803A (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees